interp.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /* Simulator for Atmel's AVR core.
  2. Copyright (C) 2009-2015 Free Software Foundation, Inc.
  3. Written by Tristan Gingold, AdaCore.
  4. This file is part of GDB, the GNU debugger.
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  15. #include "config.h"
  16. #ifdef HAVE_STRING_H
  17. #include <string.h>
  18. #endif
  19. #include "bfd.h"
  20. #include "libiberty.h"
  21. #include "gdb/remote-sim.h"
  22. #include "sim-main.h"
  23. #include "sim-base.h"
  24. #include "sim-options.h"
  25. /* As AVR is a 8/16 bits processor, define handy types. */
  26. typedef unsigned short int word;
  27. typedef signed short int sword;
  28. typedef unsigned char byte;
  29. typedef signed char sbyte;
  30. /* The only real register. */
  31. unsigned int pc;
  32. /* We update a cycle counter. */
  33. static unsigned int cycles = 0;
  34. /* If true, the pc needs more than 2 bytes. */
  35. static int avr_pc22;
  36. /* Max size of I space (which is always flash on avr). */
  37. #define MAX_AVR_FLASH (128 * 1024)
  38. #define PC_MASK (MAX_AVR_FLASH - 1)
  39. /* Mac size of D space. */
  40. #define MAX_AVR_SRAM (64 * 1024)
  41. #define SRAM_MASK (MAX_AVR_SRAM - 1)
  42. /* D space offset in ELF file. */
  43. #define SRAM_VADDR 0x800000
  44. /* Simulator specific ports. */
  45. #define STDIO_PORT 0x52
  46. #define EXIT_PORT 0x4F
  47. #define ABORT_PORT 0x49
  48. /* GDB defined register numbers. */
  49. #define AVR_SREG_REGNUM 32
  50. #define AVR_SP_REGNUM 33
  51. #define AVR_PC_REGNUM 34
  52. /* Memory mapped registers. */
  53. #define SREG 0x5F
  54. #define REG_SP 0x5D
  55. #define EIND 0x5C
  56. #define RAMPZ 0x5B
  57. #define REGX 0x1a
  58. #define REGY 0x1c
  59. #define REGZ 0x1e
  60. #define REGZ_LO 0x1e
  61. #define REGZ_HI 0x1f
  62. /* Sreg (status) bits. */
  63. #define SREG_I 0x80
  64. #define SREG_T 0x40
  65. #define SREG_H 0x20
  66. #define SREG_S 0x10
  67. #define SREG_V 0x08
  68. #define SREG_N 0x04
  69. #define SREG_Z 0x02
  70. #define SREG_C 0x01
  71. /* In order to speed up emulation we use a simple approach:
  72. a code is associated with each instruction. The pre-decoding occurs
  73. usually once when the instruction is first seen.
  74. This works well because I&D spaces are separated.
  75. Missing opcodes: sleep, spm, wdr (as they are mmcu dependent).
  76. */
  77. enum avr_opcode
  78. {
  79. /* Opcode not yet decoded. */
  80. OP_unknown,
  81. OP_bad,
  82. OP_nop,
  83. OP_rjmp,
  84. OP_rcall,
  85. OP_ret,
  86. OP_reti,
  87. OP_break,
  88. OP_brbs,
  89. OP_brbc,
  90. OP_bset,
  91. OP_bclr,
  92. OP_bld,
  93. OP_bst,
  94. OP_sbrc,
  95. OP_sbrs,
  96. OP_eor,
  97. OP_and,
  98. OP_andi,
  99. OP_or,
  100. OP_ori,
  101. OP_com,
  102. OP_swap,
  103. OP_neg,
  104. OP_out,
  105. OP_in,
  106. OP_cbi,
  107. OP_sbi,
  108. OP_sbic,
  109. OP_sbis,
  110. OP_ldi,
  111. OP_cpse,
  112. OP_cp,
  113. OP_cpi,
  114. OP_cpc,
  115. OP_sub,
  116. OP_sbc,
  117. OP_sbiw,
  118. OP_adiw,
  119. OP_add,
  120. OP_adc,
  121. OP_subi,
  122. OP_sbci,
  123. OP_inc,
  124. OP_dec,
  125. OP_lsr,
  126. OP_ror,
  127. OP_asr,
  128. OP_mul,
  129. OP_muls,
  130. OP_mulsu,
  131. OP_fmul,
  132. OP_fmuls,
  133. OP_fmulsu,
  134. OP_mov,
  135. OP_movw,
  136. OP_push,
  137. OP_pop,
  138. OP_st_X,
  139. OP_st_dec_X,
  140. OP_st_X_inc,
  141. OP_st_Y_inc,
  142. OP_st_dec_Y,
  143. OP_st_Z_inc,
  144. OP_st_dec_Z,
  145. OP_std_Y,
  146. OP_std_Z,
  147. OP_ldd_Y,
  148. OP_ldd_Z,
  149. OP_ld_Z_inc,
  150. OP_ld_dec_Z,
  151. OP_ld_Y_inc,
  152. OP_ld_dec_Y,
  153. OP_ld_X,
  154. OP_ld_X_inc,
  155. OP_ld_dec_X,
  156. OP_lpm,
  157. OP_lpm_Z,
  158. OP_lpm_inc_Z,
  159. OP_elpm,
  160. OP_elpm_Z,
  161. OP_elpm_inc_Z,
  162. OP_ijmp,
  163. OP_icall,
  164. OP_eijmp,
  165. OP_eicall,
  166. /* 2 words opcodes. */
  167. #define OP_2words OP_jmp
  168. OP_jmp,
  169. OP_call,
  170. OP_sts,
  171. OP_lds
  172. };
  173. struct avr_insn_cell
  174. {
  175. /* The insn (16 bits). */
  176. word op;
  177. /* Pre-decoding code. */
  178. enum avr_opcode code : 8;
  179. /* One byte of additional information. */
  180. byte r;
  181. };
  182. /* I&D memories. */
  183. /* TODO: Should be moved to SIM_CPU. */
  184. static struct avr_insn_cell flash[MAX_AVR_FLASH];
  185. static byte sram[MAX_AVR_SRAM];
  186. /* Sign extend a value. */
  187. static int sign_ext (word val, int nb_bits)
  188. {
  189. if (val & (1 << (nb_bits - 1)))
  190. return val | (-1 << nb_bits);
  191. return val;
  192. }
  193. /* Insn field extractors. */
  194. /* Extract xxxx_xxxRx_xxxx_RRRR. */
  195. static inline byte get_r (word op)
  196. {
  197. return (op & 0xf) | ((op >> 5) & 0x10);
  198. }
  199. /* Extract xxxx_xxxxx_xxxx_RRRR. */
  200. static inline byte get_r16 (word op)
  201. {
  202. return 16 + (op & 0xf);
  203. }
  204. /* Extract xxxx_xxxxx_xxxx_xRRR. */
