123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850 |
- // icf.cc -- Identical Code Folding.
- //
- // Copyright (C) 2009-2015 Free Software Foundation, Inc.
- // Written by Sriraman Tallam <tmsriram@google.com>.
- // This file is part of gold.
- // This program is free software; you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation; either version 3 of the License, or
- // (at your option) any later version.
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // You should have received a copy of the GNU General Public License
- // along with this program; if not, write to the Free Software
- // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
- // MA 02110-1301, USA.
- // Identical Code Folding Algorithm
- // ----------------------------------
- // Detecting identical functions is done here and the basic algorithm
- // is as follows. A checksum is computed on each foldable section using
- // its contents and relocations. If the symbol name corresponding to
- // a relocation is known it is used to compute the checksum. If the
- // symbol name is not known the stringified name of the object and the
- // section number pointed to by the relocation is used. The checksums
- // are stored as keys in a hash map and a section is identical to some
- // other section if its checksum is already present in the hash map.
- // Checksum collisions are handled by using a multimap and explicitly
- // checking the contents when two sections have the same checksum.
- //
- // However, two functions A and B with identical text but with
- // relocations pointing to different foldable sections can be identical if
- // the corresponding foldable sections to which their relocations point to
- // turn out to be identical. Hence, this checksumming process must be
- // done repeatedly until convergence is obtained. Here is an example for
- // the following case :
- //
- // int funcA () int funcB ()
- // { {
- // return foo(); return goo();
- // } }
- //
- // The functions funcA and funcB are identical if functions foo() and
- // goo() are identical.
- //
- // Hence, as described above, we repeatedly do the checksumming,
- // assigning identical functions to the same group, until convergence is
- // obtained. Now, we have two different ways to do this depending on how
- // we initialize.
- //
- // Algorithm I :
- // -----------
- // We can start with marking all functions as different and repeatedly do
- // the checksumming. This has the advantage that we do not need to wait
- // for convergence. We can stop at any point and correctness will be
- // guaranteed although not all cases would have been found. However, this
- // has a problem that some cases can never be found even if it is run until
- // convergence. Here is an example with mutually recursive functions :
- //
- // int funcA (int a) int funcB (int a)
- // { {
- // if (a == 1) if (a == 1)
- // return 1; return 1;
- // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
- // } }
- //
- // In this example funcA and funcB are identical and one of them could be
- // folded into the other. However, if we start with assuming that funcA
- // and funcB are not identical, the algorithm, even after it is run to
- // convergence, cannot detect that they are identical. It should be noted
- // that even if the functions were self-recursive, Algorithm I cannot catch
- // that they are identical, at least as is.
- //
- // Algorithm II :
- // ------------
- // Here we start with marking all functions as identical and then repeat
- // the checksumming until convergence. This can detect the above case
- // mentioned above. It can detect all cases that Algorithm I can and more.
- // However, the caveat is that it has to be run to convergence. It cannot
- // be stopped arbitrarily like Algorithm I as correctness cannot be
- // guaranteed. Algorithm II is not implemented.
- //
- // Algorithm I is used because experiments show that about three
- // iterations are more than enough to achieve convergence. Algorithm I can
- // handle recursive calls if it is changed to use a special common symbol
- // for recursive relocs. This seems to be the most common case that
- // Algorithm I could not catch as is. Mutually recursive calls are not
- // frequent and Algorithm I wins because of its ability to be stopped
- // arbitrarily.
- //
- // Caveat with using function pointers :
- // ------------------------------------
- //
- // Programs using function pointer comparisons/checks should use function
- // folding with caution as the result of such comparisons could be different
- // when folding takes place. This could lead to unexpected run-time
- // behaviour.
- //
- // Safe Folding :
- // ------------
- //
- // ICF in safe mode folds only ctors and dtors if their function pointers can
- // never be taken. Also, for X86-64, safe folding uses the relocation
- // type to determine if a function's pointer is taken or not and only folds
- // functions whose pointers are definitely not taken.
- //
- // Caveat with safe folding :
- // ------------------------
- //
- // This applies only to x86_64.
- //
- // Position independent executables are created from PIC objects (compiled
- // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
- // relocation types for function pointer taken and a call are the same.
- // Now, it is not always possible to tell if an object used in the link of
- // a pie executable is a PIC object or a PIE object. Hence, for pie
- // executables, using relocation types to disambiguate function pointers is
- // currently disabled.
