title: Installation instructions x-toc-enable: true ...
This section relates to installing libreboot on supported targets.
NOTE: if running flashrom -p internal
for software based flashing, and you
get an error related to /dev/mem
access, you should reboot with
iomem=relaxed
kernel parameter before running flashrom, or use a kernel that
has CONFIG_STRICT_DEVMEM
not enabled.
libreboot flashing can be risky business. Please ensure that you have external flashing equipment, in case anything goes wrong. The general rule of thumb with firmware is this: if it's non-free, replace it, but if you're already running free firmware and it works nicely for you, you do not need to update it. However, you might want to tweak it or try out newer releases of libreboot if they have bug fixes for your board, and/or new security fixes.
If you're already running libre firmware on your board, you should decide for sure whether you wish to risk it. See changelogs on the release announcements via the news page and decide for yourself.
E.g. ThinkPad X220, X230, T440p, W541.
The lbmk build system automatically fetches required blobs for these
boards, when building, and sets them up properly, e.g. me_cleaner
is used. The same process is also available in a script, which can
insert them into ROM images.
If you're using release ROMs, these blobs are missing, and must be added. See: ivy_has_common.md.
NOTE: regardless of init type, on desktops, an external/add-on GPU can always be used. On laptop hardware in libreboot, libgfxinit will always be used. On desktop/server hardware, if available, libgfxinit will also always be used by default (but in that setup, SeaBIOS can be used if you want to use an add-on graphics card, e.g. on KCMA-D8, KGPE-D16, GA-G41M-ES2L)
This means that on desktop hardware such as KCMA-D8, KGPE-D16, G43T-AM3, GA-G41M-ES2L and others, you can use either the internal GPU or an add-on PCI-E graphics card. Simply use a ROM image that starts with SeaBIOS, and you can use both. On desktop/server hardware, libgfxinit simply means that you CAN use the internal graphics chip, but you don't have to; external add-on GPUs will also still work! However, if libgfxinit is enabled, that disables coreboot from loading/executing PCI option ROMs which means you MUST use SeaBIOS if you wish to use the add-on cards!
In this setup, on supported systems, coreboot's own native video initialization
code is used. This is referred to generically as libgfxinit, which is coreboot's
library in 3rdparty/libgfxinit
but not all boards with native video
initialization use libgfxinit; some of them are using coreboot's older style
of video initialization method, written purely in C.
high resolution coreboot framebuffer used on startup
int10h text mode is used on startup.
NOTE: no configs in libreboot are currently available that use this method.
With this method, coreboot is finding, loading and executing a VGA option ROM for your graphics hardware. This would not be done on laptops, because that implies supplying non-free binary blobs in libreboot, so this setup would only ever be provided on desktop hardware where no GPU exists or where it is desirable for you to use an external/add-on graphics card
high resolution VESA framebuffer used on startup
int10h text mode is used on startup
int10h text mode startup is implied here.
In this setup, coreboot is neither implementing libgfxinit / native graphics initialization nor is it finding/loading/executing VGA option ROMs. In this setup, SeaBIOS would most likely be used for that.
The normal
setup is supported in the libreboot build system, but not
currently used. It is there for desktop hardware that will be added in the
future, where those desktop boards do not have an onboard GPU and therefore an
add-on GPU is always used..
ROM images with just grub
in the file name will start first with the GNU GRUB
payload. They may or may not also provide other payloads in the menu, such as
memtest86+, SeaBIOS, Tianacore and so on.
ROM images with just seabios
in the file name will start first with the
SeaBIOS payload. They will only contain SeaBIOS, but may also contain memtest as
an option in the boot menu.
ROM images that have seabios_withgrub
in the file name start with SeaBIOS
first, but also have GNU GRUB available in the boot menu when you press ESC.
DEFUNCT
This build option is obsolete, and should not be used. It was deleted
in lbmk revision e1bbdadc9584291cf062660d67128e9f17ab788e
.
It was believed, in earlier theory, that VGA ROM initialisation could be used in SeaBIOS and then SeaBIOS boots into a GRUB payload (built for coreboot), where the initialisation would continue to be used, but it didn't work that way.
It's best to use PC GRUB (normal BIOS GRUB), but compile it into a floppy
image to insert inside CBFS, to then be executed by SeaBIOS. This is referred
to as SeaGRUB by the Libreboot project, and it would be quite useful
for desktop users, but it's largely irrelevant on laptops where
coreboot's own libgfxinit
is usually available (or the option ROM is
easy to extract from vendor firmware and insert).
Where direct bare metal GRUB is desired, but you use a desktop system with an add-on graphics card, you must extract the VGA ROM for your card and insert it into the coreboot ROM, for coreboot itself to execute. This will require custom configuration on your part, and it is thus beyond the scope of the Libreboot project, in context of lbmk (automated build system).
