c-i386.texi 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
  2. @c This is part of the GAS manual.
  3. @c For copying conditions, see the file as.texinfo.
  4. @c man end
  5. @ifset GENERIC
  6. @page
  7. @node i386-Dependent
  8. @chapter 80386 Dependent Features
  9. @end ifset
  10. @ifclear GENERIC
  11. @node Machine Dependencies
  12. @chapter 80386 Dependent Features
  13. @end ifclear
  14. @cindex i386 support
  15. @cindex i80386 support
  16. @cindex x86-64 support
  17. The i386 version @code{@value{AS}} supports both the original Intel 386
  18. architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
  19. extending the Intel architecture to 64-bits.
  20. @menu
  21. * i386-Options:: Options
  22. * i386-Directives:: X86 specific directives
  23. * i386-Syntax:: Syntactical considerations
  24. * i386-Mnemonics:: Instruction Naming
  25. * i386-Regs:: Register Naming
  26. * i386-Prefixes:: Instruction Prefixes
  27. * i386-Memory:: Memory References
  28. * i386-Jumps:: Handling of Jump Instructions
  29. * i386-Float:: Floating Point
  30. * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
  31. * i386-LWP:: AMD's Lightweight Profiling Instructions
  32. * i386-BMI:: Bit Manipulation Instruction
  33. * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
  34. * i386-16bit:: Writing 16-bit Code
  35. * i386-Arch:: Specifying an x86 CPU architecture
  36. * i386-Bugs:: AT&T Syntax bugs
  37. * i386-Notes:: Notes
  38. @end menu
  39. @node i386-Options
  40. @section Options
  41. @cindex options for i386
  42. @cindex options for x86-64
  43. @cindex i386 options
  44. @cindex x86-64 options
  45. The i386 version of @code{@value{AS}} has a few machine
  46. dependent options:
  47. @c man begin OPTIONS
  48. @table @gcctabopt
  49. @cindex @samp{--32} option, i386
  50. @cindex @samp{--32} option, x86-64
  51. @cindex @samp{--x32} option, i386
  52. @cindex @samp{--x32} option, x86-64
  53. @cindex @samp{--64} option, i386
  54. @cindex @samp{--64} option, x86-64
  55. @item --32 | --x32 | --64
  56. Select the word size, either 32 bits or 64 bits. @samp{--32}
  57. implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
  58. imply AMD x86-64 architecture with 32-bit or 64-bit word-size
  59. respectively.
  60. These options are only available with the ELF object file format, and
  61. require that the necessary BFD support has been included (on a 32-bit
  62. platform you have to add --enable-64-bit-bfd to configure enable 64-bit
  63. usage and use x86-64 as target platform).
  64. @item -n
  65. By default, x86 GAS replaces multiple nop instructions used for
  66. alignment within code sections with multi-byte nop instructions such
  67. as leal 0(%esi,1),%esi. This switch disables the optimization.
  68. @cindex @samp{--divide} option, i386
  69. @item --divide
  70. On SVR4-derived platforms, the character @samp{/} is treated as a comment
  71. character, which means that it cannot be used in expressions. The
  72. @samp{--divide} option turns @samp{/} into a normal character. This does
  73. not disable @samp{/} at the beginning of a line starting a comment, or
  74. affect using @samp{#} for starting a comment.
  75. @cindex @samp{-march=} option, i386
  76. @cindex @samp{-march=} option, x86-64
  77. @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
  78. This option specifies the target processor. The assembler will
  79. issue an error message if an attempt is made to assemble an instruction
  80. which will not execute on the target processor. The following
  81. processor names are recognized:
  82. @code{i8086},
  83. @code{i186},
  84. @code{i286},
  85. @code{i386},
  86. @code{i486},
  87. @code{i586},
  88. @code{i686},
  89. @code{pentium},
  90. @code{pentiumpro},
  91. @code{pentiumii},
  92. @code{pentiumiii},
  93. @code{pentium4},
  94. @code{prescott},
  95. @code{nocona},
  96. @code{core},
  97. @code{core2},
  98. @code{corei7},
  99. @code{l1om},
  100. @code{k1om},
  101. @code{iamcu},
  102. @code{k6},
  103. @code{k6_2},
  104. @code{athlon},
  105. @code{opteron},
  106. @code{k8},
  107. @code{amdfam10},
  108. @code{bdver1},
  109. @code{bdver2},
  110. @code{bdver3},
  111. @code{bdver4},
  112. @code{znver1},
  113. @code{btver1},
  114. @code{btver2},
  115. @code{generic32} and
  116. @code{generic64}.