- //
- // Further, it is not correct to use safe folding to build non-pie
- // executables using PIC/PIE objects. PIC/PIE objects have different
- // relocation types for function pointers than non-PIC objects, and the
- // current implementation of safe folding does not handle those relocation
- // types. Hence, if used, functions whose pointers are taken could still be
- // folded causing unpredictable run-time behaviour if the pointers were used
- // in comparisons.
- //
- //
- //
- // How to run : --icf=[safe|all|none]
- // Optional parameters : --icf-iterations <num> --print-icf-sections
- //
- // Performance : Less than 20 % link-time overhead on industry strength
- // applications. Up to 6 % text size reductions.
- #include "gold.h"
- #include "object.h"
- #include "gc.h"
- #include "icf.h"
- #include "symtab.h"
- #include "libiberty.h"
- #include "demangle.h"
- #include "elfcpp.h"
- #include "int_encoding.h"
- namespace gold
- {
- // This function determines if a section or a group of identical
- // sections has unique contents. Such unique sections or groups can be
- // declared final and need not be processed any further.
- // Parameters :
- // ID_SECTION : Vector mapping a section index to a Section_id pair.
- // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
- // sections is already known to be unique.
- // SECTION_CONTENTS : Contains the section's text and relocs to sections
- // that cannot be folded. SECTION_CONTENTS are NULL
- // implies that this function is being called for the
- // first time before the first iteration of icf.
- static void
- preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
- std::vector<bool>* is_secn_or_group_unique,
- std::vector<std::string>* section_contents)
- {
- Unordered_map<uint32_t, unsigned int> uniq_map;
- std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
- uniq_map_insert;
- for (unsigned int i = 0; i < id_section.size(); i++)
- {
- if ((*is_secn_or_group_unique)[i])
- continue;
- uint32_t cksum;
- Section_id secn = id_section[i];
- section_size_type plen;
- if (section_contents == NULL)
- {
- // Lock the object so we can read from it. This is only called
- // single-threaded from queue_middle_tasks, so it is OK to lock.
- // Unfortunately we have no way to pass in a Task token.
- const Task* dummy_task = reinterpret_cast<const Task*>(-1);
- Task_lock_obj<Object> tl(dummy_task, secn.first);
- const unsigned char* contents;
- contents = secn.first->section_contents(secn.second,
- &plen,
- false);
- cksum = xcrc32(contents, plen, 0xffffffff);
- }
- else
- {
- const unsigned char* contents_array = reinterpret_cast
- <const unsigned char*>((*section_contents)[i].c_str());
- cksum = xcrc32(contents_array, (*section_contents)[i].length(),
- 0xffffffff);
- }
- uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
- if (uniq_map_insert.second)
- {
- (*is_secn_or_group_unique)[i] = true;
- }
- else
- {
- (*is_secn_or_group_unique)[i] = false;
- (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
- }
- }
- }
- // This returns the buffer containing the section's contents, both
- // text and relocs. Relocs are differentiated as those pointing to
- // sections that could be folded and those that cannot. Only relocs
- // pointing to sections that could be folded are recomputed on
- // subsequent invocations of this function.
- // Parameters :
- // FIRST_ITERATION : true if it is the first invocation.
- // SECN : Section for which contents are desired.
- // SECTION_NUM : Unique section number of this section.
- // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
- // to ICF sections.
- // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
- // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
- // sections.
- static std::string
- get_section_contents(bool first_iteration,
- const Section_id& secn,
- unsigned int section_num,
- unsigned int* num_tracked_relocs,
- Symbol_table* symtab,
- const std::vector<unsigned int>& kept_section_id,
- std::vector<std::string>* section_contents)
- {
- // Lock the object so we can read from it. This is only called
- // single-threaded from queue_middle_tasks, so it is OK to lock.
- // Unfortunately we have no way to pass in a Task token.
- const Task* dummy_task = reinterpret_cast<const Task*>(-1);
- Task_lock_obj<Object> tl(dummy_task, secn.first);
- section_size_type plen;
- const unsigned char* contents = NULL;
- if (first_iteration)
- contents = secn.first->section_contents(secn.second, &plen, false);
- // The buffer to hold all the contents including relocs. A checksum
- // is then computed on this buffer.