Some older Libreboot releases included ROM images built using this option,
and those specific ROM images (seabios_grubfirst
ones) should not be
used; you should only use seabios_grubfirst
or seabios
, in most
scenarios, if SeaBIOS is required.
For most desktop users, if running an external graphics card, it's easier to simply boot in text mode with a SeaBIOS payload and use only that. This will Just Work with almost all graphics cards, allowing you to use an operating system with a full display and (drivers permitting) full 2D/3D acceleration.
Refer to the hardware compatibility page
You can change the MAC address in flash, on these machines. See: nvmutil documentation
The MAC address is stored in a region of the boot flashed called GbE NVM which is short for gigabit ethernet non-volatile memory. Refer to the following article:
ich9utils documentation (you can also use nvmutil, see link above)
libreboot puts a default MAC address in the available ROM images, but this is a generic MAC address and it's identical on every ROM image. Technically, you can use it but if you encounter other libreboot users on the same ethernet switch, using the same physical network as you, you will encounter a MAC address conflict.
NOTE: R500 thinkpads do not have an Intel gigabit ethernet NIC, so on that laptop you can just flash the default ROM and you do not have to worry.
There are also some Intel X4X platforms that use an ICH10 southbridge, supported in libreboot, but these are flashed in a descriptorless setup, which means that the MAC address is irrelevant (either there will be an Intel PHY module that is now unusable, and you use an add-on card, or it doesn't use an Intel PHY module and the onboard NIC is usable).
On all mainboards is a built-in programmer, which can read, erase and rewrite the boot flash. However, it is not always usable by default. For example, it may be configured to restrict write privileges by the host CPU.
In some situations, the host CPU can rewrite/erase/dump the boot flash.
This is called internal flashing. This means that you will run software,
namely flashrom
, to read/erase/write the contents of the boot flash from a
running operating system on the target device.
NOTE: please also read the sections further down this page. On some systems, external flashing is required. This means that you power the system down and use a special tool that connects to and reprograms the boot flash.
NOTE: in some cases, external flashing is possible but special steps are required. This depends on your mainboard. Again, please read this page carefully.
You can simply take any ROM image from the libreboot project, and flash it. Boot a GNU+Linux distribution on the target device, and install flashrom.
In some cases, this is not possible or there are other considerations. Please read this section carefully.
Use this to find out:
flashrom -p internal
In the output will be information pertaining to your boot flash.
How to read the current chip contents:
sudo flashrom -p internal:laptop=force_I_want_a_brick,boardmismatch=force -r dump.bin
You should still make several dumps, even if you're flashing internally, to
ensure that you get the same checksums. Check each dump using sha1sum
How to erase and rewrite the chip contents:
sudo flashrom -p internal:laptop=force_I_want_a_brick,boardmismatch=force -w libreboot.rom
If you are re-flashing a GM45+ICH9M laptop (e.g. ThinkPad X200/X200S/X200T, T400, T500, R400, W500 etc - but not R500), you should run the ich9gen utility to preserve your mac address. Please read the ich9utils documentation: /docs/install/ich9utils.html
NOTE: force_I_want_a_brick
is not scary. Do not be scared! This merely disables
the safety checks in flashrom. Flashrom and coreboot change a lot, over the years,
and sometimes it's necessary to use this option. If you're scared, then just
follow the above instructions, but remove that option. So, just use -p internal
.
If that doesn't work, next try -p internal:boardmismatch=force
. If that doesn't
work, try -p internal:boardmismatch=force,laptop=force_I_want_a_brick
. So long
as you ensure you're using the correct ROM for your machine, it will be safe
to run flashrom. These extra options just disable the safetyl checks in flashrom.
There is nothing to worry about.
If successful, it will either say VERIFIED
or it will say that the chip
contents are identical to the requested image.
NOTE: there are exceptions where the above is not possible. Read about them in the sections below:
If you're running one of these, it cannot be flashed internally if you're still running the non-free Lenovo BIOS firmware.
See notes further down on this page. We have guides for specific thinkpads, related to disassembly and reassembly so that you can access the flash.
Please also see notes about the built-in MAC address inside the boot flash, for the onboard NIC (ethernet one); not relevant on R500, which doesn't use an Intel NIC.
D410PT is more or less the same board as D510MO, but we would like more info
about this board. If you have a D410PT mainboard, please contact the libreboot
project via IRC and ping leah
before you flash it. When you do so, please
reference this paragraph on this web page.