  205. static inline byte get_r16_23 (word op)
  206. {
  207. return 16 + (op & 0x7);
  208. }
  209. /* Extract xxxx_xxxD_DDDD_xxxx. */
  210. static inline byte get_d (word op)
  211. {
  212. return (op >> 4) & 0x1f;
  213. }
  214. /* Extract xxxx_xxxx_DDDD_xxxx. */
  215. static inline byte get_d16 (word op)
  216. {
  217. return 16 + ((op >> 4) & 0x0f);
  218. }
  219. /* Extract xxxx_xxxx_xDDD_xxxx. */
  220. static inline byte get_d16_23 (word op)
  221. {
  222. return 16 + ((op >> 4) & 0x07);
  223. }
  224. /* Extract xxxx_xAAx_xxxx_AAAA. */
  225. static inline byte get_A (word op)
  226. {
  227. return (op & 0x0f) | ((op & 0x600) >> 5);
  228. }
  229. /* Extract xxxx_xxxx_AAAA_Axxx. */
  230. static inline byte get_biA (word op)
  231. {
  232. return (op >> 3) & 0x1f;
  233. }
  234. /* Extract xxxx_KKKK_xxxx_KKKK. */
  235. static inline byte get_K (word op)
  236. {
  237. return (op & 0xf) | ((op & 0xf00) >> 4);
  238. }
  239. /* Extract xxxx_xxKK_KKKK_Kxxx. */
  240. static inline int get_k (word op)
  241. {
  242. return sign_ext ((op & 0x3f8) >> 3, 7);
  243. }
  244. /* Extract xxxx_xxxx_xxDD_xxxx. */
  245. static inline byte get_d24 (word op)
  246. {
  247. return 24 + ((op >> 3) & 6);
  248. }
  249. /* Extract xxxx_xxxx_KKxx_KKKK. */
  250. static inline byte get_k6 (word op)
  251. {
  252. return (op & 0xf) | ((op >> 2) & 0x30);
  253. }
  254. /* Extract xxQx_QQxx_xxxx_xQQQ. */
  255. static inline byte get_q (word op)
  256. {
  257. return (op & 7) | ((op >> 7) & 0x18)| ((op >> 8) & 0x20);
  258. }
  259. /* Extract xxxx_xxxx_xxxx_xBBB. */
  260. static inline byte get_b (word op)
  261. {
  262. return (op & 7);
  263. }
  264. /* AVR is little endian. */
  265. static inline word
  266. read_word (unsigned int addr)
  267. {
  268. return sram[addr] | (sram[addr + 1] << 8);
  269. }
  270. static inline void
  271. write_word (unsigned int addr, word w)
  272. {
  273. sram[addr] = w;
  274. sram[addr + 1] = w >> 8;
  275. }
  276. static inline word
  277. read_word_post_inc (unsigned int addr)
  278. {
  279. word v = read_word (addr);
  280. write_word (addr, v + 1);
  281. return v;
  282. }
  283. static inline word
  284. read_word_pre_dec (unsigned int addr)
  285. {
  286. word v = read_word (addr) - 1;
  287. write_word (addr, v);
  288. return v;
  289. }
  290. static void
  291. update_flags_logic (byte res)
  292. {
  293. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
  294. if (res == 0)
  295. sram[SREG] |= SREG_Z;
  296. if (res & 0x80)
  297. sram[SREG] |= SREG_N | SREG_S;
  298. }
  299. static void
  300. update_flags_add (byte r, byte a, byte b)
  301. {
  302. byte carry;
  303. sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  304. if (r & 0x80)
  305. sram[SREG] |= SREG_N;
  306. carry = (a & b) | (a & ~r) | (b & ~r);
  307. if (carry & 0x08)
  308. sram[SREG] |= SREG_H;
  309. if (carry & 0x80)
  310. sram[SREG] |= SREG_C;
  311. if (((a & b & ~r) | (~a & ~b & r)) & 0x80)
  312. sram[SREG] |= SREG_V;
  313. if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_V))
  314. sram[SREG] |= SREG_S;
  315. if (r == 0)
  316. sram[SREG] |= SREG_Z;
  317. }
  318. static void update_flags_sub (byte r, byte a, byte b)
  319. {
  320. byte carry;
  321. sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  322. if (r & 0x80)
  323. sram[SREG] |= SREG_N;
  324. carry = (~a & b) | (b & r) | (r & ~a);
  325. if (carry & 0x08)
  326. sram[SREG] |= SREG_H;
  327. if (carry & 0x80)
  328. sram[SREG] |= SREG_C;
  329. if (((a & ~b & ~r) | (~a & b & r)) & 0x80)
  330. sram[SREG] |= SREG_V;
  331. if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_V))
  332. sram[SREG] |= SREG_S;
  333. /* Note: Z is not set. */
  334. }
  335. static enum avr_opcode
  336. decode (unsigned int pc)
  337. {
  338. word op1 = flash[pc].op;
  339. switch ((op1 >> 12) & 0x0f)
  340. {
  341. case 0x0:
  342. switch ((op1 >> 10) & 0x3)
  343. {
  344. case 0x0:
  345. switch ((op1 >> 8) & 0x3)
  346. {
  347. case 0x0:
  348. if (op1 == 0)
  349. return OP_nop;
  350. break;
  351. case 0x1:
  352. return OP_movw;
  353. case 0x2:
  354. return OP_muls;
  355. case 0x3:
  356. if (op1 & 0x80)
  357. {
  358. if (op1 & 0x08)
  359. return OP_fmulsu;
  360. else
  361. return OP_fmuls;
  362. }
  363. else
  364. {
  365. if (op1 & 0x08)
  366. return OP_fmul;
  367. else
  368. return OP_mulsu;
  369. }
  370. }
  371. break;
  372. case 0x1:
  373. return OP_cpc;
  374. case 0x2:
  375. flash[pc].r = SREG_C;
  376. return OP_sbc;
  377. case 0x3:
  378. flash[pc].r = 0;
  379. return OP_add;
  380. }
  381. break;
  382. case 0x1:
  383. switch ((op1 >> 10) & 0x3)
  384. {
  385. case 0x0:
  386. return OP_cpse;
  387. case 0x1:
  388. return OP_cp;
  389. case 0x2:
  390. flash[pc].r = 0;
  391. return OP_sub;
  392. case 0x3:
  393. flash[pc].r = SREG_C;
  394. return OP_adc;
  395. }
  396. break;
  397. case 0x2:
  398. switch ((op1 >> 10) & 0x3)