- std::string buffer;
- std::string icf_reloc_buffer;
- if (num_tracked_relocs)
- *num_tracked_relocs = 0;
- Icf::Reloc_info_list& reloc_info_list =
- symtab->icf()->reloc_info_list();
- Icf::Reloc_info_list::iterator it_reloc_info_list =
- reloc_info_list.find(secn);
- buffer.clear();
- icf_reloc_buffer.clear();
- // Process relocs and put them into the buffer.
- if (it_reloc_info_list != reloc_info_list.end())
- {
- Icf::Sections_reachable_info &v =
- (it_reloc_info_list->second).section_info;
- // Stores the information of the symbol pointed to by the reloc.
- const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
- // Stores the addend and the symbol value.
- Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
- // Stores the offset of the reloc.
- const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
- const Icf::Reloc_addend_size_info &reloc_addend_size_info =
- (it_reloc_info_list->second).reloc_addend_size_info;
- Icf::Sections_reachable_info::iterator it_v = v.begin();
- Icf::Symbol_info::const_iterator it_s = s.begin();
- Icf::Addend_info::iterator it_a = a.begin();
- Icf::Offset_info::const_iterator it_o = o.begin();
- Icf::Reloc_addend_size_info::const_iterator it_addend_size =
- reloc_addend_size_info.begin();
- for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
- {
- if (first_iteration
- && it_v->first != NULL)
- {
- Symbol_location loc;
- loc.object = it_v->first;
- loc.shndx = it_v->second;
- loc.offset = convert_types<off_t, long long>(it_a->first
- + it_a->second);
- // Look through function descriptors
- parameters->target().function_location(&loc);
- if (loc.shndx != it_v->second)
- {
- it_v->second = loc.shndx;
- // Modify symvalue/addend to the code entry.
- it_a->first = loc.offset;
- it_a->second = 0;
- }
- }
- // ADDEND_STR stores the symbol value and addend and offset,
- // each at most 16 hex digits long. it_a points to a pair
- // where first is the symbol value and second is the
- // addend.
- char addend_str[50];
- // It would be nice if we could use format macros in inttypes.h
- // here but there are not in ISO/IEC C++ 1998.
- snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
- static_cast<long long>((*it_a).first),
- static_cast<long long>((*it_a).second),
- static_cast<unsigned long long>(*it_o));
- // If the symbol pointed to by the reloc is not in an ordinary
- // section or if the symbol type is not FROM_OBJECT, then the
- // object is NULL.
- if (it_v->first == NULL)
- {
- if (first_iteration)
- {
- // If the symbol name is available, use it.
- if ((*it_s) != NULL)
- buffer.append((*it_s)->name());
- // Append the addend.
- buffer.append(addend_str);
- buffer.append("@");
- }
- continue;
- }
- Section_id reloc_secn(it_v->first, it_v->second);
- // If this reloc turns back and points to the same section,
- // like a recursive call, use a special symbol to mark this.
- if (reloc_secn.first == secn.first
- && reloc_secn.second == secn.second)
- {
- if (first_iteration)
- {
- buffer.append("R");
- buffer.append(addend_str);
- buffer.append("@");
- }
- continue;
- }
- Icf::Uniq_secn_id_map& section_id_map =
- symtab->icf()->section_to_int_map();
- Icf::Uniq_secn_id_map::iterator section_id_map_it =
- section_id_map.find(reloc_secn);
- bool is_sym_preemptible = (*it_s != NULL
- && !(*it_s)->is_from_dynobj()
- && !(*it_s)->is_undefined()
- && (*it_s)->is_preemptible());
- if (!is_sym_preemptible
- && section_id_map_it != section_id_map.end())
- {
- // This is a reloc to a section that might be folded.
- if (num_tracked_relocs)
- (*num_tracked_relocs)++;
- char kept_section_str[10];
- unsigned int secn_id = section_id_map_it->second;
- snprintf(kept_section_str, sizeof(kept_section_str), "%u",
- kept_section_id[secn_id]);
- if (first_iteration)
- {
- buffer.append("ICF_R");
- buffer.append(addend_str);
- }
- icf_reloc_buffer.append(kept_section_str);
- // Append the addend.
- icf_reloc_buffer.append(addend_str);
- icf_reloc_buffer.append("@");
- }
- else
- {
- // This is a reloc to a section that cannot be folded.
- // Process it only in the first iteration.
