1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192 |
- @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
- @c This is part of the GAS manual.
- @c For copying conditions, see the file as.texinfo.
- @c man end
- @ifset GENERIC
- @page
- @node i386-Dependent
- @chapter 80386 Dependent Features
- @end ifset
- @ifclear GENERIC
- @node Machine Dependencies
- @chapter 80386 Dependent Features
- @end ifclear
- @cindex i386 support
- @cindex i80386 support
- @cindex x86-64 support
- The i386 version @code{@value{AS}} supports both the original Intel 386
- architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
- extending the Intel architecture to 64-bits.
- @menu
- * i386-Options:: Options
- * i386-Directives:: X86 specific directives
- * i386-Syntax:: Syntactical considerations
- * i386-Mnemonics:: Instruction Naming
- * i386-Regs:: Register Naming
- * i386-Prefixes:: Instruction Prefixes
- * i386-Memory:: Memory References
- * i386-Jumps:: Handling of Jump Instructions
- * i386-Float:: Floating Point
- * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
- * i386-LWP:: AMD's Lightweight Profiling Instructions
- * i386-BMI:: Bit Manipulation Instruction
- * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
- * i386-16bit:: Writing 16-bit Code
- * i386-Arch:: Specifying an x86 CPU architecture
- * i386-Bugs:: AT&T Syntax bugs
- * i386-Notes:: Notes
- @end menu
- @node i386-Options
- @section Options
- @cindex options for i386
- @cindex options for x86-64
- @cindex i386 options
- @cindex x86-64 options
- The i386 version of @code{@value{AS}} has a few machine
- dependent options:
- @c man begin OPTIONS
- @table @gcctabopt
- @cindex @samp{--32} option, i386
- @cindex @samp{--32} option, x86-64
- @cindex @samp{--x32} option, i386
- @cindex @samp{--x32} option, x86-64
- @cindex @samp{--64} option, i386
- @cindex @samp{--64} option, x86-64
- @item --32 | --x32 | --64
- Select the word size, either 32 bits or 64 bits. @samp{--32}
- implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
- imply AMD x86-64 architecture with 32-bit or 64-bit word-size
- respectively.
- These options are only available with the ELF object file format, and
- require that the necessary BFD support has been included (on a 32-bit
- platform you have to add --enable-64-bit-bfd to configure enable 64-bit
- usage and use x86-64 as target platform).
- @item -n
- By default, x86 GAS replaces multiple nop instructions used for
- alignment within code sections with multi-byte nop instructions such
- as leal 0(%esi,1),%esi. This switch disables the optimization.
- @cindex @samp{--divide} option, i386
- @item --divide
- On SVR4-derived platforms, the character @samp{/} is treated as a comment
- character, which means that it cannot be used in expressions. The
- @samp{--divide} option turns @samp{/} into a normal character. This does
- not disable @samp{/} at the beginning of a line starting a comment, or
- affect using @samp{#} for starting a comment.
- @cindex @samp{-march=} option, i386
- @cindex @samp{-march=} option, x86-64
- @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
- This option specifies the target processor. The assembler will
- issue an error message if an attempt is made to assemble an instruction
- which will not execute on the target processor. The following
- processor names are recognized:
- @code{i8086},
- @code{i186},
- @code{i286},
- @code{i386},
- @code{i486},
- @code{i586},
- @code{i686},
- @code{pentium},
- @code{pentiumpro},
- @code{pentiumii},
- @code{pentiumiii},
- @code{pentium4},
- @code{prescott},
- @code{nocona},
- @code{core},
- @code{core2},
- @code{corei7},
- @code{l1om},
- @code{k1om},
- @code{iamcu},
- @code{k6},
- @code{k6_2},
- @code{athlon},
- @code{opteron},
- @code{k8},
- @code{amdfam10},
- @code{bdver1},
- @code{bdver2},
- @code{bdver3},
- @code{bdver4},
- @code{znver1},
- @code{btver1},
- @code{btver2},
- @code{generic32} and
- @code{generic64}.
