123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- //go:generate go run encgen.go -output enc_helpers.go
- package gob
- import (
- "encoding"
- "math"
- "reflect"
- )
- const uint64Size = 8
- type encHelper func(state *encoderState, v reflect.Value) bool
- // encoderState is the global execution state of an instance of the encoder.
- // Field numbers are delta encoded and always increase. The field
- // number is initialized to -1 so 0 comes out as delta(1). A delta of
- // 0 terminates the structure.
- type encoderState struct {
- enc *Encoder
- b *encBuffer
- sendZero bool // encoding an array element or map key/value pair; send zero values
- fieldnum int // the last field number written.
- buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
- next *encoderState // for free list
- }
- // encBuffer is an extremely simple, fast implementation of a write-only byte buffer.
- // It never returns a non-nil error, but Write returns an error value so it matches io.Writer.
- type encBuffer struct {
- data []byte
- scratch [64]byte
- }
- func (e *encBuffer) WriteByte(c byte) {
- e.data = append(e.data, c)
- }
- func (e *encBuffer) Write(p []byte) (int, error) {
- e.data = append(e.data, p...)
- return len(p), nil
- }
- func (e *encBuffer) WriteString(s string) {
- e.data = append(e.data, s...)
- }
- func (e *encBuffer) Len() int {
- return len(e.data)
- }
- func (e *encBuffer) Bytes() []byte {
- return e.data
- }
- func (e *encBuffer) Reset() {
- e.data = e.data[0:0]
- }
- func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState {
- e := enc.freeList
- if e == nil {
- e = new(encoderState)
- e.enc = enc
- } else {
- enc.freeList = e.next
- }
- e.sendZero = false
- e.fieldnum = 0
- e.b = b
- if len(b.data) == 0 {
- b.data = b.scratch[0:0]
- }
- return e
- }
- func (enc *Encoder) freeEncoderState(e *encoderState) {
- e.next = enc.freeList
- enc.freeList = e
- }
- // Unsigned integers have a two-state encoding. If the number is less
- // than 128 (0 through 0x7F), its value is written directly.
- // Otherwise the value is written in big-endian byte order preceded
- // by the byte length, negated.
- // encodeUint writes an encoded unsigned integer to state.b.
- func (state *encoderState) encodeUint(x uint64) {
- if x <= 0x7F {
- state.b.WriteByte(uint8(x))
- return
- }
- i := uint64Size
- for x > 0 {
- state.buf[i] = uint8(x)
- x >>= 8
- i--
- }
- state.buf[i] = uint8(i - uint64Size) // = loop count, negated
- state.b.Write(state.buf[i : uint64Size+1])
- }
- // encodeInt writes an encoded signed integer to state.w.
- // The low bit of the encoding says whether to bit complement the (other bits of the)
- // uint to recover the int.
- func (state *encoderState) encodeInt(i int64) {
- var x uint64
- if i < 0 {
- x = uint64(^i<<1) | 1
- } else {
- x = uint64(i << 1)
- }
- state.encodeUint(uint64(x))
- }
- // encOp is the signature of an encoding operator for a given type.
- type encOp func(i *encInstr, state *encoderState, v reflect.Value)
- // The 'instructions' of the encoding machine
- type encInstr struct {
- op encOp
- field int // field number in input
- index []int // struct index
- indir int // how many pointer indirections to reach the value in the struct
- }
- // update emits a field number and updates the state to record its value for delta encoding.
- // If the instruction pointer is nil, it does nothing
- func (state *encoderState) update(instr *encInstr) {
- if instr != nil {
- state.encodeUint(uint64(instr.field - state.fieldnum))
- state.fieldnum = instr.field
- }
- }
- // Each encoder for a composite is responsible for handling any
- // indirections associated with the elements of the data structure.
- // If any pointer so reached is nil, no bytes are written. If the
- // data item is zero, no bytes are written. Single values - ints,
- // strings etc. - are indirected before calling their encoders.
- // Otherwise, the output (for a scalar) is the field number, as an
- // encoded integer, followed by the field data in its appropriate
- // format.
- // encIndirect dereferences pv indir times and returns the result.
- func encIndirect(pv reflect.Value, indir int) reflect.Value {
- for ; indir > 0; indir-- {
- if pv.IsNil() {
- break
- }
- pv = pv.Elem()
- }
- return pv
- }
- // encBool encodes the bool referenced by v as an unsigned 0 or 1.
- func encBool(i *encInstr, state *encoderState, v reflect.Value) {
- b := v.Bool()
- if b || state.sendZero {
- state.update(i)
- if b {
- state.encodeUint(1)
- } else {
- state.encodeUint(0)
- }
- }
- }
- // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
- func encInt(i *encInstr, state *encoderState, v reflect.Value) {
- value := v.Int()
- if value != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(value)
- }
- }
- // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
- func encUint(i *encInstr, state *encoderState, v reflect.Value) {
- value := v.Uint()
- if value != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(value)
- }
- }
- // floatBits returns a uint64 holding the bits of a floating-point number.
