kern_event.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104
  1. /* $OpenBSD: kern_event.c,v 1.61 2014/12/19 05:59:21 tedu Exp $ */
  2. /*-
  3. * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  16. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  18. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  21. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  22. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  23. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  24. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  25. * SUCH DAMAGE.
  26. *
  27. * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
  28. */
  29. #include <sys/param.h>
  30. #include <sys/systm.h>
  31. #include <sys/kernel.h>
  32. #include <sys/proc.h>
  33. #include <sys/malloc.h>
  34. #include <sys/unistd.h>
  35. #include <sys/file.h>
  36. #include <sys/filedesc.h>
  37. #include <sys/fcntl.h>
  38. #include <sys/selinfo.h>
  39. #include <sys/queue.h>
  40. #include <sys/event.h>
  41. #include <sys/eventvar.h>
  42. #include <sys/ktrace.h>
  43. #include <sys/pool.h>
  44. #include <sys/protosw.h>
  45. #include <sys/socket.h>
  46. #include <sys/socketvar.h>
  47. #include <sys/stat.h>
  48. #include <sys/uio.h>
  49. #include <sys/mount.h>
  50. #include <sys/poll.h>
  51. #include <sys/syscallargs.h>
  52. #include <sys/timeout.h>
  53. int kqueue_scan(struct kqueue *kq, int maxevents,
  54. struct kevent *ulistp, const struct timespec *timeout,
  55. struct proc *p, int *retval);
  56. int kqueue_read(struct file *fp, off_t *poff, struct uio *uio,
  57. struct ucred *cred);
  58. int kqueue_write(struct file *fp, off_t *poff, struct uio *uio,
  59. struct ucred *cred);
  60. int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
  61. struct proc *p);
  62. int kqueue_poll(struct file *fp, int events, struct proc *p);
  63. int kqueue_kqfilter(struct file *fp, struct knote *kn);
  64. int kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
  65. int kqueue_close(struct file *fp, struct proc *p);
  66. void kqueue_wakeup(struct kqueue *kq);
  67. struct fileops kqueueops = {
  68. kqueue_read,
  69. kqueue_write,
  70. kqueue_ioctl,
  71. kqueue_poll,
  72. kqueue_kqfilter,
  73. kqueue_stat,
  74. kqueue_close
  75. };
  76. void knote_attach(struct knote *kn, struct filedesc *fdp);
  77. void knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp);
  78. void knote_enqueue(struct knote *kn);
  79. void knote_dequeue(struct knote *kn);
  80. #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
  81. #define knote_free(kn) pool_put(&knote_pool, (kn))
  82. void filt_kqdetach(struct knote *kn);
  83. int filt_kqueue(struct knote *kn, long hint);
  84. int filt_procattach(struct knote *kn);
  85. void filt_procdetach(struct knote *kn);
  86. int filt_proc(struct knote *kn, long hint);
  87. int filt_fileattach(struct knote *kn);
  88. void filt_timerexpire(void *knx);
  89. int filt_timerattach(struct knote *kn);
  90. void filt_timerdetach(struct knote *kn);
  91. int filt_timer(struct knote *kn, long hint);
  92. void filt_seltruedetach(struct knote *kn);
  93. struct filterops kqread_filtops =
  94. { 1, NULL, filt_kqdetach, filt_kqueue };
  95. struct filterops proc_filtops =
  96. { 0, filt_procattach, filt_procdetach, filt_proc };
  97. struct filterops file_filtops =
  98. { 1, filt_fileattach, NULL, NULL };
  99. struct filterops timer_filtops =
  100. { 0, filt_timerattach, filt_timerdetach, filt_timer };
  101. struct pool knote_pool;
  102. struct pool kqueue_pool;
  103. int kq_ntimeouts = 0;
  104. int kq_timeoutmax = (4 * 1024);
  105. #define KNOTE_ACTIVATE(kn) do { \
  106. kn->kn_status |= KN_ACTIVE; \
  107. if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
  108. knote_enqueue(kn); \
  109. } while(0)
  110. #define KN_HASHSIZE 64 /* XXX should be tunable */
  111. #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
  112. extern struct filterops sig_filtops;
  113. #ifdef notyet
  114. extern struct filterops aio_filtops;
  115. #endif
  116. /*
  117. * Table for for all system-defined filters.
  118. */
  119. struct filterops *sysfilt_ops[] = {
  120. &file_filtops, /* EVFILT_READ */
  121. &file_filtops, /* EVFILT_WRITE */
  122. NULL, /*&aio_filtops,*/ /* EVFILT_AIO */
  123. &file_filtops, /* EVFILT_VNODE */
  124. &proc_filtops, /* EVFILT_PROC */
  125. &sig_filtops, /* EVFILT_SIGNAL */
  126. &timer_filtops, /* EVFILT_TIMER */
  127. };
  128. void KQREF(struct kqueue *);
  129. void KQRELE(struct kqueue *);
  130. void
  131. KQREF(struct kqueue *kq)
  132. {
  133. ++kq->kq_refs;
  134. }
  135. void
  136. KQRELE(struct kqueue *kq)
  137. {
  138. if (--kq->kq_refs == 0) {
  139. pool_put(&kqueue_pool, kq);
  140. }
  141. }
  142. void kqueue_init(void);
  143. void
  144. kqueue_init(void)
  145. {
  146. pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, PR_WAITOK,
  147. "kqueuepl", NULL);
  148. pool_init(&knote_pool, sizeof(struct knote), 0, 0, PR_WAITOK,
  149. "knotepl", NULL);
  150. }
  151. int
  152. filt_fileattach(struct knote *kn)
  153. {
  154. struct file *fp = kn->kn_fp;
  155. return ((*fp->f_ops->fo_kqfilter)(fp, kn));
  156. }
  157. int
  158. kqueue_kqfilter(struct file *fp, struct knote *kn)
  159. {
  160. struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
  161. if (kn->kn_filter != EVFILT_READ)
  162. return (EINVAL);
  163. kn->kn_fop = &kqread_filtops;
  164. SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
  165. return (0);
  166. }
  167. void
  168. filt_kqdetach(struct knote *kn)
  169. {
  170. struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
  171. SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
  172. }
  173. /*ARGSUSED*/
  174. int
  175. filt_kqueue(struct knote *kn, long hint)
  176. {
  177. struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
  178. kn->kn_data = kq->kq_count;
  179. return (kn->kn_data > 0);
  180. }
  181. int
  182. filt_procattach(struct knote *kn)
  183. {
  184. struct process *pr;
  185. pr = prfind(kn->kn_id);
  186. if (pr == NULL)
  187. return (ESRCH);
  188. /* exiting processes can't be specified */
  189. if (pr->ps_flags & PS_EXITING)
  190. return (ESRCH);
  191. /*
  192. * Fail if it's not owned by you, or the last exec gave us
  193. * setuid/setgid privs (unless you're root).