  117. In addition to the basic instruction set, the assembler can be told to
  118. accept various extension mnemonics. For example,
  119. @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
  120. @var{vmx}. The following extensions are currently supported:
  121. @code{8087},
  122. @code{287},
  123. @code{387},
  124. @code{no87},
  125. @code{mmx},
  126. @code{nommx},
  127. @code{sse},
  128. @code{sse2},
  129. @code{sse3},
  130. @code{ssse3},
  131. @code{sse4.1},
  132. @code{sse4.2},
  133. @code{sse4},
  134. @code{nosse},
  135. @code{avx},
  136. @code{avx2},
  137. @code{adx},
  138. @code{rdseed},
  139. @code{prfchw},
  140. @code{smap},
  141. @code{mpx},
  142. @code{sha},
  143. @code{prefetchwt1},
  144. @code{clflushopt},
  145. @code{se1},
  146. @code{clwb},
  147. @code{pcommit},
  148. @code{avx512f},
  149. @code{avx512cd},
  150. @code{avx512er},
  151. @code{avx512pf},
  152. @code{avx512vl},
  153. @code{avx512bw},
  154. @code{avx512dq},
  155. @code{avx512ifma},
  156. @code{avx512vbmi},
  157. @code{noavx},
  158. @code{vmx},
  159. @code{vmfunc},
  160. @code{smx},
  161. @code{xsave},
  162. @code{xsaveopt},
  163. @code{xsavec},
  164. @code{xsaves},
  165. @code{aes},
  166. @code{pclmul},
  167. @code{fsgsbase},
  168. @code{rdrnd},
  169. @code{f16c},
  170. @code{bmi2},
  171. @code{fma},
  172. @code{movbe},
  173. @code{ept},
  174. @code{lzcnt},
  175. @code{hle},
  176. @code{rtm},
  177. @code{invpcid},
  178. @code{clflush},
  179. @code{mwaitx},
  180. @code{clzero},
  181. @code{lwp},
  182. @code{fma4},
  183. @code{xop},
  184. @code{cx16},
  185. @code{syscall},
  186. @code{rdtscp},
  187. @code{3dnow},
  188. @code{3dnowa},
  189. @code{sse4a},
  190. @code{sse5},
  191. @code{svme},
  192. @code{abm} and
  193. @code{padlock}.
  194. Note that rather than extending a basic instruction set, the extension
  195. mnemonics starting with @code{no} revoke the respective functionality.
  196. When the @code{.arch} directive is used with @option{-march}, the
  197. @code{.arch} directive will take precedent.
  198. @cindex @samp{-mtune=} option, i386
  199. @cindex @samp{-mtune=} option, x86-64
  200. @item -mtune=@var{CPU}
  201. This option specifies a processor to optimize for. When used in
  202. conjunction with the @option{-march} option, only instructions
  203. of the processor specified by the @option{-march} option will be
  204. generated.
  205. Valid @var{CPU} values are identical to the processor list of
  206. @option{-march=@var{CPU}}.
  207. @cindex @samp{-msse2avx} option, i386
  208. @cindex @samp{-msse2avx} option, x86-64
  209. @item -msse2avx
  210. This option specifies that the assembler should encode SSE instructions
  211. with VEX prefix.
  212. @cindex @samp{-msse-check=} option, i386
  213. @cindex @samp{-msse-check=} option, x86-64
  214. @item -msse-check=@var{none}
  215. @itemx -msse-check=@var{warning}
  216. @itemx -msse-check=@var{error}
  217. These options control if the assembler should check SSE instructions.
  218. @option{-msse-check=@var{none}} will make the assembler not to check SSE
  219. instructions, which is the default. @option{-msse-check=@var{warning}}
  220. will make the assembler issue a warning for any SSE instruction.
  221. @option{-msse-check=@var{error}} will make the assembler issue an error
  222. for any SSE instruction.
  223. @cindex @samp{-mavxscalar=} option, i386
  224. @cindex @samp{-mavxscalar=} option, x86-64
  225. @item -mavxscalar=@var{128}
  226. @itemx -mavxscalar=@var{256}
  227. These options control how the assembler should encode scalar AVX
  228. instructions. @option{-mavxscalar=@var{128}} will encode scalar
  229. AVX instructions with 128bit vector length, which is the default.
  230. @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
  231. with 256bit vector length.
  232. @cindex @samp{-mevexlig=} option, i386
  233. @cindex @samp{-mevexlig=} option, x86-64
  234. @item -mevexlig=@var{128}
  235. @itemx -mevexlig=@var{256}
  236. @itemx -mevexlig=@var{512}
  237. These options control how the assembler should encode length-ignored
  238. (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
  239. EVEX instructions with 128bit vector length, which is the default.
  240. @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
  241. encode LIG EVEX instructions with 256bit and 512bit vector length,
  242. respectively.
  243. @cindex @samp{-mevexwig=} option, i386
  244. @cindex @samp{-mevexwig=} option, x86-64
  245. @item -mevexwig=@var{0}
  246. @itemx -mevexwig=@var{1}
  247. These options control how the assembler should encode w-ignored (WIG)
  248. EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
  249. EVEX instructions with evex.w = 0, which is the default.
  250. @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
  251. evex.w = 1.
  252. @cindex @samp{-mmnemonic=} option, i386
  253. @cindex @samp{-mmnemonic=} option, x86-64
  254. @item -mmnemonic=@var{att}
  255. @itemx -mmnemonic=@var{intel}
  256. This option specifies instruction mnemonic for matching instructions.
  257. The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
  258. take precedent.
  259. @cindex @samp{-msyntax=} option, i386
  260. @cindex @samp{-msyntax=} option, x86-64
  261. @item -msyntax=@var{att}
  262. @itemx -msyntax=@var{intel}
  263. This option specifies instruction syntax when processing instructions.
  264. The @code{.att_syntax} and @code{.intel_syntax} directives will
  265. take precedent.