- // Floating-point numbers are transmitted as uint64s holding the bits
- // of the underlying representation. They are sent byte-reversed, with
- // the exponent end coming out first, so integer floating point numbers
- // (for example) transmit more compactly. This routine does the
- // swizzling.
- func floatBits(f float64) uint64 {
- u := math.Float64bits(f)
- var v uint64
- for i := 0; i < 8; i++ {
- v <<= 8
- v |= u & 0xFF
- u >>= 8
- }
- return v
- }
- // encFloat encodes the floating point value (float32 float64) referenced by v.
- func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
- f := v.Float()
- if f != 0 || state.sendZero {
- bits := floatBits(f)
- state.update(i)
- state.encodeUint(bits)
- }
- }
- // encComplex encodes the complex value (complex64 complex128) referenced by v.
- // Complex numbers are just a pair of floating-point numbers, real part first.
- func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
- c := v.Complex()
- if c != 0+0i || state.sendZero {
- rpart := floatBits(real(c))
- ipart := floatBits(imag(c))
- state.update(i)
- state.encodeUint(rpart)
- state.encodeUint(ipart)
- }
- }
- // encUint8Array encodes the byte array referenced by v.
- // Byte arrays are encoded as an unsigned count followed by the raw bytes.
- func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
- b := v.Bytes()
- if len(b) > 0 || state.sendZero {
- state.update(i)
- state.encodeUint(uint64(len(b)))
- state.b.Write(b)
- }
- }
- // encString encodes the string referenced by v.
- // Strings are encoded as an unsigned count followed by the raw bytes.
- func encString(i *encInstr, state *encoderState, v reflect.Value) {
- s := v.String()
- if len(s) > 0 || state.sendZero {
- state.update(i)
- state.encodeUint(uint64(len(s)))
- state.b.WriteString(s)
- }
- }
- // encStructTerminator encodes the end of an encoded struct
- // as delta field number of 0.
- func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
- state.encodeUint(0)
- }
- // Execution engine
- // encEngine an array of instructions indexed by field number of the encoding
- // data, typically a struct. It is executed top to bottom, walking the struct.
- type encEngine struct {
- instr []encInstr
- }
- const singletonField = 0
- // valid reports whether the value is valid and a non-nil pointer.
- // (Slices, maps, and chans take care of themselves.)
- func valid(v reflect.Value) bool {
- switch v.Kind() {
- case reflect.Invalid:
- return false
- case reflect.Ptr:
- return !v.IsNil()
- }
- return true
- }
- // encodeSingle encodes a single top-level non-struct value.
- func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) {
- state := enc.newEncoderState(b)
- defer enc.freeEncoderState(state)
- state.fieldnum = singletonField
- // There is no surrounding struct to frame the transmission, so we must
- // generate data even if the item is zero. To do this, set sendZero.
- state.sendZero = true
- instr := &engine.instr[singletonField]
- if instr.indir > 0 {
- value = encIndirect(value, instr.indir)
- }
- if valid(value) {
- instr.op(instr, state, value)
- }
- }
- // encodeStruct encodes a single struct value.
- func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) {
- if !valid(value) {
- return
- }
- state := enc.newEncoderState(b)
- defer enc.freeEncoderState(state)
- state.fieldnum = -1
- for i := 0; i < len(engine.instr); i++ {
- instr := &engine.instr[i]
- if i >= value.NumField() {
- // encStructTerminator
- instr.op(instr, state, reflect.Value{})
- break
- }
- field := value.FieldByIndex(instr.index)
- if instr.indir > 0 {
- field = encIndirect(field, instr.indir)
- // TODO: Is field guaranteed valid? If so we could avoid this check.
- if !valid(field) {
- continue
- }
- }
- instr.op(instr, state, field)
- }
- }
- // encodeArray encodes an array.
- func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) {
- state := enc.newEncoderState(b)
- defer enc.freeEncoderState(state)
- state.fieldnum = -1
- state.sendZero = true
- state.encodeUint(uint64(length))
- if helper != nil && helper(state, value) {
- return
- }
- for i := 0; i < length; i++ {
- elem := value.Index(i)
- if elemIndir > 0 {
- elem = encIndirect(elem, elemIndir)
- // TODO: Is elem guaranteed valid? If so we could avoid this check.
- if !valid(elem) {
- errorf("encodeArray: nil element")
- }
- }
- op(nil, state, elem)
- }
- }
- // encodeReflectValue is a helper for maps. It encodes the value v.