  399. {
  400. case 0x0:
  401. return OP_and;
  402. case 0x1:
  403. return OP_eor;
  404. case 0x2:
  405. return OP_or;
  406. case 0x3:
  407. return OP_mov;
  408. }
  409. break;
  410. case 0x3:
  411. return OP_cpi;
  412. case 0x4:
  413. return OP_sbci;
  414. case 0x5:
  415. return OP_subi;
  416. case 0x6:
  417. return OP_ori;
  418. case 0x7:
  419. return OP_andi;
  420. case 0x8:
  421. case 0xa:
  422. if (op1 & 0x0200)
  423. {
  424. if (op1 & 0x0008)
  425. {
  426. flash[pc].r = get_q (op1);
  427. return OP_std_Y;
  428. }
  429. else
  430. {
  431. flash[pc].r = get_q (op1);
  432. return OP_std_Z;
  433. }
  434. }
  435. else
  436. {
  437. if (op1 & 0x0008)
  438. {
  439. flash[pc].r = get_q (op1);
  440. return OP_ldd_Y;
  441. }
  442. else
  443. {
  444. flash[pc].r = get_q (op1);
  445. return OP_ldd_Z;
  446. }
  447. }
  448. break;
  449. case 0x9: /* 9xxx */
  450. switch ((op1 >> 8) & 0xf)
  451. {
  452. case 0x0:
  453. case 0x1:
  454. switch ((op1 >> 0) & 0xf)
  455. {
  456. case 0x0:
  457. return OP_lds;
  458. case 0x1:
  459. return OP_ld_Z_inc;
  460. case 0x2:
  461. return OP_ld_dec_Z;
  462. case 0x4:
  463. return OP_lpm_Z;
  464. case 0x5:
  465. return OP_lpm_inc_Z;
  466. case 0x6:
  467. return OP_elpm_Z;
  468. case 0x7:
  469. return OP_elpm_inc_Z;
  470. case 0x9:
  471. return OP_ld_Y_inc;
  472. case 0xa:
  473. return OP_ld_dec_Y;
  474. case 0xc:
  475. return OP_ld_X;
  476. case 0xd:
  477. return OP_ld_X_inc;
  478. case 0xe:
  479. return OP_ld_dec_X;
  480. case 0xf:
  481. return OP_pop;
  482. }
  483. break;
  484. case 0x2:
  485. case 0x3:
  486. switch ((op1 >> 0) & 0xf)
  487. {
  488. case 0x0:
  489. return OP_sts;
  490. case 0x1:
  491. return OP_st_Z_inc;
  492. case 0x2:
  493. return OP_st_dec_Z;
  494. case 0x9:
  495. return OP_st_Y_inc;
  496. case 0xa:
  497. return OP_st_dec_Y;
  498. case 0xc:
  499. return OP_st_X;
  500. case 0xd:
  501. return OP_st_X_inc;
  502. case 0xe:
  503. return OP_st_dec_X;
  504. case 0xf:
  505. return OP_push;
  506. }
  507. break;
  508. case 0x4:
  509. case 0x5:
  510. switch (op1 & 0xf)
  511. {
  512. case 0x0:
  513. return OP_com;
  514. case 0x1:
  515. return OP_neg;
  516. case 0x2:
  517. return OP_swap;
  518. case 0x3:
  519. return OP_inc;
  520. case 0x5:
  521. flash[pc].r = 0x80;
  522. return OP_asr;
  523. case 0x6:
  524. flash[pc].r = 0;
  525. return OP_lsr;
  526. case 0x7:
  527. return OP_ror;
  528. case 0x8: /* 9[45]x8 */
  529. switch ((op1 >> 4) & 0x1f)
  530. {
  531. case 0x00:
  532. case 0x01:
  533. case 0x02:
  534. case 0x03:
  535. case 0x04:
  536. case 0x05:
  537. case 0x06:
  538. case 0x07:
  539. return OP_bset;
  540. case 0x08:
  541. case 0x09:
  542. case 0x0a:
  543. case 0x0b:
  544. case 0x0c:
  545. case 0x0d:
  546. case 0x0e:
  547. case 0x0f:
  548. return OP_bclr;
  549. case 0x10:
  550. return OP_ret;
  551. case 0x11:
  552. return OP_reti;
  553. case 0x19:
  554. return OP_break;
  555. case 0x1c:
  556. return OP_lpm;
  557. case 0x1d:
  558. return OP_elpm;
  559. default:
  560. break;
  561. }
  562. break;
  563. case 0x9: /* 9[45]x9 */
  564. switch ((op1 >> 4) & 0x1f)
  565. {
  566. case 0x00:
  567. return OP_ijmp;
  568. case 0x01:
  569. return OP_eijmp;
  570. case 0x10:
  571. return OP_icall;
  572. case 0x11:
  573. return OP_eicall;
  574. default:
  575. break;
  576. }
  577. break;
  578. case 0xa:
  579. return OP_dec;
  580. case 0xc:
  581. case 0xd:
  582. flash[pc].r = ((op1 & 0x1f0) >> 3) | (op1 & 1);
  583. return OP_jmp;
  584. case 0xe:
  585. case 0xf:
  586. flash[pc].r = ((op1 & 0x1f0) >> 3) | (op1 & 1);
  587. return OP_call;
  588. }
  589. break;
  590. case 0x6:
  591. return OP_adiw;
  592. case 0x7:
  593. return OP_sbiw;
  594. case 0x8:
  595. return OP_cbi;
  596. case 0x9:
  597. return OP_sbic;
  598. case 0xa:
  599. return OP_sbi;
  600. case 0xb:
  601. return OP_sbis;
  602. case 0xc:
  603. case 0xd:
  604. case 0xe:
  605. case 0xf:
  606. return OP_mul;
  607. }
  608. break;
  609. case 0xb:
  610. flash[pc].r = get_A (op1);
  611. if (((op1 >> 11) & 1) == 0)
  612. return OP_in;
  613. else
  614. return OP_out;
  615. case 0xc:
  616. return OP_rjmp;
  617. case 0xd:
  618. return OP_rcall;
  619. case 0xe:
  620. return OP_ldi;
  621. case 0xf:
  622. switch ((op1 >> 9) & 7)
  623. {
  624. case 0:
  625. case 1:
  626. flash[pc].r = 1 << (op1 & 7);
  627. return OP_brbs;
  628. case 2:
  629. case 3:
  630. flash[pc].r = 1 << (op1 & 7);
  631. return OP_brbc;
  632. case 4:
  633. if ((op1 & 8) == 0)
  634. {
  635. flash[pc].r = 1 << (op1 & 7);
  636. return OP_bld;
  637. }
  638. break;
  639. case 5:
  640. if ((op1 & 8) == 0)
  641. {
  642. flash[pc].r = 1 << (op1 & 7);
  643. return OP_bst;
  644. }
  645. break;
  646. case 6:
  647. if ((op1 & 8) == 0)
  648. {
  649. flash[pc].r = 1 << (op1 & 7);
  650. return OP_sbrc;
  651. }
  652. break;