  266. @cindex @samp{-mnaked-reg} option, i386
  267. @cindex @samp{-mnaked-reg} option, x86-64
  268. @item -mnaked-reg
  269. This opetion specifies that registers don't require a @samp{%} prefix.
  270. The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
  271. @cindex @samp{-madd-bnd-prefix} option, i386
  272. @cindex @samp{-madd-bnd-prefix} option, x86-64
  273. @item -madd-bnd-prefix
  274. This option forces the assembler to add BND prefix to all branches, even
  275. if such prefix was not explicitly specified in the source code.
  276. @cindex @samp{-mshared} option, i386
  277. @cindex @samp{-mshared} option, x86-64
  278. @item -mno-shared
  279. On ELF target, the assembler normally optimizes out non-PLT relocations
  280. against defined non-weak global branch targets with default visibility.
  281. The @samp{-mshared} option tells the assembler to generate code which
  282. may go into a shared library where all non-weak global branch targets
  283. with default visibility can be preempted. The resulting code is
  284. slightly bigger. This option only affects the handling of branch
  285. instructions.
  286. @cindex @samp{-mbig-obj} option, x86-64
  287. @item -mbig-obj
  288. On x86-64 PE/COFF target this option forces the use of big object file
  289. format, which allows more than 32768 sections.
  290. @cindex @samp{-momit-lock-prefix=} option, i386
  291. @cindex @samp{-momit-lock-prefix=} option, x86-64
  292. @item -momit-lock-prefix=@var{no}
  293. @itemx -momit-lock-prefix=@var{yes}
  294. These options control how the assembler should encode lock prefix.
  295. This option is intended as a workaround for processors, that fail on
  296. lock prefix. This option can only be safely used with single-core,
  297. single-thread computers
  298. @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
  299. @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
  300. which is the default.
  301. @cindex @samp{-mevexrcig=} option, i386
  302. @cindex @samp{-mevexrcig=} option, x86-64
  303. @item -mevexrcig=@var{rne}
  304. @itemx -mevexrcig=@var{rd}
  305. @itemx -mevexrcig=@var{ru}
  306. @itemx -mevexrcig=@var{rz}
  307. These options control how the assembler should encode SAE-only
  308. EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
  309. of EVEX instruction with 00, which is the default.
  310. @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
  311. and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
  312. with 01, 10 and 11 RC bits, respectively.
  313. @cindex @samp{-mamd64} option, x86-64
  314. @cindex @samp{-mintel64} option, x86-64
  315. @item -mamd64
  316. @itemx -mintel64
  317. This option specifies that the assembler should accept only AMD64 or
  318. Intel64 ISA in 64-bit mode. The default is to accept both.
  319. @end table
  320. @c man end
  321. @node i386-Directives
  322. @section x86 specific Directives
  323. @cindex machine directives, x86
  324. @cindex x86 machine directives
  325. @table @code
  326. @cindex @code{lcomm} directive, COFF
  327. @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
  328. Reserve @var{length} (an absolute expression) bytes for a local common
  329. denoted by @var{symbol}. The section and value of @var{symbol} are
  330. those of the new local common. The addresses are allocated in the bss
  331. section, so that at run-time the bytes start off zeroed. Since
  332. @var{symbol} is not declared global, it is normally not visible to
  333. @code{@value{LD}}. The optional third parameter, @var{alignment},
  334. specifies the desired alignment of the symbol in the bss section.
  335. This directive is only available for COFF based x86 targets.
  336. @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
  337. @c .largecomm
  338. @end table
  339. @node i386-Syntax
  340. @section i386 Syntactical Considerations
  341. @menu
  342. * i386-Variations:: AT&T Syntax versus Intel Syntax
  343. * i386-Chars:: Special Characters
  344. @end menu
  345. @node i386-Variations
  346. @subsection AT&T Syntax versus Intel Syntax
  347. @cindex i386 intel_syntax pseudo op
  348. @cindex intel_syntax pseudo op, i386
  349. @cindex i386 att_syntax pseudo op
  350. @cindex att_syntax pseudo op, i386
  351. @cindex i386 syntax compatibility
  352. @cindex syntax compatibility, i386
  353. @cindex x86-64 intel_syntax pseudo op
  354. @cindex intel_syntax pseudo op, x86-64
  355. @cindex x86-64 att_syntax pseudo op
  356. @cindex att_syntax pseudo op, x86-64
  357. @cindex x86-64 syntax compatibility
  358. @cindex syntax compatibility, x86-64
  359. @code{@value{AS}} now supports assembly using Intel assembler syntax.
