123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- SUBROUTINE DGECO(A,LDA,N,IPVT,RCOND,Z)
- INTEGER LDA,N,IPVT(*)
- DOUBLE PRECISION A(LDA,*),Z(*)
- DOUBLE PRECISION RCOND
- C
- C DGECO FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION
- C AND ESTIMATES THE CONDITION OF THE MATRIX.
- C
- C IF RCOND IS NOT NEEDED, DGEFA IS SLIGHTLY FASTER.
- C TO SOLVE A*X = B , FOLLOW DGECO BY DGESL.
- C TO COMPUTE INVERSE(A)*C , FOLLOW DGECO BY DGESL.
- C TO COMPUTE DETERMINANT(A) , FOLLOW DGECO BY DGEDI.
- C TO COMPUTE INVERSE(A) , FOLLOW DGECO BY DGEDI.
- C
- C ON ENTRY
- C
- C A DOUBLE PRECISION(LDA, N)
- C THE MATRIX TO BE FACTORED.
- C
- C LDA INTEGER
- C THE LEADING DIMENSION OF THE ARRAY A .
- C
- C N INTEGER
- C THE ORDER OF THE MATRIX A .
- C
- C ON RETURN
- C
- C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
- C WHICH WERE USED TO OBTAIN IT.
- C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
- C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
- C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
- C
- C IPVT INTEGER(N)
- C AN INTEGER VECTOR OF PIVOT INDICES.
- C
- C RCOND DOUBLE PRECISION
- C AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
- C FOR THE SYSTEM A*X = B , RELATIVE PERTURBATIONS
- C IN A AND B OF SIZE EPSILON MAY CAUSE
- C RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
- C IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION
- C 1.0 + RCOND .EQ. 1.0
- C IS TRUE, THEN A MAY BE SINGULAR TO WORKING
- C PRECISION. IN PARTICULAR, RCOND IS ZERO IF
- C EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
- C UNDERFLOWS.
- C
- C Z DOUBLE PRECISION(N)
- C A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
- C IF A IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
- C AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C LINPACK. THIS VERSION DATED 08/14/78 .
- C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
- C
- C SUBROUTINES AND FUNCTIONS
- C
- C LINPACK DGEFA
- C BLAS DAXPY,DDOT,DSCAL,DASUM
- C FORTRAN DABS,DMAX1,DSIGN
- C
- C INTERNAL VARIABLES
- C
- DOUBLE PRECISION DDOT,EK,T,WK,WKM
- DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
- INTEGER INFO,J,K,KB,KP1,L
- C
- C
- C COMPUTE 1-NORM OF A
- C
- ANORM = 0.0D0
- DO 10 J = 1, N
- ANORM = DMAX1(ANORM,DASUM(N,A(1,J),1))
- 10 CONTINUE
- C
- C FACTOR
- C
- CALL DGEFA(A,LDA,N,IPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
- C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
- C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
- C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
- C OVERFLOW.
- C
- C SOLVE TRANS(U)*W = E
- C
- EK = 1.0D0
- DO 20 J = 1, N
- Z(J) = 0.0D0
- 20 CONTINUE
- DO 100 K = 1, N
- IF (Z(K) .NE. 0.0D0) EK = DSIGN(EK,-Z(K))
- IF (DABS(EK-Z(K)) .LE. DABS(A(K,K))) GO TO 30
- S = DABS(A(K,K))/DABS(EK-Z(K))
- CALL DSCAL(N,S,Z,1)
- EK = S*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = DABS(WK)
- SM = DABS(WKM)
- IF (A(K,K) .EQ. 0.0D0) GO TO 40
- WK = WK/A(K,K)
- WKM = WKM/A(K,K)
- GO TO 50
- 40 CONTINUE
- WK = 1.0D0
- WKM = 1.0D0
- 50 CONTINUE
- KP1 = K + 1
- IF (KP1 .GT. N) GO TO 90
- DO 60 J = KP1, N
- SM = SM + DABS(Z(J)+WKM*A(K,J))
- Z(J) = Z(J) + WK*A(K,J)
- S = S + DABS(Z(J))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- T = WKM - WK
- WK = WKM
- DO 70 J = KP1, N
- Z(J) = Z(J) + T*A(K,J)
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- C SOLVE TRANS(L)*Y = W
- C
- DO 120 KB = 1, N
- K = N + 1 - KB
- IF (K .LT. N) Z(K) = Z(K) + DDOT(N-K,A(K+1,K),1,Z(K+1),1)
- IF (DABS(Z(K)) .LE. 1.0D0) GO TO 110
- S = 1.0D0/DABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- 110 CONTINUE
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- 120 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- YNORM = 1.0D0
- C
- C SOLVE L*V = Y
- C
- DO 140 K = 1, N
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- IF (K .LT. N) CALL DAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
- IF (DABS(Z(K)) .LE. 1.0D0) GO TO 130
- S = 1.0D0/DABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 130 CONTINUE
- 140 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE U*Z = V
- C
- DO 160 KB = 1, N
- K = N + 1 - KB
- IF (DABS(Z(K)) .LE. DABS(A(K,K))) GO TO 150
- S = DABS(A(K,K))/DABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 150 CONTINUE
- IF (A(K,K) .NE. 0.0D0) Z(K) = Z(K)/A(K,K)
- IF (A(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
- T = -Z(K)
- CALL DAXPY(K-1,T,A(1,K),1,Z(1),1)
- 160 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
- RETURN
- END
|