- if (!first_iteration)
- continue;
- uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
- // This reloc points to a merge section. Hash the
- // contents of this section.
- if ((secn_flags & elfcpp::SHF_MERGE) != 0
- && parameters->target().can_icf_inline_merge_sections())
- {
- uint64_t entsize =
- (it_v->first)->section_entsize(it_v->second);
- long long offset = it_a->first;
- unsigned long long addend = it_a->second;
- // Ignoring the addend when it is a negative value. See the
- // comments in Merged_symbol_value::Value in object.h.
- if (addend < 0xffffff00)
- offset = offset + addend;
- // For SHT_REL relocation sections, the addend is stored in the
- // text section at the relocation offset.
- uint64_t reloc_addend_value = 0;
- const unsigned char* reloc_addend_ptr =
- contents + static_cast<unsigned long long>(*it_o);
- switch(*it_addend_size)
- {
- case 0:
- {
- break;
- }
- case 1:
- {
- reloc_addend_value =
- read_from_pointer<8>(reloc_addend_ptr);
- break;
- }
- case 2:
- {
- reloc_addend_value =
- read_from_pointer<16>(reloc_addend_ptr);
- break;
- }
- case 4:
- {
- reloc_addend_value =
- read_from_pointer<32>(reloc_addend_ptr);
- break;
- }
- case 8:
- {
- reloc_addend_value =
- read_from_pointer<64>(reloc_addend_ptr);
- break;
- }
- default:
- gold_unreachable();
- }
- offset = offset + reloc_addend_value;
- section_size_type secn_len;
- const unsigned char* str_contents =
- (it_v->first)->section_contents(it_v->second,
- &secn_len,
- false) + offset;
- if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
- {
- // String merge section.
- const char* str_char =
- reinterpret_cast<const char*>(str_contents);
- switch(entsize)
- {
- case 1:
- {
- buffer.append(str_char);
- break;
- }
- case 2:
- {
- const uint16_t* ptr_16 =
- reinterpret_cast<const uint16_t*>(str_char);
- unsigned int strlen_16 = 0;
- // Find the NULL character.
- while(*(ptr_16 + strlen_16) != 0)
- strlen_16++;
- buffer.append(str_char, strlen_16 * 2);
- }
- break;
- case 4:
- {
- const uint32_t* ptr_32 =
- reinterpret_cast<const uint32_t*>(str_char);
- unsigned int strlen_32 = 0;
- // Find the NULL character.
- while(*(ptr_32 + strlen_32) != 0)
- strlen_32++;
- buffer.append(str_char, strlen_32 * 4);
- }
- break;
- default:
- gold_unreachable();
- }
- }
- else
- {
- // Use the entsize to determine the length.
- buffer.append(reinterpret_cast<const
- char*>(str_contents),
- entsize);
- }
- buffer.append("@");
- }
- else if ((*it_s) != NULL)
- {
- // If symbol name is available use that.
- buffer.append((*it_s)->name());
- // Append the addend.
- buffer.append(addend_str);
- buffer.append("@");
- }
- else
- {
- // Symbol name is not available, like for a local symbol,
- // use object and section id.
- buffer.append(it_v->first->name());
- char secn_id[10];
- snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
- buffer.append(secn_id);
- // Append the addend.
- buffer.append(addend_str);
- buffer.append("@");
- }
- }
- }
- }
- if (first_iteration)
- {
- buffer.append("Contents = ");
- buffer.append(reinterpret_cast<const char*>(contents), plen);
- // Store the section contents that dont change to avoid recomputing
- // during the next call to this function.
- (*section_contents)[section_num] = buffer;
- }
- else
- {
- gold_assert(buffer.empty());
- // Reuse the contents computed in the previous iteration.
- buffer.append((*section_contents)[section_num]);
- }
- buffer.append(icf_reloc_buffer);
- return buffer;
- }
- // This function computes a checksum on each section to detect and form
- // groups of identical sections. The first iteration does this for all
- // sections.
- // Further iterations do this only for the kept sections from each group to
- // determine if larger groups of identical sections could be formed. The
- // first section in each group is the kept section for that group.
- //
- // CRC32 is the checksumming algorithm and can have collisions. That is,
- // two sections with different contents can have the same checksum. Hence,
- // a multimap is used to maintain more than one group of checksum
- // identical sections. A section is added to a group only after its
- // contents are explicitly compared with the kept section of the group.