  360. @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
  361. back to the usual AT&T mode for compatibility with the output of
  362. @code{@value{GCC}}. Either of these directives may have an optional
  363. argument, @code{prefix}, or @code{noprefix} specifying whether registers
  364. require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
  365. different from Intel syntax. We mention these differences because
  366. almost all 80386 documents use Intel syntax. Notable differences
  367. between the two syntaxes are:
  368. @cindex immediate operands, i386
  369. @cindex i386 immediate operands
  370. @cindex register operands, i386
  371. @cindex i386 register operands
  372. @cindex jump/call operands, i386
  373. @cindex i386 jump/call operands
  374. @cindex operand delimiters, i386
  375. @cindex immediate operands, x86-64
  376. @cindex x86-64 immediate operands
  377. @cindex register operands, x86-64
  378. @cindex x86-64 register operands
  379. @cindex jump/call operands, x86-64
  380. @cindex x86-64 jump/call operands
  381. @cindex operand delimiters, x86-64
  382. @itemize @bullet
  383. @item
  384. AT&T immediate operands are preceded by @samp{$}; Intel immediate
  385. operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
  386. AT&T register operands are preceded by @samp{%}; Intel register operands
  387. are undelimited. AT&T absolute (as opposed to PC relative) jump/call
  388. operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
  389. @cindex i386 source, destination operands
  390. @cindex source, destination operands; i386
  391. @cindex x86-64 source, destination operands
  392. @cindex source, destination operands; x86-64
  393. @item
  394. AT&T and Intel syntax use the opposite order for source and destination
  395. operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
  396. @samp{source, dest} convention is maintained for compatibility with
  397. previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
  398. instructions with 2 immediate operands, such as the @samp{enter}
  399. instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
  400. @cindex mnemonic suffixes, i386
  401. @cindex sizes operands, i386
  402. @cindex i386 size suffixes
  403. @cindex mnemonic suffixes, x86-64
  404. @cindex sizes operands, x86-64
  405. @cindex x86-64 size suffixes
  406. @item
  407. In AT&T syntax the size of memory operands is determined from the last
  408. character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
  409. @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
  410. (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
  411. this by prefixing memory operands (@emph{not} the instruction mnemonics) with
  412. @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
  413. Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
  414. syntax.
  415. In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
  416. instruction with the 64-bit displacement or immediate operand.
  417. @cindex return instructions, i386
  418. @cindex i386 jump, call, return
  419. @cindex return instructions, x86-64
  420. @cindex x86-64 jump, call, return
  421. @item
  422. Immediate form long jumps and calls are
  423. @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
  424. Intel syntax is
  425. @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
  426. instruction
  427. is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
  428. @samp{ret far @var{stack-adjust}}.
  429. @cindex sections, i386
  430. @cindex i386 sections
  431. @cindex sections, x86-64
  432. @cindex x86-64 sections
  433. @item
  434. The AT&T assembler does not provide support for multiple section
  435. programs. Unix style systems expect all programs to be single sections.
  436. @end itemize
  437. @node i386-Chars
  438. @subsection Special Characters
  439. @cindex line comment character, i386
  440. @cindex i386 line comment character
  441. The presence of a @samp{#} appearing anywhere on a line indicates the
  442. start of a comment that extends to the end of that line.
  443. If a @samp{#} appears as the first character of a line then the whole
  444. line is treated as a comment, but in this case the line can also be a
  445. logical line number directive (@pxref{Comments}) or a preprocessor
  446. control command (@pxref{Preprocessing}).
  447. If the @option{--divide} command line option has not been specified
  448. then the @samp{/} character appearing anywhere on a line also
  449. introduces a line comment.
  450. @cindex line separator, i386
  451. @cindex statement separator, i386
  452. @cindex i386 line separator
  453. The @samp{;} character can be used to separate statements on the same
  454. line.
  455. @node i386-Mnemonics
  456. @section i386-Mnemonics
  457. @subsection Instruction Naming
  458. @cindex i386 instruction naming
  459. @cindex instruction naming, i386
  460. @cindex x86-64 instruction naming
  461. @cindex instruction naming, x86-64
  462. Instruction mnemonics are suffixed with one character modifiers which
  463. specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
  464. and @samp{q} specify byte, word, long and quadruple word operands. If
  465. no suffix is specified by an instruction then @code{@value{AS}} tries to
  466. fill in the missing suffix based on the destination register operand
  467. (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
  468. to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
  469. @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
  470. assembler which assumes that a missing mnemonic suffix implies long
  471. operand size. (This incompatibility does not affect compiler output
  472. since compilers always explicitly specify the mnemonic suffix.)
  473. Almost all instructions have the same names in AT&T and Intel format.
  474. There are a few exceptions. The sign extend and zero extend
  475. instructions need two sizes to specify them. They need a size to
  476. sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
  477. is accomplished by using two instruction mnemonic suffixes in AT&T
  478. syntax. Base names for sign extend and zero extend are
  479. @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
  480. and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
  481. are tacked on to this base name, the @emph{from} suffix before the
  482. @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
  483. ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
  484. thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
  485. @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
  486. @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
  487. quadruple word).
  488. @cindex encoding options, i386
  489. @cindex encoding options, x86-64
  490. Different encoding options can be specified via optional mnemonic
  491. suffix. @samp{.s} suffix swaps 2 register operands in encoding when
  492. moving from one register to another. @samp{.d8} or @samp{.d32} suffix
  493. prefers 8bit or 32bit displacement in encoding.
  494. @cindex conversion instructions, i386
  495. @cindex i386 conversion instructions
  496. @cindex conversion instructions, x86-64
  497. @cindex x86-64 conversion instructions
  498. The Intel-syntax conversion instructions
  499. @itemize @bullet
  500. @item
  501. @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
  502. @item
  503. @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
  504. @item
  505. @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
  506. @item
  507. @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
  508. @item
  509. @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
  510. (x86-64 only),
  511. @item
  512. @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
  513. @samp{%rdx:%rax} (x86-64 only),
  514. @end itemize
  515. @noindent
  516. are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
  517. @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
  518. instructions.