- In addition to the basic instruction set, the assembler can be told to
- accept various extension mnemonics. For example,
- @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
- @var{vmx}. The following extensions are currently supported:
- @code{8087},
- @code{287},
- @code{387},
- @code{no87},
- @code{mmx},
- @code{nommx},
- @code{sse},
- @code{sse2},
- @code{sse3},
- @code{ssse3},
- @code{sse4.1},
- @code{sse4.2},
- @code{sse4},
- @code{nosse},
- @code{avx},
- @code{avx2},
- @code{adx},
- @code{rdseed},
- @code{prfchw},
- @code{smap},
- @code{mpx},
- @code{sha},
- @code{prefetchwt1},
- @code{clflushopt},
- @code{se1},
- @code{clwb},
- @code{pcommit},
- @code{avx512f},
- @code{avx512cd},
- @code{avx512er},
- @code{avx512pf},
- @code{avx512vl},
- @code{avx512bw},
- @code{avx512dq},
- @code{avx512ifma},
- @code{avx512vbmi},
- @code{noavx},
- @code{vmx},
- @code{vmfunc},
- @code{smx},
- @code{xsave},
- @code{xsaveopt},
- @code{xsavec},
- @code{xsaves},
- @code{aes},
- @code{pclmul},
- @code{fsgsbase},
- @code{rdrnd},
- @code{f16c},
- @code{bmi2},
- @code{fma},
- @code{movbe},
- @code{ept},
- @code{lzcnt},
- @code{hle},
- @code{rtm},
- @code{invpcid},
- @code{clflush},
- @code{mwaitx},
- @code{clzero},
- @code{lwp},
- @code{fma4},
- @code{xop},
- @code{cx16},
- @code{syscall},
- @code{rdtscp},
- @code{3dnow},
- @code{3dnowa},
- @code{sse4a},
- @code{sse5},
- @code{svme},
- @code{abm} and
- @code{padlock}.
- Note that rather than extending a basic instruction set, the extension
- mnemonics starting with @code{no} revoke the respective functionality.
- When the @code{.arch} directive is used with @option{-march}, the
- @code{.arch} directive will take precedent.
- @cindex @samp{-mtune=} option, i386
- @cindex @samp{-mtune=} option, x86-64
- @item -mtune=@var{CPU}
- This option specifies a processor to optimize for. When used in
- conjunction with the @option{-march} option, only instructions
- of the processor specified by the @option{-march} option will be
- generated.
- Valid @var{CPU} values are identical to the processor list of
- @option{-march=@var{CPU}}.
- @cindex @samp{-msse2avx} option, i386
- @cindex @samp{-msse2avx} option, x86-64
- @item -msse2avx
- This option specifies that the assembler should encode SSE instructions
- with VEX prefix.
- @cindex @samp{-msse-check=} option, i386
- @cindex @samp{-msse-check=} option, x86-64
- @item -msse-check=@var{none}
- @itemx -msse-check=@var{warning}
- @itemx -msse-check=@var{error}
- These options control if the assembler should check SSE instructions.
- @option{-msse-check=@var{none}} will make the assembler not to check SSE
- instructions, which is the default. @option{-msse-check=@var{warning}}
- will make the assembler issue a warning for any SSE instruction.
- @option{-msse-check=@var{error}} will make the assembler issue an error
- for any SSE instruction.
- @cindex @samp{-mavxscalar=} option, i386
- @cindex @samp{-mavxscalar=} option, x86-64
- @item -mavxscalar=@var{128}
- @itemx -mavxscalar=@var{256}
- These options control how the assembler should encode scalar AVX
- instructions. @option{-mavxscalar=@var{128}} will encode scalar
- AVX instructions with 128bit vector length, which is the default.
- @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
- with 256bit vector length.
- @cindex @samp{-mevexlig=} option, i386
- @cindex @samp{-mevexlig=} option, x86-64
- @item -mevexlig=@var{128}
- @itemx -mevexlig=@var{256}
- @itemx -mevexlig=@var{512}
- These options control how the assembler should encode length-ignored
- (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
- EVEX instructions with 128bit vector length, which is the default.
- @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
- encode LIG EVEX instructions with 256bit and 512bit vector length,
- respectively.
- @cindex @samp{-mevexwig=} option, i386
- @cindex @samp{-mevexwig=} option, x86-64
- @item -mevexwig=@var{0}
- @itemx -mevexwig=@var{1}
- These options control how the assembler should encode w-ignored (WIG)
- EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
- EVEX instructions with evex.w = 0, which is the default.
- @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
- evex.w = 1.
- @cindex @samp{-mmnemonic=} option, i386
- @cindex @samp{-mmnemonic=} option, x86-64
- @item -mmnemonic=@var{att}
- @itemx -mmnemonic=@var{intel}
- This option specifies instruction mnemonic for matching instructions.
- The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
- take precedent.
- @cindex @samp{-msyntax=} option, i386
- @cindex @samp{-msyntax=} option, x86-64
- @item -msyntax=@var{att}
- @itemx -msyntax=@var{intel}
- This option specifies instruction syntax when processing instructions.
- The @code{.att_syntax} and @code{.intel_syntax} directives will
- take precedent.
