123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package jpeg
- // This is a Go translation of idct.c from
- //
- // http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
- //
- // which carries the following notice:
- /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
- /*
- * Disclaimer of Warranty
- *
- * These software programs are available to the user without any license fee or
- * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
- * any and all warranties, whether express, implied, or statuary, including any
- * implied warranties or merchantability or of fitness for a particular
- * purpose. In no event shall the copyright-holder be liable for any
- * incidental, punitive, or consequential damages of any kind whatsoever
- * arising from the use of these programs.
- *
- * This disclaimer of warranty extends to the user of these programs and user's
- * customers, employees, agents, transferees, successors, and assigns.
- *
- * The MPEG Software Simulation Group does not represent or warrant that the
- * programs furnished hereunder are free of infringement of any third-party
- * patents.
- *
- * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
- * are subject to royalty fees to patent holders. Many of these patents are
- * general enough such that they are unavoidable regardless of implementation
- * design.
- *
- */
- const blockSize = 64 // A DCT block is 8x8.
- type block [blockSize]int32
- const (
- w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
- w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
- w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
- w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
- w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
- w7 = 565 // 2048*sqrt(2)*cos(7*pi/16)
- w1pw7 = w1 + w7
- w1mw7 = w1 - w7
- w2pw6 = w2 + w6
- w2mw6 = w2 - w6
- w3pw5 = w3 + w5
- w3mw5 = w3 - w5
- r2 = 181 // 256/sqrt(2)
- )
- // idct performs a 2-D Inverse Discrete Cosine Transformation.
- //
- // The input coefficients should already have been multiplied by the
- // appropriate quantization table. We use fixed-point computation, with the
- // number of bits for the fractional component varying over the intermediate
- // stages.
- //
- // For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
- // discrete W transform and for the discrete Fourier transform", IEEE Trans. on
- // ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
- func idct(src *block) {
- // Horizontal 1-D IDCT.
- for y := 0; y < 8; y++ {
- y8 := y * 8
- // If all the AC components are zero, then the IDCT is trivial.
- if src[y8+1] == 0 && src[y8+2] == 0 && src[y8+3] == 0 &&
- src[y8+4] == 0 && src[y8+5] == 0 && src[y8+6] == 0 && src[y8+7] == 0 {
- dc := src[y8+0] << 3
- src[y8+0] = dc
- src[y8+1] = dc
- src[y8+2] = dc
- src[y8+3] = dc
- src[y8+4] = dc
- src[y8+5] = dc
- src[y8+6] = dc
- src[y8+7] = dc
- continue
- }
- // Prescale.
- x0 := (src[y8+0] << 11) + 128
- x1 := src[y8+4] << 11
- x2 := src[y8+6]
- x3 := src[y8+2]
- x4 := src[y8+1]
- x5 := src[y8+7]
- x6 := src[y8+5]
- x7 := src[y8+3]
- // Stage 1.
- x8 := w7 * (x4 + x5)
- x4 = x8 + w1mw7*x4
- x5 = x8 - w1pw7*x5
- x8 = w3 * (x6 + x7)
- x6 = x8 - w3mw5*x6
- x7 = x8 - w3pw5*x7
- // Stage 2.
- x8 = x0 + x1
- x0 -= x1
- x1 = w6 * (x3 + x2)
- x2 = x1 - w2pw6*x2
- x3 = x1 + w2mw6*x3
- x1 = x4 + x6
- x4 -= x6
- x6 = x5 + x7
- x5 -= x7
- // Stage 3.
- x7 = x8 + x3
- x8 -= x3
- x3 = x0 + x2
- x0 -= x2
- x2 = (r2*(x4+x5) + 128) >> 8
- x4 = (r2*(x4-x5) + 128) >> 8
- // Stage 4.
- src[y8+0] = (x7 + x1) >> 8
- src[y8+1] = (x3 + x2) >> 8
- src[y8+2] = (x0 + x4) >> 8
- src[y8+3] = (x8 + x6) >> 8
- src[y8+4] = (x8 - x6) >> 8
- src[y8+5] = (x0 - x4) >> 8
- src[y8+6] = (x3 - x2) >> 8
- src[y8+7] = (x7 - x1) >> 8
- }
- // Vertical 1-D IDCT.
- for x := 0; x < 8; x++ {
- // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
- // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
- // we do not bother to check for the all-zero case.
- // Prescale.
- y0 := (src[8*0+x] << 8) + 8192
- y1 := src[8*4+x] << 8
- y2 := src[8*6+x]
- y3 := src[8*2+x]
- y4 := src[8*1+x]
- y5 := src[8*7+x]
- y6 := src[8*5+x]
- y7 := src[8*3+x]
- // Stage 1.
- y8 := w7*(y4+y5) + 4
- y4 = (y8 + w1mw7*y4) >> 3
- y5 = (y8 - w1pw7*y5) >> 3
- y8 = w3*(y6+y7) + 4
- y6 = (y8 - w3mw5*y6) >> 3
- y7 = (y8 - w3pw5*y7) >> 3
- // Stage 2.
- y8 = y0 + y1
- y0 -= y1
- y1 = w6*(y3+y2) + 4
- y2 = (y1 - w2pw6*y2) >> 3
- y3 = (y1 + w2mw6*y3) >> 3
- y1 = y4 + y6
- y4 -= y6
- y6 = y5 + y7
- y5 -= y7
- // Stage 3.
- y7 = y8 + y3
- y8 -= y3
- y3 = y0 + y2
- y0 -= y2
- y2 = (r2*(y4+y5) + 128) >> 8
- y4 = (r2*(y4-y5) + 128) >> 8
- // Stage 4.
- src[8*0+x] = (y7 + y1) >> 14
- src[8*1+x] = (y3 + y2) >> 14
- src[8*2+x] = (y0 + y4) >> 14
- src[8*3+x] = (y8 + y6) >> 14
- src[8*4+x] = (y8 - y6) >> 14
- src[8*5+x] = (y0 - y4) >> 14
- src[8*6+x] = (y3 - y2) >> 14
- src[8*7+x] = (y7 - y1) >> 14
- }
- }
|