  519. @cindex jump instructions, i386
  520. @cindex call instructions, i386
  521. @cindex jump instructions, x86-64
  522. @cindex call instructions, x86-64
  523. Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
  524. AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
  525. convention.
  526. @subsection AT&T Mnemonic versus Intel Mnemonic
  527. @cindex i386 mnemonic compatibility
  528. @cindex mnemonic compatibility, i386
  529. @code{@value{AS}} supports assembly using Intel mnemonic.
  530. @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
  531. @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
  532. syntax for compatibility with the output of @code{@value{GCC}}.
  533. Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
  534. @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
  535. @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
  536. assembler with different mnemonics from those in Intel IA32 specification.
  537. @code{@value{GCC}} generates those instructions with AT&T mnemonic.
  538. @node i386-Regs
  539. @section Register Naming
  540. @cindex i386 registers
  541. @cindex registers, i386
  542. @cindex x86-64 registers
  543. @cindex registers, x86-64
  544. Register operands are always prefixed with @samp{%}. The 80386 registers
  545. consist of
  546. @itemize @bullet
  547. @item
  548. the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
  549. @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
  550. frame pointer), and @samp{%esp} (the stack pointer).
  551. @item
  552. the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
  553. @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
  554. @item
  555. the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
  556. @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
  557. are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
  558. @samp{%cx}, and @samp{%dx})
  559. @item
  560. the 6 section registers @samp{%cs} (code section), @samp{%ds}
  561. (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
  562. and @samp{%gs}.
  563. @item
  564. the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
  565. @samp{%cr3}.
  566. @item
  567. the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
  568. @samp{%db3}, @samp{%db6}, and @samp{%db7}.
  569. @item
  570. the 2 test registers @samp{%tr6} and @samp{%tr7}.
  571. @item
  572. the 8 floating point register stack @samp{%st} or equivalently
  573. @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
  574. @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
  575. These registers are overloaded by 8 MMX registers @samp{%mm0},
  576. @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
  577. @samp{%mm6} and @samp{%mm7}.
  578. @item
  579. the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
  580. @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
  581. @end itemize
  582. The AMD x86-64 architecture extends the register set by:
  583. @itemize @bullet
  584. @item
  585. enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
  586. accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
  587. @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
  588. pointer)
  589. @item
  590. the 8 extended registers @samp{%r8}--@samp{%r15}.
  591. @item
  592. the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
  593. @item
  594. the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
  595. @item
  596. the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
  597. @item
  598. the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
  599. @item
  600. the 8 debug registers: @samp{%db8}--@samp{%db15}.
  601. @item
  602. the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
  603. @end itemize
  604. @node i386-Prefixes
  605. @section Instruction Prefixes
  606. @cindex i386 instruction prefixes
  607. @cindex instruction prefixes, i386
  608. @cindex prefixes, i386
  609. Instruction prefixes are used to modify the following instruction. They
  610. are used to repeat string instructions, to provide section overrides, to
  611. perform bus lock operations, and to change operand and address sizes.
  612. (Most instructions that normally operate on 32-bit operands will use
  613. 16-bit operands if the instruction has an ``operand size'' prefix.)
  614. Instruction prefixes are best written on the same line as the instruction
  615. they act upon. For example, the @samp{scas} (scan string) instruction is
  616. repeated with:
  617. @smallexample
  618. repne scas %es:(%edi),%al
  619. @end smallexample
  620. You may also place prefixes on the lines immediately preceding the
  621. instruction, but this circumvents checks that @code{@value{AS}} does
  622. with prefixes, and will not work with all prefixes.
  623. Here is a list of instruction prefixes:
  624. @cindex section override prefixes, i386
  625. @itemize @bullet
  626. @item
  627. Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
  628. @samp{fs}, @samp{gs}. These are automatically added by specifying
  629. using the @var{section}:@var{memory-operand} form for memory references.
  630. @cindex size prefixes, i386
  631. @item
  632. Operand/Address size prefixes @samp{data16} and @samp{addr16}
  633. change 32-bit operands/addresses into 16-bit operands/addresses,
  634. while @samp{data32} and @samp{addr32} change 16-bit ones (in a
  635. @code{.code16} section) into 32-bit operands/addresses. These prefixes
  636. @emph{must} appear on the same line of code as the instruction they
  637. modify. For example, in a 16-bit @code{.code16} section, you might
  638. write:
  639. @smallexample
  640. addr32 jmpl *(%ebx)
  641. @end smallexample
  642. @cindex bus lock prefixes, i386
  643. @cindex inhibiting interrupts, i386
  644. @item
  645. The bus lock prefix @samp{lock} inhibits interrupts during execution of
  646. the instruction it precedes. (This is only valid with certain
  647. instructions; see a 80386 manual for details).
  648. @cindex coprocessor wait, i386
  649. @item
  650. The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
  651. complete the current instruction. This should never be needed for the
  652. 80386/80387 combination.