- @cindex @samp{-mnaked-reg} option, i386
- @cindex @samp{-mnaked-reg} option, x86-64
- @item -mnaked-reg
- This opetion specifies that registers don't require a @samp{%} prefix.
- The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
- @cindex @samp{-madd-bnd-prefix} option, i386
- @cindex @samp{-madd-bnd-prefix} option, x86-64
- @item -madd-bnd-prefix
- This option forces the assembler to add BND prefix to all branches, even
- if such prefix was not explicitly specified in the source code.
- @cindex @samp{-mshared} option, i386
- @cindex @samp{-mshared} option, x86-64
- @item -mno-shared
- On ELF target, the assembler normally optimizes out non-PLT relocations
- against defined non-weak global branch targets with default visibility.
- The @samp{-mshared} option tells the assembler to generate code which
- may go into a shared library where all non-weak global branch targets
- with default visibility can be preempted. The resulting code is
- slightly bigger. This option only affects the handling of branch
- instructions.
- @cindex @samp{-mbig-obj} option, x86-64
- @item -mbig-obj
- On x86-64 PE/COFF target this option forces the use of big object file
- format, which allows more than 32768 sections.
- @cindex @samp{-momit-lock-prefix=} option, i386
- @cindex @samp{-momit-lock-prefix=} option, x86-64
- @item -momit-lock-prefix=@var{no}
- @itemx -momit-lock-prefix=@var{yes}
- These options control how the assembler should encode lock prefix.
- This option is intended as a workaround for processors, that fail on
- lock prefix. This option can only be safely used with single-core,
- single-thread computers
- @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
- @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
- which is the default.
- @cindex @samp{-mevexrcig=} option, i386
- @cindex @samp{-mevexrcig=} option, x86-64
- @item -mevexrcig=@var{rne}
- @itemx -mevexrcig=@var{rd}
- @itemx -mevexrcig=@var{ru}
- @itemx -mevexrcig=@var{rz}
- These options control how the assembler should encode SAE-only
- EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
- of EVEX instruction with 00, which is the default.
- @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
- and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
- with 01, 10 and 11 RC bits, respectively.
- @cindex @samp{-mamd64} option, x86-64
- @cindex @samp{-mintel64} option, x86-64
- @item -mamd64
- @itemx -mintel64
- This option specifies that the assembler should accept only AMD64 or
- Intel64 ISA in 64-bit mode. The default is to accept both.
- @end table
- @c man end
- @node i386-Directives
- @section x86 specific Directives
- @cindex machine directives, x86
- @cindex x86 machine directives
- @table @code
- @cindex @code{lcomm} directive, COFF
- @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
- Reserve @var{length} (an absolute expression) bytes for a local common
- denoted by @var{symbol}. The section and value of @var{symbol} are
- those of the new local common. The addresses are allocated in the bss
- section, so that at run-time the bytes start off zeroed. Since
- @var{symbol} is not declared global, it is normally not visible to
- @code{@value{LD}}. The optional third parameter, @var{alignment},
- specifies the desired alignment of the symbol in the bss section.
- This directive is only available for COFF based x86 targets.
- @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
- @c .largecomm
- @end table
- @node i386-Syntax
- @section i386 Syntactical Considerations
- @menu
- * i386-Variations:: AT&T Syntax versus Intel Syntax
- * i386-Chars:: Special Characters
- @end menu
- @node i386-Variations
- @subsection AT&T Syntax versus Intel Syntax
- @cindex i386 intel_syntax pseudo op
- @cindex intel_syntax pseudo op, i386
- @cindex i386 att_syntax pseudo op
- @cindex att_syntax pseudo op, i386
- @cindex i386 syntax compatibility
- @cindex syntax compatibility, i386
- @cindex x86-64 intel_syntax pseudo op
- @cindex intel_syntax pseudo op, x86-64
- @cindex x86-64 att_syntax pseudo op
- @cindex att_syntax pseudo op, x86-64
- @cindex x86-64 syntax compatibility
- @cindex syntax compatibility, x86-64
- @code{@value{AS}} now supports assembly using Intel assembler syntax.