  653. case 7:
  654. if ((op1 & 8) == 0)
  655. {
  656. flash[pc].r = 1 << (op1 & 7);
  657. return OP_sbrs;
  658. }
  659. break;
  660. }
  661. }
  662. return OP_bad;
  663. }
  664. static void
  665. do_call (unsigned int npc)
  666. {
  667. unsigned int sp = read_word (REG_SP);
  668. /* Big endian! */
  669. sram[sp--] = pc;
  670. sram[sp--] = pc >> 8;
  671. if (avr_pc22)
  672. {
  673. sram[sp--] = pc >> 16;
  674. cycles++;
  675. }
  676. write_word (REG_SP, sp);
  677. pc = npc & PC_MASK;
  678. cycles += 3;
  679. }
  680. static int
  681. get_insn_length (unsigned int p)
  682. {
  683. if (flash[p].code == OP_unknown)
  684. flash[p].code = decode(p);
  685. if (flash[p].code >= OP_2words)
  686. return 2;
  687. else
  688. return 1;
  689. }
  690. static unsigned int
  691. get_z (void)
  692. {
  693. return (sram[RAMPZ] << 16) | (sram[REGZ_HI] << 8) | sram[REGZ_LO];
  694. }
  695. static unsigned char
  696. get_lpm (unsigned int addr)
  697. {
  698. word w;
  699. w = flash[(addr >> 1) & PC_MASK].op;
  700. if (addr & 1)
  701. w >>= 8;
  702. return w;
  703. }
  704. static void
  705. gen_mul (unsigned int res)
  706. {
  707. write_word (0, res);
  708. sram[SREG] &= ~(SREG_Z | SREG_C);
  709. if (res == 0)
  710. sram[SREG] |= SREG_Z;
  711. if (res & 0x8000)
  712. sram[SREG] |= SREG_C;
  713. cycles++;
  714. }
  715. static void
  716. step_once (SIM_CPU *cpu)
  717. {
  718. unsigned int ipc;
  719. int code;
  720. word op;
  721. byte res;
  722. byte r, d, vd;
  723. again:
  724. code = flash[pc].code;
  725. op = flash[pc].op;
  726. #if 0
  727. if (tracing && code != OP_unknown)
  728. {
  729. if (verbose > 0) {
  730. int flags;
  731. int i;
  732. sim_cb_eprintf (callback, "R00-07:");
  733. for (i = 0; i < 8; i++)
  734. sim_cb_eprintf (callback, " %02x", sram[i]);
  735. sim_cb_eprintf (callback, " -");
  736. for (i = 8; i < 16; i++)
  737. sim_cb_eprintf (callback, " %02x", sram[i]);
  738. sim_cb_eprintf (callback, " SP: %02x %02x",
  739. sram[REG_SP + 1], sram[REG_SP]);
  740. sim_cb_eprintf (callback, "\n");
  741. sim_cb_eprintf (callback, "R16-31:");
  742. for (i = 16; i < 24; i++)
  743. sim_cb_eprintf (callback, " %02x", sram[i]);
  744. sim_cb_eprintf (callback, " -");
  745. for (i = 24; i < 32; i++)
  746. sim_cb_eprintf (callback, " %02x", sram[i]);
  747. sim_cb_eprintf (callback, " ");
  748. flags = sram[SREG];
  749. for (i = 0; i < 8; i++)
  750. sim_cb_eprintf (callback, "%c",
  751. flags & (0x80 >> i) ? "ITHSVNZC"[i] : '-');
  752. sim_cb_eprintf (callback, "\n");
  753. }
  754. if (!tracing)
  755. sim_cb_eprintf (callback, "%06x: %04x\n", 2 * pc, flash[pc].op);
  756. else
  757. {
  758. sim_cb_eprintf (callback, "pc=0x%06x insn=0x%04x code=%d r=%d\n",
  759. 2 * pc, flash[pc].op, code, flash[pc].r);
  760. disassemble_insn (CPU_STATE (cpu), pc);
  761. sim_cb_eprintf (callback, "\n");
  762. }
  763. }
  764. #endif
  765. ipc = pc;
  766. pc = (pc + 1) & PC_MASK;
  767. cycles++;
  768. switch (code)
  769. {
  770. case OP_unknown:
  771. flash[ipc].code = decode(ipc);
  772. pc = ipc;
  773. cycles--;
  774. goto again;
  775. case OP_nop:
  776. break;
  777. case OP_jmp:
  778. /* 2 words instruction, but we don't care about the pc. */
  779. pc = ((flash[ipc].r << 16) | flash[ipc + 1].op) & PC_MASK;
  780. cycles += 2;
  781. break;
  782. case OP_eijmp:
  783. pc = ((sram[EIND] << 16) | read_word (REGZ)) & PC_MASK;
  784. cycles += 2;
  785. break;
  786. case OP_ijmp:
  787. pc = read_word (REGZ) & PC_MASK;
  788. cycles += 1;
  789. break;
  790. case OP_call:
  791. /* 2 words instruction. */
  792. pc++;
  793. do_call ((flash[ipc].r << 16) | flash[ipc + 1].op);
  794. break;
  795. case OP_eicall:
  796. do_call ((sram[EIND] << 16) | read_word (REGZ));
  797. break;
  798. case OP_icall:
  799. do_call (read_word (REGZ));
  800. break;
  801. case OP_rcall:
  802. do_call (pc + sign_ext (op & 0xfff, 12));
  803. break;
  804. case OP_reti:
  805. sram[SREG] |= SREG_I;
  806. /* Fall through */
  807. case OP_ret:
  808. {
  809. unsigned int sp = read_word (REG_SP);
  810. if (avr_pc22)
  811. {
  812. pc = sram[++sp] << 16;
  813. cycles++;
  814. }
  815. else
  816. pc = 0;
  817. pc |= sram[++sp] << 8;
  818. pc |= sram[++sp];
  819. write_word (REG_SP, sp);
  820. }
  821. cycles += 3;
  822. break;
  823. case OP_break:
  824. /* Stop on this address. */
  825. sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
  826. pc = ipc;
  827. break;
  828. case OP_bld:
  829. d = get_d (op);
  830. r = flash[ipc].r;
  831. if (sram[SREG] & SREG_T)
  832. sram[d] |= r;
  833. else
  834. sram[d] &= ~r;
  835. break;
  836. case OP_bst:
  837. if (sram[get_d (op)] & flash[ipc].r)
  838. sram[SREG] |= SREG_T;
  839. else
  840. sram[SREG] &= ~SREG_T;
  841. break;
  842. case OP_sbrc:
  843. case OP_sbrs:
  844. if (((sram[get_d (op)] & flash[ipc].r) == 0) ^ ((op & 0x0200) != 0))
  845. {