  653. @cindex repeat prefixes, i386
  654. @item
  655. The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
  656. to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
  657. times if the current address size is 16-bits).
  658. @cindex REX prefixes, i386
  659. @item
  660. The @samp{rex} family of prefixes is used by x86-64 to encode
  661. extensions to i386 instruction set. The @samp{rex} prefix has four
  662. bits --- an operand size overwrite (@code{64}) used to change operand size
  663. from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
  664. register set.
  665. You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
  666. instruction emits @samp{rex} prefix with all the bits set. By omitting
  667. the @code{64}, @code{x}, @code{y} or @code{z} you may write other
  668. prefixes as well. Normally, there is no need to write the prefixes
  669. explicitly, since gas will automatically generate them based on the
  670. instruction operands.
  671. @end itemize
  672. @node i386-Memory
  673. @section Memory References
  674. @cindex i386 memory references
  675. @cindex memory references, i386
  676. @cindex x86-64 memory references
  677. @cindex memory references, x86-64
  678. An Intel syntax indirect memory reference of the form
  679. @smallexample
  680. @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
  681. @end smallexample
  682. @noindent
  683. is translated into the AT&T syntax
  684. @smallexample
  685. @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
  686. @end smallexample
  687. @noindent
  688. where @var{base} and @var{index} are the optional 32-bit base and
  689. index registers, @var{disp} is the optional displacement, and
  690. @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
  691. to calculate the address of the operand. If no @var{scale} is
  692. specified, @var{scale} is taken to be 1. @var{section} specifies the
  693. optional section register for the memory operand, and may override the
  694. default section register (see a 80386 manual for section register
  695. defaults). Note that section overrides in AT&T syntax @emph{must}
  696. be preceded by a @samp{%}. If you specify a section override which
  697. coincides with the default section register, @code{@value{AS}} does @emph{not}
  698. output any section register override prefixes to assemble the given
  699. instruction. Thus, section overrides can be specified to emphasize which
  700. section register is used for a given memory operand.
  701. Here are some examples of Intel and AT&T style memory references:
  702. @table @asis
  703. @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
  704. @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
  705. missing, and the default section is used (@samp{%ss} for addressing with
  706. @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
  707. @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
  708. @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
  709. @samp{foo}. All other fields are missing. The section register here
  710. defaults to @samp{%ds}.
  711. @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
  712. This uses the value pointed to by @samp{foo} as a memory operand.
  713. Note that @var{base} and @var{index} are both missing, but there is only
  714. @emph{one} @samp{,}. This is a syntactic exception.
  715. @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
  716. This selects the contents of the variable @samp{foo} with section
  717. register @var{section} being @samp{%gs}.
  718. @end table
  719. Absolute (as opposed to PC relative) call and jump operands must be
  720. prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
  721. always chooses PC relative addressing for jump/call labels.
  722. Any instruction that has a memory operand, but no register operand,
  723. @emph{must} specify its size (byte, word, long, or quadruple) with an
  724. instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
  725. respectively).
  726. The x86-64 architecture adds an RIP (instruction pointer relative)
  727. addressing. This addressing mode is specified by using @samp{rip} as a
  728. base register. Only constant offsets are valid. For example:
  729. @table @asis
  730. @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
  731. Points to the address 1234 bytes past the end of the current
  732. instruction.
  733. @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
  734. Points to the @code{symbol} in RIP relative way, this is shorter than
  735. the default absolute addressing.
  736. @end table
  737. Other addressing modes remain unchanged in x86-64 architecture, except
  738. registers used are 64-bit instead of 32-bit.
  739. @node i386-Jumps
  740. @section Handling of Jump Instructions
  741. @cindex jump optimization, i386
  742. @cindex i386 jump optimization
  743. @cindex jump optimization, x86-64
  744. @cindex x86-64 jump optimization
  745. Jump instructions are always optimized to use the smallest possible
  746. displacements. This is accomplished by using byte (8-bit) displacement
  747. jumps whenever the target is sufficiently close. If a byte displacement
  748. is insufficient a long displacement is used. We do not support
  749. word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
  750. instruction with the @samp{data16} instruction prefix), since the 80386
  751. insists upon masking @samp{%eip} to 16 bits after the word displacement
  752. is added. (See also @pxref{i386-Arch})
  753. Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
  754. @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
  755. displacements, so that if you use these instructions (@code{@value{GCC}} does
  756. not use them) you may get an error message (and incorrect code). The AT&T
  757. 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
  758. to
  759. @smallexample
  760. jcxz cx_zero
  761. jmp cx_nonzero
  762. cx_zero: jmp foo
  763. cx_nonzero:
  764. @end smallexample
  765. @node i386-Float
  766. @section Floating Point
  767. @cindex i386 floating point
  768. @cindex floating point, i386
  769. @cindex x86-64 floating point
  770. @cindex floating point, x86-64
  771. All 80387 floating point types except packed BCD are supported.
  772. (BCD support may be added without much difficulty). These data
  773. types are 16-, 32-, and 64- bit integers, and single (32-bit),
  774. double (64-bit), and extended (80-bit) precision floating point.
  775. Each supported type has an instruction mnemonic suffix and a constructor
  776. associated with it. Instruction mnemonic suffixes specify the operand's
  777. data type. Constructors build these data types into memory.