Ignore this section. Internal flashing is possible, but there are two chips and you must flash both chips. Refer to the guide:\ Gigabyte GA-G41M-ES2L installation guide
This laptop requires external flashing. Remove the mainboard and refer to the external flashing guide; if libreboot is already running, you can flash internally.
MacBook2,1 can be flashed internally.
Simply boot GNU+Linux with the default vendor firmware, and flash it internally, but before you do: take a push pin, remove the metal pin, and superglue the plastic part to the chip. Then remove the chip after you booting your GNU+Linux system. Install a new chip, and flash that.
This board uses LPC flash in a PLCC32 socket. This coreboot page shows an example of the push pin as a proof of concept: http://www.coreboot.org/Developer_Manual/Tools#Chip_removal_tools
You can just get bucts from the libreboot project, same thing for the patched flashrom. In the Libreboot 20160907 release, there is a utility archive, which has statically compiled executables. They still work just fine on modern systems, and they can be used for this purpose.
Here are a list of targets:
Download and build flashrom, using the instructions
on the Git page, and download the bucts
software using the
notes on that very same page.
You can replace Lenovo BIOS with libreboot, using flashrom running on the host CPU. However, there are some considerations.
Firstly, make sure that the yellow CMOS battery is installed, and functioning correctly. You could check the voltage. The battery is a CR2032 coin cell and it should be providing a 3V signal. You should check this while it is connected to the board, because this will give a more accurate reading (if the battery is weak, it will have severe voltage drop when there is any load on it, which there will be. This coincell powers the real-time clock and CMOS memory).
Lenovo BIOS restricts write access, but there is a weakness in it. With a specially patched flashrom binary, you can easily flash it but the top 64KiB region of the boot flash, containing your bootblock, cannot be flashed just yet. However, there is a register called the Backup Control or BUC register and in that register is a status bit called Top Swap or TS.
There are 2 bootblocks possible. The other bootblock is below the upper
64KiB one, which can't be flashed, but the lower one can. By using bucts, you
can set the machine to boot using that lower 64KiB bootblock, which is
read-write. You do this by setting the BUC.TS register to 1, using the bucts
program referenced below.
The libreboot ROM images already have the upper 64KiB bootblock copied to the lower one, so you don't have to worry about copying it yourself.
If you build flashrom using the libreboot build system, there will be three binaries:
flashrom
flashrom_i945_sst
flashrom_i945_mx
It's these last two binaries that you should use. Now compile bucts (just
run make
in the bucts source directory).
Run the bucts tool:
sudo ./bucts 1
Ensure that your CMOS battery is connected too. Now you must determine whether
you have Macronix or SST. An X60/T60 thinkpad will have either an SST or a
Macronix chip. The Macronix chip will have "MX" written on the chip. You will
use flashrom_i945_sst
for the SST chip, and flashrom_i945_mx
for the
Macronix chip.
Now run flashrom (for SST):
sudo ./flashrom_i945_sst -p internal -w coreboot.rom
Or Macronix:
sudo ./flashrom_i945_mx -p internal -w coreboot.rom
NOTE: you can just run both. One of them will succeed. It is perfectly harmless to run both versions of flashrom. In fact, you should do so!
You'll see a lot of errors. This is normal. You should see something like:
Reading old flash chip contents... done.
Erasing and writing flash chip... spi_block_erase_20 failed during command execution at address 0x0
Reading current flash chip contents... done. Looking for another erase function.
spi_block_erase_52 failed during command execution at address 0x0
Reading current flash chip contents... done. Looking for another erase function.
Transaction error!
spi_block_erase_d8 failed during command execution at address 0x1f0000
Reading current flash chip contents... done. Looking for another erase function.
spi_chip_erase_60 failed during command execution
Reading current flash chip contents... done. Looking for another erase function.
spi_chip_erase_c7 failed during command execution
Looking for another erase function.
No usable erase functions left.
FAILED!
Uh oh. Erase/write failed. Checking if anything has changed.
Reading current flash chip contents... done.
Apparently at least some data has changed.
Your flash chip is in an unknown state.
If you see this, rejoice! It means that the flash was successful. Please do not panic. Shut down now, and wait a few seconds, then turn back on again.
WARNING: if flashrom complains about /dev/mem
access, please
run sudo ./bucts 0
. If flashrom is complaining about /dev/mem
, it means
that you have CONFIG_STRICT_DEVMEM
enabled in your kernel. Reboot with the
following kernel parameter added in your bootloader: iomem=relaxed
and try
again with the above instructions. DO NOT continue until the above works, and
you see the expected flashrom output as indicated above.