  846. int l = get_insn_length(pc);
  847. pc += l;
  848. cycles += l;
  849. }
  850. break;
  851. case OP_push:
  852. {
  853. unsigned int sp = read_word (REG_SP);
  854. sram[sp--] = sram[get_d (op)];
  855. write_word (REG_SP, sp);
  856. }
  857. cycles++;
  858. break;
  859. case OP_pop:
  860. {
  861. unsigned int sp = read_word (REG_SP);
  862. sram[get_d (op)] = sram[++sp];
  863. write_word (REG_SP, sp);
  864. }
  865. cycles++;
  866. break;
  867. case OP_bclr:
  868. sram[SREG] &= ~(1 << ((op >> 4) & 0x7));
  869. break;
  870. case OP_bset:
  871. sram[SREG] |= 1 << ((op >> 4) & 0x7);
  872. break;
  873. case OP_rjmp:
  874. pc = (pc + sign_ext (op & 0xfff, 12)) & PC_MASK;
  875. cycles++;
  876. break;
  877. case OP_eor:
  878. d = get_d (op);
  879. res = sram[d] ^ sram[get_r (op)];
  880. sram[d] = res;
  881. update_flags_logic (res);
  882. break;
  883. case OP_and:
  884. d = get_d (op);
  885. res = sram[d] & sram[get_r (op)];
  886. sram[d] = res;
  887. update_flags_logic (res);
  888. break;
  889. case OP_andi:
  890. d = get_d16 (op);
  891. res = sram[d] & get_K (op);
  892. sram[d] = res;
  893. update_flags_logic (res);
  894. break;
  895. case OP_or:
  896. d = get_d (op);
  897. res = sram[d] | sram[get_r (op)];
  898. sram[d] = res;
  899. update_flags_logic (res);
  900. break;
  901. case OP_ori:
  902. d = get_d16 (op);
  903. res = sram[d] | get_K (op);
  904. sram[d] = res;
  905. update_flags_logic (res);
  906. break;
  907. case OP_com:
  908. d = get_d (op);
  909. res = ~sram[d];
  910. sram[d] = res;
  911. update_flags_logic (res);
  912. sram[SREG] |= SREG_C;
  913. break;
  914. case OP_swap:
  915. d = get_d (op);
  916. vd = sram[d];
  917. sram[d] = (vd >> 4) | (vd << 4);
  918. break;
  919. case OP_neg:
  920. d = get_d (op);
  921. vd = sram[d];
  922. res = -vd;
  923. sram[d] = res;
  924. sram[SREG] &= ~(SREG_H | SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  925. if (res == 0)
  926. sram[SREG] |= SREG_Z;
  927. else
  928. sram[SREG] |= SREG_C;
  929. if (res == 0x80)
  930. sram[SREG] |= SREG_V | SREG_N;
  931. else if (res & 0x80)
  932. sram[SREG] |= SREG_N | SREG_S;
  933. if ((res | vd) & 0x08)
  934. sram[SREG] |= SREG_H;
  935. break;
  936. case OP_inc:
  937. d = get_d (op);
  938. res = sram[d] + 1;
  939. sram[d] = res;
  940. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
  941. if (res == 0x80)
  942. sram[SREG] |= SREG_V | SREG_N;
  943. else if (res & 0x80)
  944. sram[SREG] |= SREG_N | SREG_S;
  945. else if (res == 0)
  946. sram[SREG] |= SREG_Z;
  947. break;
  948. case OP_dec:
  949. d = get_d (op);
  950. res = sram[d] - 1;
  951. sram[d] = res;
  952. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z);
  953. if (res == 0x7f)
  954. sram[SREG] |= SREG_V | SREG_S;
  955. else if (res & 0x80)
  956. sram[SREG] |= SREG_N | SREG_S;
  957. else if (res == 0)
  958. sram[SREG] |= SREG_Z;
  959. break;
  960. case OP_lsr:
  961. case OP_asr:
  962. d = get_d (op);
  963. vd = sram[d];
  964. res = (vd >> 1) | (vd & flash[ipc].r);
  965. sram[d] = res;
  966. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  967. if (vd & 1)
  968. sram[SREG] |= SREG_C | SREG_S;
  969. if (res & 0x80)
  970. sram[SREG] |= SREG_N;
  971. if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_C))
  972. sram[SREG] |= SREG_V;
  973. if (res == 0)
  974. sram[SREG] |= SREG_Z;
  975. break;
  976. case OP_ror:
  977. d = get_d (op);
  978. vd = sram[d];
  979. res = vd >> 1 | (sram[SREG] << 7);
  980. sram[d] = res;
  981. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  982. if (vd & 1)
  983. sram[SREG] |= SREG_C | SREG_S;
  984. if (res & 0x80)
  985. sram[SREG] |= SREG_N;
  986. if (!(sram[SREG] & SREG_N) ^ !(sram[SREG] & SREG_C))
  987. sram[SREG] |= SREG_V;
  988. if (res == 0)
  989. sram[SREG] |= SREG_Z;
  990. break;
  991. case OP_mul:
  992. gen_mul ((word)sram[get_r (op)] * (word)sram[get_d (op)]);
  993. break;
  994. case OP_muls:
  995. gen_mul ((sword)(sbyte)sram[get_r16 (op)]
  996. * (sword)(sbyte)sram[get_d16 (op)]);
  997. break;
  998. case OP_mulsu:
  999. gen_mul ((sword)(word)sram[get_r16_23 (op)]
  1000. * (sword)(sbyte)sram[get_d16_23 (op)]);
  1001. break;
  1002. case OP_fmul:
  1003. gen_mul (((word)sram[get_r16_23 (op)]
  1004. * (word)sram[get_d16_23 (op)]) << 1);
  1005. break;
  1006. case OP_fmuls:
  1007. gen_mul (((sword)(sbyte)sram[get_r16_23 (op)]
  1008. * (sword)(sbyte)sram[get_d16_23 (op)]) << 1);
  1009. break;
  1010. case OP_fmulsu:
  1011. gen_mul (((sword)(word)sram[get_r16_23 (op)]
  1012. * (sword)(sbyte)sram[get_d16_23 (op)]) << 1);
  1013. break;
  1014. case OP_adc:
  1015. case OP_add:
  1016. r = sram[get_r (op)];
  1017. d = get_d (op);
  1018. vd = sram[d];
  1019. res = r + vd + (sram[SREG] & flash[ipc].r);
  1020. sram[d] = res;
  1021. update_flags_add (res, vd, r);
  1022. break;
  1023. case OP_sub:
  1024. d = get_d (op);
  1025. vd = sram[d];
