123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517 |
- /***************************************************************************
- Interface between g++ and Boehm GC
- Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
- THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
- OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- Permission is hereby granted to copy this code for any purpose,
- provided the above notices are retained on all copies.
- Last modified on Sun Jul 16 23:21:14 PDT 1995 by ellis
- This module provides runtime support for implementing the
- Ellis/Detlefs GC proposal, "Safe, Efficient Garbage Collection for
- C++", within g++, using its -fgc-keyword extension. It defines
- versions of __builtin_new, __builtin_new_gc, __builtin_vec_new,
- __builtin_vec_new_gc, __builtin_delete, and __builtin_vec_delete that
- invoke the Bohem GC. It also implements the WeakPointer.h interface.
- This module assumes the following configuration options of the Boehm GC:
- -DALL_INTERIOR_POINTERS
- -DDONT_ADD_BYTE_AT_END
- This module adds its own required padding to the end of objects to
- support C/C++ "one-past-the-object" pointer semantics.
- ****************************************************************************/
- #include <stddef.h>
- #include "gc.h"
- #if defined(__STDC__)
- # define PROTO( args ) args
- #else
- # define PROTO( args ) ()
- # endif
- #define BITSPERBYTE 8
- /* What's the portable way to do this? */
- typedef void (*vfp) PROTO(( void ));
- extern vfp __new_handler;
- extern void __default_new_handler PROTO(( void ));
- /* A destructor_proc is the compiler generated procedure representing a
- C++ destructor. The "flag" argument is a hidden argument following some
- compiler convention. */
- typedef (*destructor_proc) PROTO(( void* this, int flag ));
- /***************************************************************************
- A BI_header is the header the compiler adds to the front of
- new-allocated arrays of objects with destructors. The header is
- padded out to a double, because that's what the compiler does to
- ensure proper alignment of array elements on some architectures.
- int NUM_ARRAY_ELEMENTS (void* o)
- returns the number of array elements for array object o.
- char* FIRST_ELEMENT_P (void* o)
- returns the address of the first element of array object o.
- ***************************************************************************/
- typedef struct BI_header {
- int nelts;
- char padding [sizeof( double ) - sizeof( int )];
- /* Better way to do this? */
- } BI_header;
- #define NUM_ARRAY_ELEMENTS( o ) \
- (((BI_header*) o)->nelts)
- #define FIRST_ELEMENT_P( o ) \
- ((char*) o + sizeof( BI_header ))
- /***************************************************************************
- The __builtin_new routines add a descriptor word to the end of each
- object. The descriptor serves two purposes.
- First, the descriptor acts as padding, implementing C/C++ pointer
- semantics. C and C++ allow a valid array pointer to be incremented
- one past the end of an object. The extra padding ensures that the
- collector will recognize that such a pointer points to the object and
- not the next object in memory.
- Second, the descriptor stores three extra pieces of information,
- whether an object has a registered finalizer (destructor), whether it
- may have any weak pointers referencing it, and for collectible arrays,
- the element size of the array. The element size is required for the
- array's finalizer to iterate through the elements of the array. (An
- alternative design would have the compiler generate a finalizer
- procedure for each different array type. But given the overhead of
- finalization, there isn't any efficiency to be gained by that.)
- The descriptor must be added to non-collectible as well as collectible
- objects, since the Ellis/Detlefs proposal allows "pointer to gc T" to
- be assigned to a "pointer to T", which could then be deleted. Thus,
- __builtin_delete must determine at runtime whether an object is
- collectible, whether it has weak pointers referencing it, and whether
- it may have a finalizer that needs unregistering. Though
- GC_REGISTER_FINALIZER doesn't care if you ask it to unregister a
- finalizer for an object that doesn't have one, it is a non-trivial
- procedure that does a hash look-up, etc. The descriptor trades a
- little extra space for a significant increase in time on the fast path
- through delete. (A similar argument applies to
- GC_UNREGISTER_DISAPPEARING_LINK).