- @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
- back to the usual AT&T mode for compatibility with the output of
- @code{@value{GCC}}. Either of these directives may have an optional
- argument, @code{prefix}, or @code{noprefix} specifying whether registers
- require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
- different from Intel syntax. We mention these differences because
- almost all 80386 documents use Intel syntax. Notable differences
- between the two syntaxes are:
- @cindex immediate operands, i386
- @cindex i386 immediate operands
- @cindex register operands, i386
- @cindex i386 register operands
- @cindex jump/call operands, i386
- @cindex i386 jump/call operands
- @cindex operand delimiters, i386
- @cindex immediate operands, x86-64
- @cindex x86-64 immediate operands
- @cindex register operands, x86-64
- @cindex x86-64 register operands
- @cindex jump/call operands, x86-64
- @cindex x86-64 jump/call operands
- @cindex operand delimiters, x86-64
- @itemize @bullet
- @item
- AT&T immediate operands are preceded by @samp{$}; Intel immediate
- operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
- AT&T register operands are preceded by @samp{%}; Intel register operands
- are undelimited. AT&T absolute (as opposed to PC relative) jump/call
- operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
- @cindex i386 source, destination operands
- @cindex source, destination operands; i386
- @cindex x86-64 source, destination operands
- @cindex source, destination operands; x86-64
- @item
- AT&T and Intel syntax use the opposite order for source and destination
- operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
- @samp{source, dest} convention is maintained for compatibility with
- previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
- instructions with 2 immediate operands, such as the @samp{enter}
- instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
- @cindex mnemonic suffixes, i386
- @cindex sizes operands, i386
- @cindex i386 size suffixes
- @cindex mnemonic suffixes, x86-64
- @cindex sizes operands, x86-64
- @cindex x86-64 size suffixes
- @item
- In AT&T syntax the size of memory operands is determined from the last
- character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
- @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
- (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
- this by prefixing memory operands (@emph{not} the instruction mnemonics) with
- @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
- Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
- syntax.
- In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
- instruction with the 64-bit displacement or immediate operand.
- @cindex return instructions, i386
- @cindex i386 jump, call, return
- @cindex return instructions, x86-64
- @cindex x86-64 jump, call, return
- @item
- Immediate form long jumps and calls are
- @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
- Intel syntax is
- @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
- instruction
- is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
- @samp{ret far @var{stack-adjust}}.
- @cindex sections, i386
- @cindex i386 sections
- @cindex sections, x86-64
- @cindex x86-64 sections
- @item
- The AT&T assembler does not provide support for multiple section
- programs. Unix style systems expect all programs to be single sections.
- @end itemize
- @node i386-Chars
- @subsection Special Characters
- @cindex line comment character, i386
- @cindex i386 line comment character
- The presence of a @samp{#} appearing anywhere on a line indicates the
- start of a comment that extends to the end of that line.
- If a @samp{#} appears as the first character of a line then the whole
- line is treated as a comment, but in this case the line can also be a
- logical line number directive (@pxref{Comments}) or a preprocessor
- control command (@pxref{Preprocessing}).
- If the @option{--divide} command line option has not been specified
- then the @samp{/} character appearing anywhere on a line also
- introduces a line comment.
- @cindex line separator, i386
- @cindex statement separator, i386
- @cindex i386 line separator
- The @samp{;} character can be used to separate statements on the same
- line.
- @node i386-Mnemonics
- @section i386-Mnemonics
- @subsection Instruction Naming
- @cindex i386 instruction naming
- @cindex instruction naming, i386
- @cindex x86-64 instruction naming
- @cindex instruction naming, x86-64
- Instruction mnemonics are suffixed with one character modifiers which
- specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
- and @samp{q} specify byte, word, long and quadruple word operands. If
- no suffix is specified by an instruction then @code{@value{AS}} tries to
- fill in the missing suffix based on the destination register operand
- (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
- to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
- @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
- assembler which assumes that a missing mnemonic suffix implies long
- operand size. (This incompatibility does not affect compiler output
- since compilers always explicitly specify the mnemonic suffix.)
- Almost all instructions have the same names in AT&T and Intel format.
- There are a few exceptions. The sign extend and zero extend
- instructions need two sizes to specify them. They need a size to
- sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
- is accomplished by using two instruction mnemonic suffixes in AT&T
- syntax. Base names for sign extend and zero extend are
- @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
- and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
- are tacked on to this base name, the @emph{from} suffix before the
- @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
- ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
- thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
- @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
- @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
- quadruple word).
- @cindex encoding options, i386
- @cindex encoding options, x86-64
- Different encoding options can be specified via optional mnemonic
- suffix. @samp{.s} suffix swaps 2 register operands in encoding when
- moving from one register to another. @samp{.d8} or @samp{.d32} suffix
- prefers 8bit or 32bit displacement in encoding.