  1026. r = sram[get_r (op)];
  1027. res = vd - r;
  1028. sram[d] = res;
  1029. update_flags_sub (res, vd, r);
  1030. if (res == 0)
  1031. sram[SREG] |= SREG_Z;
  1032. break;
  1033. case OP_sbc:
  1034. {
  1035. byte old = sram[SREG];
  1036. d = get_d (op);
  1037. vd = sram[d];
  1038. r = sram[get_r (op)];
  1039. res = vd - r - (old & SREG_C);
  1040. sram[d] = res;
  1041. update_flags_sub (res, vd, r);
  1042. if (res == 0 && (old & SREG_Z))
  1043. sram[SREG] |= SREG_Z;
  1044. }
  1045. break;
  1046. case OP_subi:
  1047. d = get_d16 (op);
  1048. vd = sram[d];
  1049. r = get_K (op);
  1050. res = vd - r;
  1051. sram[d] = res;
  1052. update_flags_sub (res, vd, r);
  1053. if (res == 0)
  1054. sram[SREG] |= SREG_Z;
  1055. break;
  1056. case OP_sbci:
  1057. {
  1058. byte old = sram[SREG];
  1059. d = get_d16 (op);
  1060. vd = sram[d];
  1061. r = get_K (op);
  1062. res = vd - r - (old & SREG_C);
  1063. sram[d] = res;
  1064. update_flags_sub (res, vd, r);
  1065. if (res == 0 && (old & SREG_Z))
  1066. sram[SREG] |= SREG_Z;
  1067. }
  1068. break;
  1069. case OP_mov:
  1070. sram[get_d (op)] = sram[get_r (op)];
  1071. break;
  1072. case OP_movw:
  1073. d = (op & 0xf0) >> 3;
  1074. r = (op & 0x0f) << 1;
  1075. sram[d] = sram[r];
  1076. sram[d + 1] = sram[r + 1];
  1077. break;
  1078. case OP_out:
  1079. d = get_A (op) + 0x20;
  1080. res = sram[get_d (op)];
  1081. sram[d] = res;
  1082. if (d == STDIO_PORT)
  1083. putchar (res);
  1084. else if (d == EXIT_PORT)
  1085. sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_exited, 0);
  1086. else if (d == ABORT_PORT)
  1087. sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_exited, 1);
  1088. break;
  1089. case OP_in:
  1090. d = get_A (op) + 0x20;
  1091. sram[get_d (op)] = sram[d];
  1092. break;
  1093. case OP_cbi:
  1094. d = get_biA (op) + 0x20;
  1095. sram[d] &= ~(1 << get_b(op));
  1096. break;
  1097. case OP_sbi:
  1098. d = get_biA (op) + 0x20;
  1099. sram[d] |= 1 << get_b(op);
  1100. break;
  1101. case OP_sbic:
  1102. if (!(sram[get_biA (op) + 0x20] & 1 << get_b(op)))
  1103. {
  1104. int l = get_insn_length(pc);
  1105. pc += l;
  1106. cycles += l;
  1107. }
  1108. break;
  1109. case OP_sbis:
  1110. if (sram[get_biA (op) + 0x20] & 1 << get_b(op))
  1111. {
  1112. int l = get_insn_length(pc);
  1113. pc += l;
  1114. cycles += l;
  1115. }
  1116. break;
  1117. case OP_ldi:
  1118. res = get_K (op);
  1119. d = get_d16 (op);
  1120. sram[d] = res;
  1121. break;
  1122. case OP_lds:
  1123. sram[get_d (op)] = sram[flash[pc].op];
  1124. pc++;
  1125. cycles++;
  1126. break;
  1127. case OP_sts:
  1128. sram[flash[pc].op] = sram[get_d (op)];
  1129. pc++;
  1130. cycles++;
  1131. break;
  1132. case OP_cpse:
  1133. if (sram[get_r (op)] == sram[get_d (op)])
  1134. {
  1135. int l = get_insn_length(pc);
  1136. pc += l;
  1137. cycles += l;
  1138. }
  1139. break;
  1140. case OP_cp:
  1141. r = sram[get_r (op)];
  1142. d = sram[get_d (op)];
  1143. res = d - r;
  1144. update_flags_sub (res, d, r);
  1145. if (res == 0)
  1146. sram[SREG] |= SREG_Z;
  1147. break;
  1148. case OP_cpi:
  1149. r = get_K (op);
  1150. d = sram[get_d16 (op)];
  1151. res = d - r;
  1152. update_flags_sub (res, d, r);
  1153. if (res == 0)
  1154. sram[SREG] |= SREG_Z;
  1155. break;
  1156. case OP_cpc:
  1157. {
  1158. byte old = sram[SREG];
  1159. d = sram[get_d (op)];
  1160. r = sram[get_r (op)];
  1161. res = d - r - (old & SREG_C);
  1162. update_flags_sub (res, d, r);
  1163. if (res == 0 && (old & SREG_Z))
  1164. sram[SREG] |= SREG_Z;
  1165. }
  1166. break;
  1167. case OP_brbc:
  1168. if (!(sram[SREG] & flash[ipc].r))
  1169. {
  1170. pc = (pc + get_k (op)) & PC_MASK;
  1171. cycles++;
  1172. }
  1173. break;
  1174. case OP_brbs:
  1175. if (sram[SREG] & flash[ipc].r)
  1176. {
  1177. pc = (pc + get_k (op)) & PC_MASK;
  1178. cycles++;
  1179. }
  1180. break;
  1181. case OP_lpm:
  1182. sram[0] = get_lpm (read_word (REGZ));
  1183. cycles += 2;
  1184. break;
  1185. case OP_lpm_Z:
  1186. sram[get_d (op)] = get_lpm (read_word (REGZ));
  1187. cycles += 2;
  1188. break;
  1189. case OP_lpm_inc_Z:
  1190. sram[get_d (op)] = get_lpm (read_word_post_inc (REGZ));
  1191. cycles += 2;
  1192. break;
  1193. case OP_elpm:
  1194. sram[0] = get_lpm (get_z ());
  1195. cycles += 2;
  1196. break;
  1197. case OP_elpm_Z:
  1198. sram[get_d (op)] = get_lpm (get_z ());
  1199. cycles += 2;
  1200. break;
  1201. case OP_elpm_inc_Z:
  1202. {
  1203. unsigned int z = get_z ();
  1204. sram[get_d (op)] = get_lpm (z);
  1205. z++;
  1206. sram[REGZ_LO] = z;
  1207. sram[REGZ_HI] = z >> 8;
  1208. sram[RAMPZ] = z >> 16;
  1209. }
  1210. cycles += 2;
  1211. break;
  1212. case OP_ld_Z_inc:
  1213. sram[get_d (op)] = sram[read_word_post_inc (REGZ) & SRAM_MASK];
  1214. cycles++;
  1215. break;
  1216. case OP_ld_dec_Z:
  1217. sram[get_d (op)] = sram[read_word_pre_dec (REGZ) & SRAM_MASK];