  778. @cindex @code{float} directive, i386
  779. @cindex @code{single} directive, i386
  780. @cindex @code{double} directive, i386
  781. @cindex @code{tfloat} directive, i386
  782. @cindex @code{float} directive, x86-64
  783. @cindex @code{single} directive, x86-64
  784. @cindex @code{double} directive, x86-64
  785. @cindex @code{tfloat} directive, x86-64
  786. @itemize @bullet
  787. @item
  788. Floating point constructors are @samp{.float} or @samp{.single},
  789. @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
  790. These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
  791. and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
  792. only supports this format via the @samp{fldt} (load 80-bit real to stack
  793. top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
  794. @cindex @code{word} directive, i386
  795. @cindex @code{long} directive, i386
  796. @cindex @code{int} directive, i386
  797. @cindex @code{quad} directive, i386
  798. @cindex @code{word} directive, x86-64
  799. @cindex @code{long} directive, x86-64
  800. @cindex @code{int} directive, x86-64
  801. @cindex @code{quad} directive, x86-64
  802. @item
  803. Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
  804. @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
  805. corresponding instruction mnemonic suffixes are @samp{s} (single),
  806. @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
  807. the 64-bit @samp{q} format is only present in the @samp{fildq} (load
  808. quad integer to stack top) and @samp{fistpq} (store quad integer and pop
  809. stack) instructions.
  810. @end itemize
  811. Register to register operations should not use instruction mnemonic suffixes.
  812. @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
  813. wrote @samp{fst %st, %st(1)}, since all register to register operations
  814. use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
  815. which converts @samp{%st} from 80-bit to 64-bit floating point format,
  816. then stores the result in the 4 byte location @samp{mem})
  817. @node i386-SIMD
  818. @section Intel's MMX and AMD's 3DNow! SIMD Operations
  819. @cindex MMX, i386
  820. @cindex 3DNow!, i386
  821. @cindex SIMD, i386
  822. @cindex MMX, x86-64
  823. @cindex 3DNow!, x86-64
  824. @cindex SIMD, x86-64
  825. @code{@value{AS}} supports Intel's MMX instruction set (SIMD
  826. instructions for integer data), available on Intel's Pentium MMX
  827. processors and Pentium II processors, AMD's K6 and K6-2 processors,
  828. Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
  829. instruction set (SIMD instructions for 32-bit floating point data)
  830. available on AMD's K6-2 processor and possibly others in the future.
  831. Currently, @code{@value{AS}} does not support Intel's floating point
  832. SIMD, Katmai (KNI).
  833. The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
  834. @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
  835. 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
  836. floating point values. The MMX registers cannot be used at the same time
  837. as the floating point stack.
  838. See Intel and AMD documentation, keeping in mind that the operand order in
  839. instructions is reversed from the Intel syntax.
  840. @node i386-LWP
  841. @section AMD's Lightweight Profiling Instructions
  842. @cindex LWP, i386
  843. @cindex LWP, x86-64
  844. @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
  845. instruction set, available on AMD's Family 15h (Orochi) processors.
  846. LWP enables applications to collect and manage performance data, and
  847. react to performance events. The collection of performance data
  848. requires no context switches. LWP runs in the context of a thread and
  849. so several counters can be used independently across multiple threads.
  850. LWP can be used in both 64-bit and legacy 32-bit modes.
  851. For detailed information on the LWP instruction set, see the
  852. @cite{AMD Lightweight Profiling Specification} available at
  853. @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
  854. @node i386-BMI
  855. @section Bit Manipulation Instructions
  856. @cindex BMI, i386
  857. @cindex BMI, x86-64
  858. @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
  859. BMI instructions provide several instructions implementing individual
  860. bit manipulation operations such as isolation, masking, setting, or
  861. resetting.
  862. @c Need to add a specification citation here when available.
  863. @node i386-TBM
  864. @section AMD's Trailing Bit Manipulation Instructions
  865. @cindex TBM, i386
  866. @cindex TBM, x86-64
  867. @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
  868. instruction set, available on AMD's BDVER2 processors (Trinity and
  869. Viperfish).
  870. TBM instructions provide instructions implementing individual bit
  871. manipulation operations such as isolating, masking, setting, resetting,
  872. complementing, and operations on trailing zeros and ones.
  873. @c Need to add a specification citation here when available.
  874. @node i386-16bit
  875. @section Writing 16-bit Code
  876. @cindex i386 16-bit code
  877. @cindex 16-bit code, i386
  878. @cindex real-mode code, i386
  879. @cindex @code{code16gcc} directive, i386
  880. @cindex @code{code16} directive, i386
  881. @cindex @code{code32} directive, i386
  882. @cindex @code{code64} directive, i386
  883. @cindex @code{code64} directive, x86-64
  884. While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
  885. or 64-bit x86-64 code depending on the default configuration,
  886. it also supports writing code to run in real mode or in 16-bit protected
  887. mode code segments. To do this, put a @samp{.code16} or
  888. @samp{.code16gcc} directive before the assembly language instructions to
  889. be run in 16-bit mode. You can switch @code{@value{AS}} to writing
  890. 32-bit code with the @samp{.code32} directive or 64-bit code with the
  891. @samp{.code64} directive.