- func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
- for i := 0; i < indir && v.IsValid(); i++ {
- v = reflect.Indirect(v)
- }
- if !v.IsValid() {
- errorf("encodeReflectValue: nil element")
- }
- op(nil, state, v)
- }
- // encodeMap encodes a map as unsigned count followed by key:value pairs.
- func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.sendZero = true
- keys := mv.MapKeys()
- state.encodeUint(uint64(len(keys)))
- for _, key := range keys {
- encodeReflectValue(state, key, keyOp, keyIndir)
- encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
- }
- enc.freeEncoderState(state)
- }
- // encodeInterface encodes the interface value iv.
- // To send an interface, we send a string identifying the concrete type, followed
- // by the type identifier (which might require defining that type right now), followed
- // by the concrete value. A nil value gets sent as the empty string for the name,
- // followed by no value.
- func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) {
- // Gobs can encode nil interface values but not typed interface
- // values holding nil pointers, since nil pointers point to no value.
- elem := iv.Elem()
- if elem.Kind() == reflect.Ptr && elem.IsNil() {
- errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
- }
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.sendZero = true
- if iv.IsNil() {
- state.encodeUint(0)
- return
- }
- ut := userType(iv.Elem().Type())
- registerLock.RLock()
- name, ok := concreteTypeToName[ut.base]
- registerLock.RUnlock()
- if !ok {
- errorf("type not registered for interface: %s", ut.base)
- }
- // Send the name.
- state.encodeUint(uint64(len(name)))
- state.b.WriteString(name)
- // Define the type id if necessary.
- enc.sendTypeDescriptor(enc.writer(), state, ut)
- // Send the type id.
- enc.sendTypeId(state, ut)
- // Encode the value into a new buffer. Any nested type definitions
- // should be written to b, before the encoded value.
- enc.pushWriter(b)
- data := new(encBuffer)
- data.Write(spaceForLength)
- enc.encode(data, elem, ut)
- if enc.err != nil {
- error_(enc.err)
- }
- enc.popWriter()
- enc.writeMessage(b, data)
- if enc.err != nil {
- error_(enc.err)
- }
- enc.freeEncoderState(state)
- }
- // isZero reports whether the value is the zero of its type.
- func isZero(val reflect.Value) bool {
- switch val.Kind() {
- case reflect.Array:
- for i := 0; i < val.Len(); i++ {
- if !isZero(val.Index(i)) {
- return false
- }
- }
- return true
- case reflect.Map, reflect.Slice, reflect.String:
- return val.Len() == 0
- case reflect.Bool:
- return !val.Bool()
- case reflect.Complex64, reflect.Complex128:
- return val.Complex() == 0
- case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
- return val.IsNil()
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return val.Int() == 0
- case reflect.Float32, reflect.Float64:
- return val.Float() == 0
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- return val.Uint() == 0
- case reflect.Struct:
- for i := 0; i < val.NumField(); i++ {
- if !isZero(val.Field(i)) {
- return false
- }
- }
- return true
- }
- panic("unknown type in isZero " + val.Type().String())
- }
- // encGobEncoder encodes a value that implements the GobEncoder interface.
- // The data is sent as a byte array.
- func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) {
- // TODO: should we catch panics from the called method?
- var data []byte
- var err error
- // We know it's one of these.
- switch ut.externalEnc {
- case xGob:
- data, err = v.Interface().(GobEncoder).GobEncode()
- case xBinary:
- data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
- case xText:
- data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
- }
- if err != nil {
- error_(err)
- }
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.encodeUint(uint64(len(data)))
- state.b.Write(data)
- enc.freeEncoderState(state)
- }
- var encOpTable = [...]encOp{
- reflect.Bool: encBool,
- reflect.Int: encInt,
- reflect.Int8: encInt,
- reflect.Int16: encInt,
- reflect.Int32: encInt,
- reflect.Int64: encInt,
- reflect.Uint: encUint,
- reflect.Uint8: encUint,
- reflect.Uint16: encUint,
- reflect.Uint32: encUint,
- reflect.Uint64: encUint,
- reflect.Uintptr: encUint,
- reflect.Float32: encFloat,
- reflect.Float64: encFloat,
- reflect.Complex64: encComplex,
- reflect.Complex128: encComplex,
- reflect.String: encString,
- }
- // encOpFor returns (a pointer to) the encoding op for the base type under rt and
- // the indirection count to reach it.
- func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) {
- ut := userType(rt)
- // If the type implements GobEncoder, we handle it without further processing.
- if ut.externalEnc != 0 {
- return gobEncodeOpFor(ut)
- }
- // If this type is already in progress, it's a recursive type (e.g. map[string]*T).
- // Return the pointer to the op we're already building.