- @cindex conversion instructions, i386
- @cindex i386 conversion instructions
- @cindex conversion instructions, x86-64
- @cindex x86-64 conversion instructions
- The Intel-syntax conversion instructions
- @itemize @bullet
- @item
- @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
- @item
- @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
- @item
- @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
- @item
- @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
- @item
- @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
- (x86-64 only),
- @item
- @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
- @samp{%rdx:%rax} (x86-64 only),
- @end itemize
- @noindent
- are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
- @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
- instructions.
- @cindex jump instructions, i386
- @cindex call instructions, i386
- @cindex jump instructions, x86-64
- @cindex call instructions, x86-64
- Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
- AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
- convention.
- @subsection AT&T Mnemonic versus Intel Mnemonic
- @cindex i386 mnemonic compatibility
- @cindex mnemonic compatibility, i386
- @code{@value{AS}} supports assembly using Intel mnemonic.
- @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
- @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
- syntax for compatibility with the output of @code{@value{GCC}}.
- Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
- @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
- @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
- assembler with different mnemonics from those in Intel IA32 specification.
- @code{@value{GCC}} generates those instructions with AT&T mnemonic.
- @node i386-Regs
- @section Register Naming
- @cindex i386 registers
- @cindex registers, i386
- @cindex x86-64 registers
- @cindex registers, x86-64
- Register operands are always prefixed with @samp{%}. The 80386 registers
- consist of
- @itemize @bullet
- @item
- the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
- @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
- frame pointer), and @samp{%esp} (the stack pointer).
- @item
- the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
- @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
- @item
- the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
- @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
- are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
- @samp{%cx}, and @samp{%dx})
- @item
- the 6 section registers @samp{%cs} (code section), @samp{%ds}
- (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
- and @samp{%gs}.
- @item
- the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
- @samp{%cr3}.
- @item
- the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
- @samp{%db3}, @samp{%db6}, and @samp{%db7}.
- @item
- the 2 test registers @samp{%tr6} and @samp{%tr7}.
- @item
- the 8 floating point register stack @samp{%st} or equivalently
- @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
- @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
- These registers are overloaded by 8 MMX registers @samp{%mm0},
- @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
- @samp{%mm6} and @samp{%mm7}.
- @item
- the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
- @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
- @end itemize
- The AMD x86-64 architecture extends the register set by:
- @itemize @bullet
- @item
- enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
- accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
- @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
- pointer)
- @item
- the 8 extended registers @samp{%r8}--@samp{%r15}.
- @item
- the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
- @item
- the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
- @item
- the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
- @item
- the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
- @item
- the 8 debug registers: @samp{%db8}--@samp{%db15}.
- @item
- the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
- @end itemize
- @node i386-Prefixes
- @section Instruction Prefixes
- @cindex i386 instruction prefixes
- @cindex instruction prefixes, i386
- @cindex prefixes, i386
- Instruction prefixes are used to modify the following instruction. They
- are used to repeat string instructions, to provide section overrides, to
- perform bus lock operations, and to change operand and address sizes.
- (Most instructions that normally operate on 32-bit operands will use
- 16-bit operands if the instruction has an ``operand size'' prefix.)
- Instruction prefixes are best written on the same line as the instruction
- they act upon. For example, the @samp{scas} (scan string) instruction is
- repeated with:
- @smallexample
- repne scas %es:(%edi),%al
- @end smallexample
- You may also place prefixes on the lines immediately preceding the
- instruction, but this circumvents checks that @code{@value{AS}} does
- with prefixes, and will not work with all prefixes.
- Here is a list of instruction prefixes:
- @cindex section override prefixes, i386
- @itemize @bullet
- @item
- Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
- @samp{fs}, @samp{gs}. These are automatically added by specifying
- using the @var{section}:@var{memory-operand} form for memory references.
- @cindex size prefixes, i386
- @item
- Operand/Address size prefixes @samp{data16} and @samp{addr16}
- change 32-bit operands/addresses into 16-bit operands/addresses,
- while @samp{data32} and @samp{addr32} change 16-bit ones (in a
- @code{.code16} section) into 32-bit operands/addresses. These prefixes
- @emph{must} appear on the same line of code as the instruction they
- modify. For example, in a 16-bit @code{.code16} section, you might
- write:
- @smallexample
- addr32 jmpl *(%ebx)
- @end smallexample
- @cindex bus lock prefixes, i386
- @cindex inhibiting interrupts, i386
- @item
- The bus lock prefix @samp{lock} inhibits interrupts during execution of
- the instruction it precedes. (This is only valid with certain
- instructions; see a 80386 manual for details).
- @cindex coprocessor wait, i386
- @item
- The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
- complete the current instruction. This should never be needed for the
- 80386/80387 combination.
- @cindex repeat prefixes, i386
- @item
- The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
- to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
- times if the current address size is 16-bits).