  892. @samp{.code16gcc} provides experimental support for generating 16-bit
  893. code from gcc, and differs from @samp{.code16} in that @samp{call},
  894. @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
  895. @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
  896. default to 32-bit size. This is so that the stack pointer is
  897. manipulated in the same way over function calls, allowing access to
  898. function parameters at the same stack offsets as in 32-bit mode.
  899. @samp{.code16gcc} also automatically adds address size prefixes where
  900. necessary to use the 32-bit addressing modes that gcc generates.
  901. The code which @code{@value{AS}} generates in 16-bit mode will not
  902. necessarily run on a 16-bit pre-80386 processor. To write code that
  903. runs on such a processor, you must refrain from using @emph{any} 32-bit
  904. constructs which require @code{@value{AS}} to output address or operand
  905. size prefixes.
  906. Note that writing 16-bit code instructions by explicitly specifying a
  907. prefix or an instruction mnemonic suffix within a 32-bit code section
  908. generates different machine instructions than those generated for a
  909. 16-bit code segment. In a 32-bit code section, the following code
  910. generates the machine opcode bytes @samp{66 6a 04}, which pushes the
  911. value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
  912. @smallexample
  913. pushw $4
  914. @end smallexample
  915. The same code in a 16-bit code section would generate the machine
  916. opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
  917. is correct since the processor default operand size is assumed to be 16
  918. bits in a 16-bit code section.
  919. @node i386-Arch
  920. @section Specifying CPU Architecture
  921. @cindex arch directive, i386
  922. @cindex i386 arch directive
  923. @cindex arch directive, x86-64
  924. @cindex x86-64 arch directive
  925. @code{@value{AS}} may be told to assemble for a particular CPU
  926. (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
  927. directive enables a warning when gas detects an instruction that is not
  928. supported on the CPU specified. The choices for @var{cpu_type} are:
  929. @multitable @columnfractions .20 .20 .20 .20
  930. @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
  931. @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
  932. @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
  933. @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
  934. @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
  935. @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
  936. @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
  937. @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
  938. @item @samp{generic32} @tab @samp{generic64}
  939. @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
  940. @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
  941. @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
  942. @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
  943. @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
  944. @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
  945. @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
  946. @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
  947. @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
  948. @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
  949. @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
  950. @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
  951. @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
  952. @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
  953. @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
  954. @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
  955. @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
  956. @end multitable
  957. Apart from the warning, there are only two other effects on
  958. @code{@value{AS}} operation; Firstly, if you specify a CPU other than
  959. @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
  960. will automatically use a two byte opcode sequence. The larger three
  961. byte opcode sequence is used on the 486 (and when no architecture is
  962. specified) because it executes faster on the 486. Note that you can
  963. explicitly request the two byte opcode by writing @samp{sarl %eax}.
  964. Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
  965. @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
  966. conditional jumps will be promoted when necessary to a two instruction
  967. sequence consisting of a conditional jump of the opposite sense around
  968. an unconditional jump to the target.
  969. Following the CPU architecture (but not a sub-architecture, which are those
  970. starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
  971. control automatic promotion of conditional jumps. @samp{jumps} is the
  972. default, and enables jump promotion; All external jumps will be of the long
  973. variety, and file-local jumps will be promoted as necessary.
  974. (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
  975. byte offset jumps, and warns about file-local conditional jumps that
  976. @code{@value{AS}} promotes.
  977. Unconditional jumps are treated as for @samp{jumps}.
  978. For example
  979. @smallexample
  980. .arch i8086,nojumps
  981. @end smallexample
  982. @node i386-Bugs
  983. @section AT&T Syntax bugs
  984. The UnixWare assembler, and probably other AT&T derived ix86 Unix
  985. assemblers, generate floating point instructions with reversed source
  986. and destination registers in certain cases. Unfortunately, gcc and
  987. possibly many other programs use this reversed syntax, so we're stuck
  988. with it.
  989. For example
  990. @smallexample
  991. fsub %st,%st(3)
  992. @end smallexample
  993. @noindent
  994. results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
  995. than the expected @samp{%st(3) - %st}. This happens with all the
  996. non-commutative arithmetic floating point operations with two register
  997. operands where the source register is @samp{%st} and the destination
  998. register is @samp{%st(i)}.
  999. @node i386-Notes
  1000. @section Notes
  1001. @cindex i386 @code{mul}, @code{imul} instructions
  1002. @cindex @code{mul} instruction, i386
  1003. @cindex @code{imul} instruction, i386
  1004. @cindex @code{mul} instruction, x86-64
  1005. @cindex @code{imul} instruction, x86-64
  1006. There is some trickery concerning the @samp{mul} and @samp{imul}
  1007. instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
  1008. multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
  1009. for @samp{imul}) can be output only in the one operand form. Thus,
  1010. @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
  1011. the expanding multiply would clobber the @samp{%edx} register, and this
  1012. would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
  1013. 64-bit product in @samp{%edx:%eax}.
  1014. We have added a two operand form of @samp{imul} when the first operand
  1015. is an immediate mode expression and the second operand is a register.
  1016. This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
  1017. example, can be done with @samp{imul $69, %eax} rather than @samp{imul
  1018. $69, %eax, %eax}.