- if opPtr := inProgress[rt]; opPtr != nil {
- return opPtr, ut.indir
- }
- typ := ut.base
- indir := ut.indir
- k := typ.Kind()
- var op encOp
- if int(k) < len(encOpTable) {
- op = encOpTable[k]
- }
- if op == nil {
- inProgress[rt] = &op
- // Special cases
- switch t := typ; t.Kind() {
- case reflect.Slice:
- if t.Elem().Kind() == reflect.Uint8 {
- op = encUint8Array
- break
- }
- // Slices have a header; we decode it to find the underlying array.
- elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
- helper := encSliceHelper[t.Elem().Kind()]
- op = func(i *encInstr, state *encoderState, slice reflect.Value) {
- if !state.sendZero && slice.Len() == 0 {
- return
- }
- state.update(i)
- state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper)
- }
- case reflect.Array:
- // True arrays have size in the type.
- elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
- helper := encArrayHelper[t.Elem().Kind()]
- op = func(i *encInstr, state *encoderState, array reflect.Value) {
- state.update(i)
- state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper)
- }
- case reflect.Map:
- keyOp, keyIndir := encOpFor(t.Key(), inProgress, building)
- elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
- op = func(i *encInstr, state *encoderState, mv reflect.Value) {
- // We send zero-length (but non-nil) maps because the
- // receiver might want to use the map. (Maps don't use append.)
- if !state.sendZero && mv.IsNil() {
- return
- }
- state.update(i)
- state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
- }
- case reflect.Struct:
- // Generate a closure that calls out to the engine for the nested type.
- getEncEngine(userType(typ), building)
- info := mustGetTypeInfo(typ)
- op = func(i *encInstr, state *encoderState, sv reflect.Value) {
- state.update(i)
- // indirect through info to delay evaluation for recursive structs
- enc := info.encoder.Load().(*encEngine)
- state.enc.encodeStruct(state.b, enc, sv)
- }
- case reflect.Interface:
- op = func(i *encInstr, state *encoderState, iv reflect.Value) {
- if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
- return
- }
- state.update(i)
- state.enc.encodeInterface(state.b, iv)
- }
- }
- }
- if op == nil {
- errorf("can't happen: encode type %s", rt)
- }
- return &op, indir
- }
- // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
- func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
- rt := ut.user
- if ut.encIndir == -1 {
- rt = reflect.PtrTo(rt)
- } else if ut.encIndir > 0 {
- for i := int8(0); i < ut.encIndir; i++ {
- rt = rt.Elem()
- }
- }
- var op encOp
- op = func(i *encInstr, state *encoderState, v reflect.Value) {
- if ut.encIndir == -1 {
- // Need to climb up one level to turn value into pointer.
- if !v.CanAddr() {
- errorf("unaddressable value of type %s", rt)
- }
- v = v.Addr()
- }
- if !state.sendZero && isZero(v) {
- return
- }
- state.update(i)
- state.enc.encodeGobEncoder(state.b, ut, v)
- }
- return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
- }
- // compileEnc returns the engine to compile the type.
- func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
- srt := ut.base
- engine := new(encEngine)
- seen := make(map[reflect.Type]*encOp)
- rt := ut.base
- if ut.externalEnc != 0 {
- rt = ut.user
- }
- if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
- for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
- f := srt.Field(fieldNum)
- if !isSent(&f) {
- continue
- }
- op, indir := encOpFor(f.Type, seen, building)
- engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
- wireFieldNum++
- }
- if srt.NumField() > 0 && len(engine.instr) == 0 {
- errorf("type %s has no exported fields", rt)
- }
- engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
- } else {
- engine.instr = make([]encInstr, 1)
- op, indir := encOpFor(rt, seen, building)
- engine.instr[0] = encInstr{*op, singletonField, nil, indir}
- }
- return engine
- }
- // getEncEngine returns the engine to compile the type.
- func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
- info, err := getTypeInfo(ut)
- if err != nil {
- error_(err)
- }
- enc, ok := info.encoder.Load().(*encEngine)
- if !ok {
- enc = buildEncEngine(info, ut, building)
- }
- return enc
- }
- func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
- // Check for recursive types.
- if building != nil && building[info] {
- return nil
- }
- info.encInit.Lock()
- defer info.encInit.Unlock()
- enc, ok := info.encoder.Load().(*encEngine)
- if !ok {
- if building == nil {
- building = make(map[*typeInfo]bool)
- }
- building[info] = true
- enc = compileEnc(ut, building)
- info.encoder.Store(enc)
- }
- return enc
- }
- func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) {
- defer catchError(&enc.err)
- engine := getEncEngine(ut, nil)
- indir := ut.indir
- if ut.externalEnc != 0 {
- indir = int(ut.encIndir)
- }
- for i := 0; i < indir; i++ {
- value = reflect.Indirect(value)
- }
- if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
- enc.encodeStruct(b, engine, value)
- } else {
- enc.encodeSingle(b, engine, value)
- }
- }
|