- @cindex REX prefixes, i386
- @item
- The @samp{rex} family of prefixes is used by x86-64 to encode
- extensions to i386 instruction set. The @samp{rex} prefix has four
- bits --- an operand size overwrite (@code{64}) used to change operand size
- from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
- register set.
- You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
- instruction emits @samp{rex} prefix with all the bits set. By omitting
- the @code{64}, @code{x}, @code{y} or @code{z} you may write other
- prefixes as well. Normally, there is no need to write the prefixes
- explicitly, since gas will automatically generate them based on the
- instruction operands.
- @end itemize
- @node i386-Memory
- @section Memory References
- @cindex i386 memory references
- @cindex memory references, i386
- @cindex x86-64 memory references
- @cindex memory references, x86-64
- An Intel syntax indirect memory reference of the form
- @smallexample
- @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
- @end smallexample
- @noindent
- is translated into the AT&T syntax
- @smallexample
- @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
- @end smallexample
- @noindent
- where @var{base} and @var{index} are the optional 32-bit base and
- index registers, @var{disp} is the optional displacement, and
- @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
- to calculate the address of the operand. If no @var{scale} is
- specified, @var{scale} is taken to be 1. @var{section} specifies the
- optional section register for the memory operand, and may override the
- default section register (see a 80386 manual for section register
- defaults). Note that section overrides in AT&T syntax @emph{must}
- be preceded by a @samp{%}. If you specify a section override which
- coincides with the default section register, @code{@value{AS}} does @emph{not}
- output any section register override prefixes to assemble the given
- instruction. Thus, section overrides can be specified to emphasize which
- section register is used for a given memory operand.
- Here are some examples of Intel and AT&T style memory references:
- @table @asis
- @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
- @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
- missing, and the default section is used (@samp{%ss} for addressing with
- @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
- @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
- @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
- @samp{foo}. All other fields are missing. The section register here
- defaults to @samp{%ds}.
- @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
- This uses the value pointed to by @samp{foo} as a memory operand.
- Note that @var{base} and @var{index} are both missing, but there is only
- @emph{one} @samp{,}. This is a syntactic exception.
- @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
- This selects the contents of the variable @samp{foo} with section
- register @var{section} being @samp{%gs}.
- @end table
- Absolute (as opposed to PC relative) call and jump operands must be
- prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
- always chooses PC relative addressing for jump/call labels.
- Any instruction that has a memory operand, but no register operand,
- @emph{must} specify its size (byte, word, long, or quadruple) with an
- instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
- respectively).
- The x86-64 architecture adds an RIP (instruction pointer relative)
- addressing. This addressing mode is specified by using @samp{rip} as a
- base register. Only constant offsets are valid. For example:
- @table @asis
- @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
- Points to the address 1234 bytes past the end of the current
- instruction.
- @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
- Points to the @code{symbol} in RIP relative way, this is shorter than
- the default absolute addressing.
- @end table
- Other addressing modes remain unchanged in x86-64 architecture, except
- registers used are 64-bit instead of 32-bit.
- @node i386-Jumps
- @section Handling of Jump Instructions
- @cindex jump optimization, i386
- @cindex i386 jump optimization
- @cindex jump optimization, x86-64
- @cindex x86-64 jump optimization
- Jump instructions are always optimized to use the smallest possible
- displacements. This is accomplished by using byte (8-bit) displacement
- jumps whenever the target is sufficiently close. If a byte displacement
- is insufficient a long displacement is used. We do not support
- word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
- instruction with the @samp{data16} instruction prefix), since the 80386
- insists upon masking @samp{%eip} to 16 bits after the word displacement
- is added. (See also @pxref{i386-Arch})
- Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
- @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
- displacements, so that if you use these instructions (@code{@value{GCC}} does
- not use them) you may get an error message (and incorrect code). The AT&T
- 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
- to
- @smallexample
- jcxz cx_zero
- jmp cx_nonzero
- cx_zero: jmp foo
- cx_nonzero:
- @end smallexample
- @node i386-Float
- @section Floating Point
- @cindex i386 floating point
- @cindex floating point, i386
- @cindex x86-64 floating point
- @cindex floating point, x86-64
- All 80387 floating point types except packed BCD are supported.
- (BCD support may be added without much difficulty). These data
- types are 16-, 32-, and 64- bit integers, and single (32-bit),
- double (64-bit), and extended (80-bit) precision floating point.
- Each supported type has an instruction mnemonic suffix and a constructor
- associated with it. Instruction mnemonic suffixes specify the operand's
- data type. Constructors build these data types into memory.