  1218. cycles++;
  1219. break;
  1220. case OP_ld_X_inc:
  1221. sram[get_d (op)] = sram[read_word_post_inc (REGX) & SRAM_MASK];
  1222. cycles++;
  1223. break;
  1224. case OP_ld_dec_X:
  1225. sram[get_d (op)] = sram[read_word_pre_dec (REGX) & SRAM_MASK];
  1226. cycles++;
  1227. break;
  1228. case OP_ld_Y_inc:
  1229. sram[get_d (op)] = sram[read_word_post_inc (REGY) & SRAM_MASK];
  1230. cycles++;
  1231. break;
  1232. case OP_ld_dec_Y:
  1233. sram[get_d (op)] = sram[read_word_pre_dec (REGY) & SRAM_MASK];
  1234. cycles++;
  1235. break;
  1236. case OP_st_X:
  1237. sram[read_word (REGX) & SRAM_MASK] = sram[get_d (op)];
  1238. cycles++;
  1239. break;
  1240. case OP_st_X_inc:
  1241. sram[read_word_post_inc (REGX) & SRAM_MASK] = sram[get_d (op)];
  1242. cycles++;
  1243. break;
  1244. case OP_st_dec_X:
  1245. sram[read_word_pre_dec (REGX) & SRAM_MASK] = sram[get_d (op)];
  1246. cycles++;
  1247. break;
  1248. case OP_st_Z_inc:
  1249. sram[read_word_post_inc (REGZ) & SRAM_MASK] = sram[get_d (op)];
  1250. cycles++;
  1251. break;
  1252. case OP_st_dec_Z:
  1253. sram[read_word_pre_dec (REGZ) & SRAM_MASK] = sram[get_d (op)];
  1254. cycles++;
  1255. break;
  1256. case OP_st_Y_inc:
  1257. sram[read_word_post_inc (REGY) & SRAM_MASK] = sram[get_d (op)];
  1258. cycles++;
  1259. break;
  1260. case OP_st_dec_Y:
  1261. sram[read_word_pre_dec (REGY) & SRAM_MASK] = sram[get_d (op)];
  1262. cycles++;
  1263. break;
  1264. case OP_std_Y:
  1265. sram[read_word (REGY) + flash[ipc].r] = sram[get_d (op)];
  1266. cycles++;
  1267. break;
  1268. case OP_std_Z:
  1269. sram[read_word (REGZ) + flash[ipc].r] = sram[get_d (op)];
  1270. cycles++;
  1271. break;
  1272. case OP_ldd_Z:
  1273. sram[get_d (op)] = sram[read_word (REGZ) + flash[ipc].r];
  1274. cycles++;
  1275. break;
  1276. case OP_ldd_Y:
  1277. sram[get_d (op)] = sram[read_word (REGY) + flash[ipc].r];
  1278. cycles++;
  1279. break;
  1280. case OP_ld_X:
  1281. sram[get_d (op)] = sram[read_word (REGX) & SRAM_MASK];
  1282. cycles++;
  1283. break;
  1284. case OP_sbiw:
  1285. {
  1286. word wk = get_k6 (op);
  1287. word wres;
  1288. word wr;
  1289. d = get_d24 (op);
  1290. wr = read_word (d);
  1291. wres = wr - wk;
  1292. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  1293. if (wres == 0)
  1294. sram[SREG] |= SREG_Z;
  1295. if (wres & 0x8000)
  1296. sram[SREG] |= SREG_N;
  1297. if (wres & ~wr & 0x8000)
  1298. sram[SREG] |= SREG_C;
  1299. if (~wres & wr & 0x8000)
  1300. sram[SREG] |= SREG_V;
  1301. if (((~wres & wr) ^ wres) & 0x8000)
  1302. sram[SREG] |= SREG_S;
  1303. write_word (d, wres);
  1304. }
  1305. cycles++;
  1306. break;
  1307. case OP_adiw:
  1308. {
  1309. word wk = get_k6 (op);
  1310. word wres;
  1311. word wr;
  1312. d = get_d24 (op);
  1313. wr = read_word (d);
  1314. wres = wr + wk;
  1315. sram[SREG] &= ~(SREG_S | SREG_V | SREG_N | SREG_Z | SREG_C);
  1316. if (wres == 0)
  1317. sram[SREG] |= SREG_Z;
  1318. if (wres & 0x8000)
  1319. sram[SREG] |= SREG_N;
  1320. if (~wres & wr & 0x8000)
  1321. sram[SREG] |= SREG_C;
  1322. if (wres & ~wr & 0x8000)
  1323. sram[SREG] |= SREG_V;
  1324. if (((wres & ~wr) ^ wres) & 0x8000)
  1325. sram[SREG] |= SREG_S;
  1326. write_word (d, wres);
  1327. }
  1328. cycles++;
  1329. break;
  1330. case OP_bad:
  1331. sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_signalled, SIM_SIGILL);
  1332. default:
  1333. sim_engine_halt (CPU_STATE (cpu), cpu, NULL, pc, sim_signalled, SIM_SIGILL);
  1334. }
  1335. }
  1336. void
  1337. sim_engine_run (SIM_DESC sd,
  1338. int next_cpu_nr, /* ignore */
  1339. int nr_cpus, /* ignore */
  1340. int siggnal) /* ignore */
  1341. {
  1342. SIM_CPU *cpu;
  1343. SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  1344. cpu = STATE_CPU (sd, 0);
  1345. while (1)
  1346. {
  1347. step_once (cpu);
  1348. if (sim_events_tick (sd))
  1349. sim_events_process (sd);
  1350. }
  1351. }
  1352. int
  1353. sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
  1354. {
  1355. int osize = size;
  1356. if (addr >= 0 && addr < SRAM_VADDR)
  1357. {
  1358. while (size > 0 && addr < (MAX_AVR_FLASH << 1))
  1359. {
  1360. word val = flash[addr >> 1].op;
  1361. if (addr & 1)
  1362. val = (val & 0xff) | (buffer[0] << 8);
  1363. else
  1364. val = (val & 0xff00) | buffer[0];
  1365. flash[addr >> 1].op = val;
  1366. flash[addr >> 1].code = OP_unknown;
  1367. addr++;
  1368. buffer++;
  1369. size--;
  1370. }
  1371. return osize - size;
  1372. }
  1373. else if (addr >= SRAM_VADDR && addr < SRAM_VADDR + MAX_AVR_SRAM)
  1374. {
  1375. addr -= SRAM_VADDR;
  1376. if (addr + size > MAX_AVR_SRAM)
  1377. size = MAX_AVR_SRAM - addr;
  1378. memcpy (sram + addr, buffer, size);
  1379. return size;
  1380. }
  1381. else
  1382. return 0;
  1383. }
  1384. int
  1385. sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
  1386. {
  1387. int osize = size;