If you did run flashrom and it failed to flash, but you set bucts to 1 and shut down, don't worry. Just remove the yellow coin-cell battery (it's underneath the keyboard, connected to the mainboard), wait a minute or two, reconnect the coin-cell and try again from scratch. In this instance, if flashrom didn't do anything, and didn't flash anything, it means you still have Lenovo BIOS but if bucts is set to 1, you can flush it and set it back to 0. BUC.TS is stored in volatile memory, powered by that CR2032 coin-cell battery.
Assuming that everything went well:
Flash the ROM for a second time. For this second flashing attempt, the upper 64KiB bootblock is now read-write. Use the unpatched flashrom binary:
sudo ./flashrom -p internal -w libreboot.rom
To reset bucts, do this:
sudo ./bucts 0
ONLY set bucts back to 0 if you're sure that the upper 64KiB bootblock is flashed. It is flashed if flashrom said VERIFIED when running the above command.
If it said VERIFIED, shut down. If it didn't say VERIFIED, make sure bucts is still set to 1, and consult the libreboot project on IRC for advice, and avoid shutting down your system until you get help.
If all went well, libreboot should now be booting and you should be able to boot into your operating system.
If you messed up, there are external flashing instructions. See main navigation menu on this page. These "external" instructions teach you how to flash externally, using special equipment (requires disassembling your laptop and removing the mainboard).
In many situations, the host CPU is restricted from rewriting/erasing/dumping the boot flash. In this situations, you must re-flash the chip (containing the boot firmware) externally. This is called external flashing.
DO NOT buy CH341A! Read the above link, which explains why you shouldn't use it. CH341A will damage your flash chip, and other components on your mainboard.
Refer to the following article:\ Externally rewrite 25xx NOR flash via SPI protocol
The KFSN4-DRE has an LPC chip. Most people have been flashing these internally, hot-swapping the chip out after boot, preserving the original chip, and using flashrom on a new chip as described above.
TODO: Document PLCC32 (LPC) flashing. The FlexyICE has been used to flash these chips, but it is hard to find now. A custom flasher may be made such as flashrom serprog stm32 or teensy flasher
iMac5,2 is essentially the same board as Macbook2,1, and it is compatible with libreboot.
Refer to the following article:\ Macbook2,1 and MacBook1,1 installation guide
iMac5,2 isn't documented but you can find the flash chip on that board quite easily. See the generic flashing guide:\ Externally rewrite 25xx NOR flash via SPI protocol
Refer to the following article:\ Gigabyte GA-G41M-ES2L
Refer to the following article:\ Intel D510MO and D410PT boards
Refer to the following article:\ Intel D945GCLF
Refer to the following article:\ ASUS KGPE-D16
Refer to the following article:\ ASUS KCMA-D8
Refer to the following article:\ ASUS Chromebook C201
Refer to the following article:\ ThinkPad X60
Refer to the following article:\ ThinkPad X60 Tablet
Refer to the following article:\ ThinkPad T60
Refer to the following article:\ ThinkPad X200
Software-wise, identical to regular X200 but SMD rework skills are required. You must de-solder the default flash chip, and replace it with another one.
Refer to the following article:\ 25xx NOR flashing guide
That guide, linked above, has instructions for how to deal with these machines.
Refer to the following article:\ ThinkPad T400
Software-wise, identical to regular T400 but SMD rework skills are required. You must de-solder the default flash chip, and replace it with another one.
Refer to the following article:\ 25xx NOR flashing guide
Refer to the following article:\ ThinkPad R400
These two laptops have identical mainboard, except for a few minor changes.
Refer to the following article:\ ThinkPad T500/W500
Refer to the following laptop:\ ThinkPad R500
If using release ROMs, neutered ME must be inserted. Refer to the info below.
Similar to X230 but there's only 1 flash. Intel ME image must be inserted if using release ROMs. See: guide (says ivy/haswell but the insert script for ME works with sandybridge aswell).
If using release ROMs, neutered ME must be inserted. Refer to the above guide.
NOTE: Internal flashing is also possible, on this machine, from vendor firmware, but it's still recommended to use a clip and a SPI flasher. However, follow internal X230 flashing from Lenovo firmware if you wish.
Refer to the ivybridge/haswell common guide. for how to make the rom image usable for external flashing (with a clip). If using release ROMs, you must insert the neutered ME. Look at the info on that page.
Read board documentation for disassembly.
Refer to the ivybridge/haswell common guide. for how to make the rom image usable for external flashing.
Read board documentation for disassembly. (same instructions as X230, for this purpose of external flashing, but full disassembly will differ slightly)
If using release ROMs, neutered ME must be inserted. Refer to the above guide.
Refer to the ivybridge/haswell common guide. for how to make the rom image usable for external flashing.
Read board documentation for disassembly.
If using release ROMs, neutered ME must be inserted. Refer to the above guide.