- @cindex @code{float} directive, i386
- @cindex @code{single} directive, i386
- @cindex @code{double} directive, i386
- @cindex @code{tfloat} directive, i386
- @cindex @code{float} directive, x86-64
- @cindex @code{single} directive, x86-64
- @cindex @code{double} directive, x86-64
- @cindex @code{tfloat} directive, x86-64
- @itemize @bullet
- @item
- Floating point constructors are @samp{.float} or @samp{.single},
- @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
- These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
- and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
- only supports this format via the @samp{fldt} (load 80-bit real to stack
- top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
- @cindex @code{word} directive, i386
- @cindex @code{long} directive, i386
- @cindex @code{int} directive, i386
- @cindex @code{quad} directive, i386
- @cindex @code{word} directive, x86-64
- @cindex @code{long} directive, x86-64
- @cindex @code{int} directive, x86-64
- @cindex @code{quad} directive, x86-64
- @item
- Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
- @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
- corresponding instruction mnemonic suffixes are @samp{s} (single),
- @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
- the 64-bit @samp{q} format is only present in the @samp{fildq} (load
- quad integer to stack top) and @samp{fistpq} (store quad integer and pop
- stack) instructions.
- @end itemize
- Register to register operations should not use instruction mnemonic suffixes.
- @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
- wrote @samp{fst %st, %st(1)}, since all register to register operations
- use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
- which converts @samp{%st} from 80-bit to 64-bit floating point format,
- then stores the result in the 4 byte location @samp{mem})
- @node i386-SIMD
- @section Intel's MMX and AMD's 3DNow! SIMD Operations
- @cindex MMX, i386
- @cindex 3DNow!, i386
- @cindex SIMD, i386
- @cindex MMX, x86-64
- @cindex 3DNow!, x86-64
- @cindex SIMD, x86-64
- @code{@value{AS}} supports Intel's MMX instruction set (SIMD
- instructions for integer data), available on Intel's Pentium MMX
- processors and Pentium II processors, AMD's K6 and K6-2 processors,
- Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
- instruction set (SIMD instructions for 32-bit floating point data)
- available on AMD's K6-2 processor and possibly others in the future.
- Currently, @code{@value{AS}} does not support Intel's floating point
- SIMD, Katmai (KNI).
- The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
- @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
- 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
- floating point values. The MMX registers cannot be used at the same time
- as the floating point stack.
- See Intel and AMD documentation, keeping in mind that the operand order in
- instructions is reversed from the Intel syntax.
- @node i386-LWP
- @section AMD's Lightweight Profiling Instructions
- @cindex LWP, i386
- @cindex LWP, x86-64
- @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
- instruction set, available on AMD's Family 15h (Orochi) processors.
- LWP enables applications to collect and manage performance data, and
- react to performance events. The collection of performance data
- requires no context switches. LWP runs in the context of a thread and
- so several counters can be used independently across multiple threads.
- LWP can be used in both 64-bit and legacy 32-bit modes.
- For detailed information on the LWP instruction set, see the
- @cite{AMD Lightweight Profiling Specification} available at
- @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
- @node i386-BMI
- @section Bit Manipulation Instructions
- @cindex BMI, i386
- @cindex BMI, x86-64
- @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
- BMI instructions provide several instructions implementing individual
- bit manipulation operations such as isolation, masking, setting, or
- resetting.
- @c Need to add a specification citation here when available.
- @node i386-TBM
- @section AMD's Trailing Bit Manipulation Instructions
- @cindex TBM, i386
- @cindex TBM, x86-64
- @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
- instruction set, available on AMD's BDVER2 processors (Trinity and
- Viperfish).
- TBM instructions provide instructions implementing individual bit
- manipulation operations such as isolating, masking, setting, resetting,
- complementing, and operations on trailing zeros and ones.
- @c Need to add a specification citation here when available.
- @node i386-16bit
- @section Writing 16-bit Code
- @cindex i386 16-bit code
- @cindex 16-bit code, i386
- @cindex real-mode code, i386
- @cindex @code{code16gcc} directive, i386
- @cindex @code{code16} directive, i386
- @cindex @code{code32} directive, i386
- @cindex @code{code64} directive, i386
- @cindex @code{code64} directive, x86-64
- While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
- or 64-bit x86-64 code depending on the default configuration,
- it also supports writing code to run in real mode or in 16-bit protected
- mode code segments. To do this, put a @samp{.code16} or
- @samp{.code16gcc} directive before the assembly language instructions to
- be run in 16-bit mode. You can switch @code{@value{AS}} to writing
- 32-bit code with the @samp{.code32} directive or 64-bit code with the
- @samp{.code64} directive.