- For non-array types, the space for the descriptor could be shrunk to a
- single byte for storing the "has finalizer" flag. But this would save
- space only on arrays of char (whose size is not a multiple of the word
- size) and structs whose largest member is less than a word in size
- (very infrequent). And it would require that programmers actually
- remember to call "delete[]" instead of "delete" (which they should,
- but there are probably lots of buggy programs out there). For the
- moment, the space savings seems not worthwhile, especially considering
- that the Boehm GC is already quite space competitive with other
- malloc's.
- Given a pointer o to the base of an object:
- Descriptor* DESCRIPTOR (void* o)
- returns a pointer to the descriptor for o.
- The implementation of descriptors relies on the fact that the GC
- implementation allocates objects in units of the machine's natural
- word size (e.g. 32 bits on a SPARC, 64 bits on an Alpha).
- **************************************************************************/
- typedef struct Descriptor {
- unsigned has_weak_pointers: 1;
- unsigned has_finalizer: 1;
- unsigned element_size: BITSPERBYTE * sizeof( unsigned ) - 2;
- } Descriptor;
- #define DESCRIPTOR( o ) \
- ((Descriptor*) ((char*)(o) + GC_size( o ) - sizeof( Descriptor )))
- /**************************************************************************
- Implementations of global operator new() and operator delete()
- ***************************************************************************/
- void* __builtin_new( size )
- size_t size;
- /*
- For non-gc non-array types, the compiler generates calls to
- __builtin_new, which allocates non-collected storage via
- GC_MALLOC_UNCOLLECTABLE. This ensures that the non-collected
- storage will be part of the collector's root set, required by the
- Ellis/Detlefs semantics. */
- {
- vfp handler = __new_handler ? __new_handler : __default_new_handler;
- while (1) {
- void* o = GC_MALLOC_UNCOLLECTABLE( size + sizeof( Descriptor ) );
- if (o != 0) return o;
- (*handler) ();}}
- void* __builtin_vec_new( size )
- size_t size;
- /*
- For non-gc array types, the compiler generates calls to
- __builtin_vec_new. */
- {
- return __builtin_new( size );}
- void* __builtin_new_gc( size )
- size_t size;
- /*
- For gc non-array types, the compiler generates calls to
- __builtin_new_gc, which allocates collected storage via
- GC_MALLOC. */
- {
- vfp handler = __new_handler ? __new_handler : __default_new_handler;
- while (1) {
- void* o = GC_MALLOC( size + sizeof( Descriptor ) );
- if (o != 0) return o;
- (*handler) ();}}
- void* __builtin_new_gc_a( size )
- size_t size;
- /*
- For non-pointer-containing gc non-array types, the compiler
- generates calls to __builtin_new_gc_a, which allocates collected
- storage via GC_MALLOC_ATOMIC. */
- {
- vfp handler = __new_handler ? __new_handler : __default_new_handler;
- while (1) {
- void* o = GC_MALLOC_ATOMIC( size + sizeof( Descriptor ) );
- if (o != 0) return o;
- (*handler) ();}}
- void* __builtin_vec_new_gc( size )
- size_t size;
- /*
- For gc array types, the compiler generates calls to
- __builtin_vec_new_gc. */
- {
- return __builtin_new_gc( size );}
- void* __builtin_vec_new_gc_a( size )
- size_t size;
- /*
- For non-pointer-containing gc array types, the compiler generates
- calls to __builtin_vec_new_gc_a. */
- {
- return __builtin_new_gc_a( size );}
- static void call_destructor( o, data )
- void* o;
- void* data;
- /*
- call_destructor is the GC finalizer proc registered for non-array
- gc objects with destructors. Its client data is the destructor
- proc, which it calls with the magic integer 2, a special flag
- obeying the compiler convention for destructors. */
- {
- ((destructor_proc) data)( o, 2 );}
- void* __builtin_new_gc_dtor( o, d )
- void* o;
- destructor_proc d;
- /*
- The compiler generates a call to __builtin_new_gc_dtor to register
- the destructor "d" of a non-array gc object "o" as a GC finalizer.
