1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package cmplx
- import "math"
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
- // The go code is a simplified version of the original C.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- // Complex exponential function
- //
- // DESCRIPTION:
- //
- // Returns the complex exponential of the complex argument z.
- //
- // If
- // z = x + iy,
- // r = exp(x),
- // then
- // w = r cos y + i r sin y.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 8700 3.7e-17 1.1e-17
- // IEEE -10,+10 30000 3.0e-16 8.7e-17
- // Exp returns e**x, the base-e exponential of x.
- func Exp(x complex128) complex128 {
- r := math.Exp(real(x))
- s, c := math.Sincos(imag(x))
- return complex(r*c, r*s)
- }
|