123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package cmplx
- import "math"
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
- // The go code is a simplified version of the original C.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- // Complex circular arc sine
- //
- // DESCRIPTION:
- //
- // Inverse complex sine:
- // 2
- // w = -i clog( iz + csqrt( 1 - z ) ).
- //
- // casin(z) = -i casinh(iz)
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 10100 2.1e-15 3.4e-16
- // IEEE -10,+10 30000 2.2e-14 2.7e-15
- // Larger relative error can be observed for z near zero.
- // Also tested by csin(casin(z)) = z.
- // Asin returns the inverse sine of x.
- func Asin(x complex128) complex128 {
- if imag(x) == 0 {
- if math.Abs(real(x)) > 1 {
- return complex(math.Pi/2, 0) // DOMAIN error
- }
- return complex(math.Asin(real(x)), 0)
- }
- ct := complex(-imag(x), real(x)) // i * x
- xx := x * x
- x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
- x2 := Sqrt(x1) // x2 = sqrt(1 - x*x)
- w := Log(ct + x2)
- return complex(imag(w), -real(w)) // -i * w
- }
- // Asinh returns the inverse hyperbolic sine of x.
- func Asinh(x complex128) complex128 {
- // TODO check range
- if imag(x) == 0 {
- if math.Abs(real(x)) > 1 {
- return complex(math.Pi/2, 0) // DOMAIN error
- }
- return complex(math.Asinh(real(x)), 0)
- }
- xx := x * x
- x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
- return Log(x + Sqrt(x1)) // log(x + sqrt(1 + x*x))
- }
- // Complex circular arc cosine
- //
- // DESCRIPTION:
- //
- // w = arccos z = PI/2 - arcsin z.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 5200 1.6e-15 2.8e-16
- // IEEE -10,+10 30000 1.8e-14 2.2e-15
- // Acos returns the inverse cosine of x.
- func Acos(x complex128) complex128 {
- w := Asin(x)
- return complex(math.Pi/2-real(w), -imag(w))
- }
- // Acosh returns the inverse hyperbolic cosine of x.
- func Acosh(x complex128) complex128 {
- w := Acos(x)
- if imag(w) <= 0 {
- return complex(-imag(w), real(w)) // i * w
- }
- return complex(imag(w), -real(w)) // -i * w
- }
- // Complex circular arc tangent
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- // 1 ( 2x )
- // Re w = - arctan(-----------) + k PI
- // 2 ( 2 2)
- // (1 - x - y )
- //
- // ( 2 2)
- // 1 (x + (y+1) )
- // Im w = - log(------------)
- // 4 ( 2 2)
- // (x + (y-1) )
- //
- // Where k is an arbitrary integer.
- //
- // catan(z) = -i catanh(iz).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 5900 1.3e-16 7.8e-18
- // IEEE -10,+10 30000 2.3e-15 8.5e-17
- // The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
- // had peak relative error 1.5e-16, rms relative error
- // 2.9e-17. See also clog().
- // Atan returns the inverse tangent of x.
- func Atan(x complex128) complex128 {
- if real(x) == 0 && imag(x) > 1 {
- return NaN()
- }
- x2 := real(x) * real(x)
- a := 1 - x2 - imag(x)*imag(x)
- if a == 0 {
- return NaN()
- }
- t := 0.5 * math.Atan2(2*real(x), a)
- w := reducePi(t)
- t = imag(x) - 1
- b := x2 + t*t
- if b == 0 {
- return NaN()
- }
- t = imag(x) + 1
- c := (x2 + t*t) / b
- return complex(w, 0.25*math.Log(c))
- }
- // Atanh returns the inverse hyperbolic tangent of x.
- func Atanh(x complex128) complex128 {
- z := complex(-imag(x), real(x)) // z = i * x
- z = Atan(z)
- return complex(imag(z), -real(z)) // z = -i * z
- }
|