- The destructor is registered via
- GC_REGISTER_FINALIZER_IGNORE_SELF, which causes the collector to
- ignore pointers from the object to itself when determining when
- the object can be finalized. This is necessary due to the self
- pointers used in the internal representation of multiply-inherited
- objects. */
- {
- Descriptor* desc = DESCRIPTOR( o );
- GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_destructor, d, 0, 0 );
- desc->has_finalizer = 1;}
- static void call_array_destructor( o, data )
- void* o;
- void* data;
- /*
- call_array_destructor is the GC finalizer proc registered for gc
- array objects whose elements have destructors. Its client data is
- the destructor proc. It iterates through the elements of the
- array in reverse order, calling the destructor on each. */
- {
- int num = NUM_ARRAY_ELEMENTS( o );
- Descriptor* desc = DESCRIPTOR( o );
- size_t size = desc->element_size;
- char* first_p = FIRST_ELEMENT_P( o );
- char* p = first_p + (num - 1) * size;
- if (num > 0) {
- while (1) {
- ((destructor_proc) data)( p, 2 );
- if (p == first_p) break;
- p -= size;}}}
- void* __builtin_vec_new_gc_dtor( first_elem, d, element_size )
- void* first_elem;
- destructor_proc d;
- size_t element_size;
- /*
- The compiler generates a call to __builtin_vec_new_gc_dtor to
- register the destructor "d" of a gc array object as a GC
- finalizer. "first_elem" points to the first element of the array,
- *not* the beginning of the object (this makes the generated call
- to this function smaller). The elements of the array are of size
- "element_size". The destructor is registered as in
- _builtin_new_gc_dtor. */
- {
- void* o = (char*) first_elem - sizeof( BI_header );
- Descriptor* desc = DESCRIPTOR( o );
- GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_array_destructor, d, 0, 0 );
- desc->element_size = element_size;
- desc->has_finalizer = 1;}
- void __builtin_delete( o )
- void* o;
- /*
- The compiler generates calls to __builtin_delete for operator
- delete(). The GC currently requires that any registered
- finalizers be unregistered before explicitly freeing an object.
- If the object has any weak pointers referencing it, we can't
- actually free it now. */
- {
- if (o != 0) {
- Descriptor* desc = DESCRIPTOR( o );
- if (desc->has_finalizer) GC_REGISTER_FINALIZER( o, 0, 0, 0, 0 );
- if (! desc->has_weak_pointers) GC_FREE( o );}}
- void __builtin_vec_delete( o )
- void* o;
- /*
- The compiler generates calls to __builitn_vec_delete for operator
- delete[](). */
- {
- __builtin_delete( o );}
- /**************************************************************************
- Implementations of the template class WeakPointer from WeakPointer.h
- ***************************************************************************/
- typedef struct WeakPointer {
- void* pointer;
- } WeakPointer;
- void* _WeakPointer_New( t )
- void* t;
- {
- if (t == 0) {
- return 0;}
- else {
- void* base = GC_base( t );
- WeakPointer* wp =
- (WeakPointer*) GC_MALLOC_ATOMIC( sizeof( WeakPointer ) );
- Descriptor* desc = DESCRIPTOR( base );
- wp->pointer = t;
- desc->has_weak_pointers = 1;
- GC_general_register_disappearing_link( &wp->pointer, base );