  1388. if (addr >= 0 && addr < SRAM_VADDR)
  1389. {
  1390. while (size > 0 && addr < (MAX_AVR_FLASH << 1))
  1391. {
  1392. word val = flash[addr >> 1].op;
  1393. if (addr & 1)
  1394. val >>= 8;
  1395. *buffer++ = val;
  1396. addr++;
  1397. size--;
  1398. }
  1399. return osize - size;
  1400. }
  1401. else if (addr >= SRAM_VADDR && addr < SRAM_VADDR + MAX_AVR_SRAM)
  1402. {
  1403. addr -= SRAM_VADDR;
  1404. if (addr + size > MAX_AVR_SRAM)
  1405. size = MAX_AVR_SRAM - addr;
  1406. memcpy (buffer, sram + addr, size);
  1407. return size;
  1408. }
  1409. else
  1410. {
  1411. /* Avoid errors. */
  1412. memset (buffer, 0, size);
  1413. return size;
  1414. }
  1415. }
  1416. int
  1417. sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
  1418. {
  1419. if (rn < 32 && length == 1)
  1420. {
  1421. sram[rn] = *memory;
  1422. return 1;
  1423. }
  1424. if (rn == AVR_SREG_REGNUM && length == 1)
  1425. {
  1426. sram[SREG] = *memory;
  1427. return 1;
  1428. }
  1429. if (rn == AVR_SP_REGNUM && length == 2)
  1430. {
  1431. sram[REG_SP] = memory[0];
  1432. sram[REG_SP + 1] = memory[1];
  1433. return 2;
  1434. }
  1435. if (rn == AVR_PC_REGNUM && length == 4)
  1436. {
  1437. pc = (memory[0] >> 1) | (memory[1] << 7)
  1438. | (memory[2] << 15) | (memory[3] << 23);
  1439. pc &= PC_MASK;
  1440. return 4;
  1441. }
  1442. return 0;
  1443. }
  1444. int
  1445. sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
  1446. {
  1447. if (rn < 32 && length == 1)
  1448. {
  1449. *memory = sram[rn];
  1450. return 1;
  1451. }
  1452. if (rn == AVR_SREG_REGNUM && length == 1)
  1453. {
  1454. *memory = sram[SREG];
  1455. return 1;
  1456. }
  1457. if (rn == AVR_SP_REGNUM && length == 2)
  1458. {
  1459. memory[0] = sram[REG_SP];
  1460. memory[1] = sram[REG_SP + 1];
  1461. return 2;
  1462. }
  1463. if (rn == AVR_PC_REGNUM && length == 4)
  1464. {
  1465. memory[0] = pc << 1;
  1466. memory[1] = pc >> 7;
  1467. memory[2] = pc >> 15;
  1468. memory[3] = pc >> 23;
  1469. return 4;
  1470. }
  1471. return 0;
  1472. }
  1473. static sim_cia
  1474. avr_pc_get (sim_cpu *cpu)
  1475. {
  1476. return pc;
  1477. }
  1478. static void
  1479. avr_pc_set (sim_cpu *cpu, sim_cia _pc)
  1480. {
  1481. pc = _pc;
  1482. }
  1483. static void
  1484. free_state (SIM_DESC sd)
  1485. {
  1486. if (STATE_MODULES (sd) != NULL)
  1487. sim_module_uninstall (sd);
  1488. sim_cpu_free_all (sd);
  1489. sim_state_free (sd);
  1490. }
  1491. SIM_DESC
  1492. sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
  1493. {
  1494. int i;
  1495. SIM_DESC sd = sim_state_alloc (kind, cb);
  1496. SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  1497. /* The cpu data is kept in a separately allocated chunk of memory. */
  1498. if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
  1499. {
  1500. free_state (sd);
  1501. return 0;
  1502. }
  1503. STATE_WATCHPOINTS (sd)->pc = &pc;
  1504. STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (pc);
  1505. if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
  1506. {
  1507. free_state (sd);
  1508. return 0;
  1509. }
  1510. /* getopt will print the error message so we just have to exit if this fails.
  1511. FIXME: Hmmm... in the case of gdb we need getopt to call
  1512. print_filtered. */
  1513. if (sim_parse_args (sd, argv) != SIM_RC_OK)
  1514. {
  1515. free_state (sd);
  1516. return 0;
  1517. }
  1518. /* Check for/establish the a reference program image. */
  1519. if (sim_analyze_program (sd,
  1520. (STATE_PROG_ARGV (sd) != NULL
  1521. ? *STATE_PROG_ARGV (sd)
  1522. : NULL), abfd) != SIM_RC_OK)
  1523. {
  1524. free_state (sd);
  1525. return 0;
  1526. }
  1527. /* Configure/verify the target byte order and other runtime
  1528. configuration options. */
  1529. if (sim_config (sd) != SIM_RC_OK)
  1530. {
  1531. sim_module_uninstall (sd);
  1532. return 0;
  1533. }
  1534. if (sim_post_argv_init (sd) != SIM_RC_OK)
  1535. {
  1536. /* Uninstall the modules to avoid memory leaks,
  1537. file descriptor leaks, etc. */
  1538. sim_module_uninstall (sd);
  1539. return 0;
  1540. }
  1541. /* CPU specific initialization. */
  1542. for (i = 0; i < MAX_NR_PROCESSORS; ++i)
  1543. {
  1544. SIM_CPU *cpu = STATE_CPU (sd, i);
  1545. CPU_PC_FETCH (cpu) = avr_pc_get;
  1546. CPU_PC_STORE (cpu) = avr_pc_set;
  1547. }
  1548. /* Clear all the memory. */
  1549. memset (sram, 0, sizeof (sram));
  1550. memset (flash, 0, sizeof (flash));
  1551. return sd;
  1552. }
  1553. void
  1554. sim_close (SIM_DESC sd, int quitting)
  1555. {
  1556. sim_module_uninstall (sd);
  1557. }
  1558. SIM_RC
  1559. sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
  1560. {
  1561. /* Set the PC. */
  1562. if (abfd != NULL)
  1563. pc = bfd_get_start_address (abfd);
  1564. else
  1565. pc = 0;
  1566. if (abfd != NULL)
  1567. avr_pc22 = (bfd_get_mach (abfd) >= bfd_mach_avr6);
  1568. return SIM_RC_OK;
  1569. }