- //
- // Parameters :
- // ITERATION_NUM : Invocation instance of this function.
- // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
- // to ICF sections.
- // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
- // ID_SECTION : Vector mapping a section to an unique integer.
- // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
- // sections is already known to be unique.
- // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
- // sections.
- static bool
- match_sections(unsigned int iteration_num,
- Symbol_table* symtab,
- std::vector<unsigned int>* num_tracked_relocs,
- std::vector<unsigned int>* kept_section_id,
- const std::vector<Section_id>& id_section,
- std::vector<bool>* is_secn_or_group_unique,
- std::vector<std::string>* section_contents)
- {
- Unordered_multimap<uint32_t, unsigned int> section_cksum;
- std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
- Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
- bool converged = true;
- if (iteration_num == 1)
- preprocess_for_unique_sections(id_section,
- is_secn_or_group_unique,
- NULL);
- else
- preprocess_for_unique_sections(id_section,
- is_secn_or_group_unique,
- section_contents);
- std::vector<std::string> full_section_contents;
- for (unsigned int i = 0; i < id_section.size(); i++)
- {
- full_section_contents.push_back("");
- if ((*is_secn_or_group_unique)[i])
- continue;
- Section_id secn = id_section[i];
- std::string this_secn_contents;
- uint32_t cksum;
- if (iteration_num == 1)
- {
- unsigned int num_relocs = 0;
- this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
- symtab, (*kept_section_id),
- section_contents);
- (*num_tracked_relocs)[i] = num_relocs;
- }
- else
- {
- if ((*kept_section_id)[i] != i)
- {
- // This section is already folded into something. See
- // if it should point to a different kept section.
- unsigned int kept_section = (*kept_section_id)[i];
- if (kept_section != (*kept_section_id)[kept_section])
- {
- (*kept_section_id)[i] = (*kept_section_id)[kept_section];
- }
- continue;
- }
- this_secn_contents = get_section_contents(false, secn, i, NULL,
- symtab, (*kept_section_id),
- section_contents);
- }
- const unsigned char* this_secn_contents_array =
- reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
- cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
- 0xffffffff);
- size_t count = section_cksum.count(cksum);
- if (count == 0)
- {
- // Start a group with this cksum.
- section_cksum.insert(std::make_pair(cksum, i));
- full_section_contents[i] = this_secn_contents;
- }
- else
- {
- key_range = section_cksum.equal_range(cksum);
- Unordered_multimap<uint32_t, unsigned int>::iterator it;
- // Search all the groups with this cksum for a match.
- for (it = key_range.first; it != key_range.second; ++it)
- {
- unsigned int kept_section = it->second;
- if (full_section_contents[kept_section].length()
- != this_secn_contents.length())
- continue;
- if (memcmp(full_section_contents[kept_section].c_str(),
- this_secn_contents.c_str(),
- this_secn_contents.length()) != 0)
- continue;
- (*kept_section_id)[i] = kept_section;
- converged = false;
- break;
- }
- if (it == key_range.second)
- {
- // Create a new group for this cksum.
- section_cksum.insert(std::make_pair(cksum, i));
- full_section_contents[i] = this_secn_contents;
- }
- }
- // If there are no relocs to foldable sections do not process
- // this section any further.
- if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
- (*is_secn_or_group_unique)[i] = true;
- }
- return converged;
- }
- // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
- // This function returns true if the section name is that of a ctor or a dtor.
- static bool
- is_function_ctor_or_dtor(const std::string& section_name)
- {
- const char* mangled_func_name = strrchr(section_name.c_str(), '.');
- gold_assert(mangled_func_name != NULL);
- if ((is_prefix_of("._ZN", mangled_func_name)
- || is_prefix_of("._ZZ", mangled_func_name))
- && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
- || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
- {
- return true;
- }
- return false;
- }
- // This is the main ICF function called in gold.cc. This does the
- // initialization and calls match_sections repeatedly (twice by default)
- // which computes the crc checksums and detects identical functions.
- void
- Icf::find_identical_sections(const Input_objects* input_objects,
- Symbol_table* symtab)
- {
- unsigned int section_num = 0;
- std::vector<unsigned int> num_tracked_relocs;
- std::vector<bool> is_secn_or_group_unique;
- std::vector<std::string> section_contents;
- const Target& target = parameters->target();
- // Decide which sections are possible candidates first.