- return wp;}}
- static void* PointerWithLock( wp )
- WeakPointer* wp;
- {
- if (wp == 0 || wp->pointer == 0) {
- return 0;}
- else {
- return (void*) wp->pointer;}}
- void* _WeakPointer_Pointer( wp )
- WeakPointer* wp;
- {
- return (void*) GC_call_with_alloc_lock( PointerWithLock, wp );}
- typedef struct EqualClosure {
- WeakPointer* wp1;
- WeakPointer* wp2;
- } EqualClosure;
- static void* EqualWithLock( ec )
- EqualClosure* ec;
- {
- if (ec->wp1 == 0 || ec->wp2 == 0) {
- return (void*) (ec->wp1 == ec->wp2);}
- else {
- return (void*) (ec->wp1->pointer == ec->wp2->pointer);}}
- int _WeakPointer_Equal( wp1, wp2 )
- WeakPointer* wp1;
- WeakPointer* wp2;
- {
- EqualClosure ec;
- ec.wp1 = wp1;
- ec.wp2 = wp2;
- return (int) GC_call_with_alloc_lock( EqualWithLock, &ec );}
- int _WeakPointer_Hash( wp )
- WeakPointer* wp;
- {
- return (int) _WeakPointer_Pointer( wp );}
- /**************************************************************************
- Implementations of the template class CleanUp from WeakPointer.h
- ***************************************************************************/
- typedef struct Closure {
- void (*c) PROTO(( void* d, void* t ));
- ptrdiff_t t_offset;
- void* d;
- } Closure;
- static void _CleanUp_CallClosure( obj, data )
- void* obj;
- void* data;
- {
- Closure* closure = (Closure*) data;
- closure->c( closure->d, (char*) obj + closure->t_offset );}
- void _CleanUp_Set( t, c, d )
- void* t;
- void (*c) PROTO(( void* d, void* t ));
- void* d;
- {
- void* base = GC_base( t );
- Descriptor* desc = DESCRIPTOR( t );
- if (c == 0) {
- GC_REGISTER_FINALIZER_IGNORE_SELF( base, 0, 0, 0, 0 );
- desc->has_finalizer = 0;}
- else {
- Closure* closure = (Closure*) GC_MALLOC( sizeof( Closure ) );
- closure->c = c;
- closure->t_offset = (char*) t - (char*) base;
- closure->d = d;
- GC_REGISTER_FINALIZER_IGNORE_SELF( base, _CleanUp_CallClosure,
- closure, 0, 0 );
- desc->has_finalizer = 1;}}
- void _CleanUp_Call( t )
- void* t;
- {
- /* ? Aren't we supposed to deactivate weak pointers to t too?
- Why? */
- void* base = GC_base( t );
- void* d;
- GC_finalization_proc f;
- GC_REGISTER_FINALIZER( base, 0, 0, &f, &d );
- f( base, d );}
- typedef struct QueueElem {
- void* o;
- GC_finalization_proc f;
- void* d;
- struct QueueElem* next;
- } QueueElem;
- void* _CleanUp_Queue_NewHead()
- {
- return GC_MALLOC( sizeof( QueueElem ) );}
-
-
- static void _CleanUp_Queue_Enqueue( obj, data )
- void* obj;
- void* data;
- {
- QueueElem* q = (QueueElem*) data;
- QueueElem* head = q->next;
- q->o = obj;
- q->next = head->next;
- head->next = q;}
-
-
- void _CleanUp_Queue_Set( h, t )
- void* h;
- void* t;
- {
- QueueElem* head = (QueueElem*) h;
- void* base = GC_base( t );
- void* d;
- GC_finalization_proc f;
- QueueElem* q = (QueueElem*) GC_MALLOC( sizeof( QueueElem ) );
-
- GC_REGISTER_FINALIZER( base, _CleanUp_Queue_Enqueue, q, &f, &d );
- q->f = f;
- q->d = d;
- q->next = head;}
-
- int _CleanUp_Queue_Call( h )
- void* h;
- {
- QueueElem* head = (QueueElem*) h;
- QueueElem* q = head->next;
- if (q == 0) {
- return 0;}
- else {
- head->next = q->next;
- q->next = 0;
- if (q->f != 0) q->f( q->o, q->d );
- return 1;}}
|