- @samp{.code16gcc} provides experimental support for generating 16-bit
- code from gcc, and differs from @samp{.code16} in that @samp{call},
- @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
- @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
- default to 32-bit size. This is so that the stack pointer is
- manipulated in the same way over function calls, allowing access to
- function parameters at the same stack offsets as in 32-bit mode.
- @samp{.code16gcc} also automatically adds address size prefixes where
- necessary to use the 32-bit addressing modes that gcc generates.
- The code which @code{@value{AS}} generates in 16-bit mode will not
- necessarily run on a 16-bit pre-80386 processor. To write code that
- runs on such a processor, you must refrain from using @emph{any} 32-bit
- constructs which require @code{@value{AS}} to output address or operand
- size prefixes.
- Note that writing 16-bit code instructions by explicitly specifying a
- prefix or an instruction mnemonic suffix within a 32-bit code section
- generates different machine instructions than those generated for a
- 16-bit code segment. In a 32-bit code section, the following code
- generates the machine opcode bytes @samp{66 6a 04}, which pushes the
- value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
- @smallexample
- pushw $4
- @end smallexample
- The same code in a 16-bit code section would generate the machine
- opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
- is correct since the processor default operand size is assumed to be 16
- bits in a 16-bit code section.
- @node i386-Arch
- @section Specifying CPU Architecture
- @cindex arch directive, i386
- @cindex i386 arch directive
- @cindex arch directive, x86-64
- @cindex x86-64 arch directive
- @code{@value{AS}} may be told to assemble for a particular CPU
- (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
- directive enables a warning when gas detects an instruction that is not
- supported on the CPU specified. The choices for @var{cpu_type} are:
- @multitable @columnfractions .20 .20 .20 .20
- @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
- @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
- @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
- @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
- @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
- @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
- @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
- @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
- @item @samp{generic32} @tab @samp{generic64}
- @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
- @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
- @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
- @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
- @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
- @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
- @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
- @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
- @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
- @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
- @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
- @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
- @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
- @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
- @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
- @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
- @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
- @end multitable
- Apart from the warning, there are only two other effects on
- @code{@value{AS}} operation; Firstly, if you specify a CPU other than
- @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
- will automatically use a two byte opcode sequence. The larger three
- byte opcode sequence is used on the 486 (and when no architecture is
- specified) because it executes faster on the 486. Note that you can
- explicitly request the two byte opcode by writing @samp{sarl %eax}.
- Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
- @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
- conditional jumps will be promoted when necessary to a two instruction
- sequence consisting of a conditional jump of the opposite sense around
- an unconditional jump to the target.
- Following the CPU architecture (but not a sub-architecture, which are those
- starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
- control automatic promotion of conditional jumps. @samp{jumps} is the
- default, and enables jump promotion; All external jumps will be of the long
- variety, and file-local jumps will be promoted as necessary.
- (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
- byte offset jumps, and warns about file-local conditional jumps that
- @code{@value{AS}} promotes.
- Unconditional jumps are treated as for @samp{jumps}.
- For example
- @smallexample
- .arch i8086,nojumps
- @end smallexample
- @node i386-Bugs
- @section AT&T Syntax bugs
- The UnixWare assembler, and probably other AT&T derived ix86 Unix
- assemblers, generate floating point instructions with reversed source
- and destination registers in certain cases. Unfortunately, gcc and
- possibly many other programs use this reversed syntax, so we're stuck
- with it.
- For example
- @smallexample
- fsub %st,%st(3)
- @end smallexample
- @noindent
- results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
- than the expected @samp{%st(3) - %st}. This happens with all the
- non-commutative arithmetic floating point operations with two register
- operands where the source register is @samp{%st} and the destination
- register is @samp{%st(i)}.
- @node i386-Notes
- @section Notes
- @cindex i386 @code{mul}, @code{imul} instructions
- @cindex @code{mul} instruction, i386
- @cindex @code{imul} instruction, i386
- @cindex @code{mul} instruction, x86-64
- @cindex @code{imul} instruction, x86-64
- There is some trickery concerning the @samp{mul} and @samp{imul}
- instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
- multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
- for @samp{imul}) can be output only in the one operand form. Thus,
- @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
- the expanding multiply would clobber the @samp{%edx} register, and this
- would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
- 64-bit product in @samp{%edx:%eax}.
- We have added a two operand form of @samp{imul} when the first operand
- is an immediate mode expression and the second operand is a register.
- This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
- example, can be done with @samp{imul $69, %eax} rather than @samp{imul
- $69, %eax, %eax}.
|