- for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
- p != input_objects->relobj_end();
- ++p)
- {
- // Lock the object so we can read from it. This is only called
- // single-threaded from queue_middle_tasks, so it is OK to lock.
- // Unfortunately we have no way to pass in a Task token.
- const Task* dummy_task = reinterpret_cast<const Task*>(-1);
- Task_lock_obj<Object> tl(dummy_task, *p);
- for (unsigned int i = 0;i < (*p)->shnum(); ++i)
- {
- const std::string section_name = (*p)->section_name(i);
- if (!is_section_foldable_candidate(section_name))
- continue;
- if (!(*p)->is_section_included(i))
- continue;
- if (parameters->options().gc_sections()
- && symtab->gc()->is_section_garbage(*p, i))
- continue;
- // With --icf=safe, check if the mangled function name is a ctor
- // or a dtor. The mangled function name can be obtained from the
- // section name by stripping the section prefix.
- if (parameters->options().icf_safe_folding()
- && !is_function_ctor_or_dtor(section_name)
- && (!target.can_check_for_function_pointers()
- || section_has_function_pointers(*p, i)))
- {
- continue;
- }
- this->id_section_.push_back(Section_id(*p, i));
- this->section_id_[Section_id(*p, i)] = section_num;
- this->kept_section_id_.push_back(section_num);
- num_tracked_relocs.push_back(0);
- is_secn_or_group_unique.push_back(false);
- section_contents.push_back("");
- section_num++;
- }
- }
- unsigned int num_iterations = 0;
- // Default number of iterations to run ICF is 2.
- unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
- ? parameters->options().icf_iterations()
- : 2;
- bool converged = false;
- while (!converged && (num_iterations < max_iterations))
- {
- num_iterations++;
- converged = match_sections(num_iterations, symtab,
- &num_tracked_relocs, &this->kept_section_id_,
- this->id_section_, &is_secn_or_group_unique,
- §ion_contents);
- }
- if (parameters->options().print_icf_sections())
- {
- if (converged)
- gold_info(_("%s: ICF Converged after %u iteration(s)"),
- program_name, num_iterations);
- else
- gold_info(_("%s: ICF stopped after %u iteration(s)"),
- program_name, num_iterations);
- }
- // Unfold --keep-unique symbols.
- for (options::String_set::const_iterator p =
- parameters->options().keep_unique_begin();
- p != parameters->options().keep_unique_end();
- ++p)
- {
- const char* name = p->c_str();
- Symbol* sym = symtab->lookup(name);
- if (sym == NULL)
- {
- gold_warning(_("Could not find symbol %s to unfold\n"), name);
- }
- else if (sym->source() == Symbol::FROM_OBJECT
- && !sym->object()->is_dynamic())
- {
- Relobj* obj = static_cast<Relobj*>(sym->object());
- bool is_ordinary;
- unsigned int shndx = sym->shndx(&is_ordinary);
- if (is_ordinary)
- {
- this->unfold_section(obj, shndx);
- }
- }
- }
- this->icf_ready();
- }
- // Unfolds the section denoted by OBJ and SHNDX if folded.
- void
- Icf::unfold_section(Relobj* obj, unsigned int shndx)
- {
- Section_id secn(obj, shndx);
- Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
- if (it == this->section_id_.end())
- return;
- unsigned int section_num = it->second;
- unsigned int kept_section_id = this->kept_section_id_[section_num];
- if (kept_section_id != section_num)
- this->kept_section_id_[section_num] = section_num;
- }
- // This function determines if the section corresponding to the
- // given object and index is folded based on if the kept section
- // is different from this section.
- bool
- Icf::is_section_folded(Relobj* obj, unsigned int shndx)
- {
- Section_id secn(obj, shndx);
- Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
- if (it == this->section_id_.end())
- return false;
- unsigned int section_num = it->second;
- unsigned int kept_section_id = this->kept_section_id_[section_num];
- return kept_section_id != section_num;
- }
- // This function returns the folded section for the given section.
- Section_id
- Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
- {
- Section_id dup_secn(dup_obj, dup_shndx);
- Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
- gold_assert(it != this->section_id_.end());
- unsigned int section_num = it->second;
- unsigned int kept_section_id = this->kept_section_id_[section_num];
- Section_id folded_section = this->id_section_[kept_section_id];
- return folded_section;
- }
- } // End of namespace gold.
|