  194. */
  195. if (pr != curproc->p_p &&
  196. (pr->ps_ucred->cr_ruid != curproc->p_ucred->cr_ruid ||
  197. (pr->ps_flags & PS_SUGID)) && suser(curproc, 0) != 0)
  198. return (EACCES);
  199. kn->kn_ptr.p_process = pr;
  200. kn->kn_flags |= EV_CLEAR; /* automatically set */
  201. /*
  202. * internal flag indicating registration done by kernel
  203. */
  204. if (kn->kn_flags & EV_FLAG1) {
  205. kn->kn_data = kn->kn_sdata; /* ppid */
  206. kn->kn_fflags = NOTE_CHILD;
  207. kn->kn_flags &= ~EV_FLAG1;
  208. }
  209. /* XXX lock the proc here while adding to the list? */
  210. SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
  211. return (0);
  212. }
  213. /*
  214. * The knote may be attached to a different process, which may exit,
  215. * leaving nothing for the knote to be attached to. So when the process
  216. * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
  217. * it will be deleted when read out. However, as part of the knote deletion,
  218. * this routine is called, so a check is needed to avoid actually performing
  219. * a detach, because the original process does not exist any more.
  220. */
  221. void
  222. filt_procdetach(struct knote *kn)
  223. {
  224. struct process *pr = kn->kn_ptr.p_process;
  225. if (kn->kn_status & KN_DETACHED)
  226. return;
  227. /* XXX locking? this might modify another process. */
  228. SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
  229. }
  230. int
  231. filt_proc(struct knote *kn, long hint)
  232. {
  233. u_int event;
  234. /*
  235. * mask off extra data
  236. */
  237. event = (u_int)hint & NOTE_PCTRLMASK;
  238. /*
  239. * if the user is interested in this event, record it.
  240. */
  241. if (kn->kn_sfflags & event)
  242. kn->kn_fflags |= event;
  243. /*
  244. * process is gone, so flag the event as finished and remove it
  245. * from the process's klist
  246. */
  247. if (event == NOTE_EXIT) {
  248. struct process *pr = kn->kn_ptr.p_process;
  249. kn->kn_status |= KN_DETACHED;
  250. kn->kn_flags |= (EV_EOF | EV_ONESHOT);
  251. kn->kn_data = pr->ps_mainproc->p_xstat;
  252. SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
  253. return (1);
  254. }
  255. /*
  256. * process forked, and user wants to track the new process,
  257. * so attach a new knote to it, and immediately report an
  258. * event with the parent's pid.
  259. */
  260. if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
  261. struct kevent kev;
  262. int error;
  263. /*
  264. * register knote with new process.
  265. */
  266. kev.ident = hint & NOTE_PDATAMASK; /* pid */
  267. kev.filter = kn->kn_filter;
  268. kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
  269. kev.fflags = kn->kn_sfflags;
  270. kev.data = kn->kn_id; /* parent */
  271. kev.udata = kn->kn_kevent.udata; /* preserve udata */
  272. error = kqueue_register(kn->kn_kq, &kev, NULL);
  273. if (error)
  274. kn->kn_fflags |= NOTE_TRACKERR;
  275. }
  276. return (kn->kn_fflags != 0);
  277. }
  278. void
  279. filt_timerexpire(void *knx)
  280. {
  281. struct knote *kn = knx;
  282. struct timeval tv;
  283. int tticks;
  284. kn->kn_data++;
  285. KNOTE_ACTIVATE(kn);
  286. if ((kn->kn_flags & EV_ONESHOT) == 0) {
  287. tv.tv_sec = kn->kn_sdata / 1000;
  288. tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
  289. tticks = tvtohz(&tv);
  290. timeout_add((struct timeout *)kn->kn_hook, tticks);
  291. }
  292. }
  293. /*
  294. * data contains amount of time to sleep, in milliseconds
  295. */
  296. int
  297. filt_timerattach(struct knote *kn)
  298. {
  299. struct timeout *to;
  300. struct timeval tv;
  301. int tticks;
  302. if (kq_ntimeouts > kq_timeoutmax)
  303. return (ENOMEM);
  304. kq_ntimeouts++;
  305. tv.tv_sec = kn->kn_sdata / 1000;
  306. tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
  307. tticks = tvtohz(&tv);
  308. kn->kn_flags |= EV_CLEAR; /* automatically set */
  309. to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
  310. timeout_set(to, filt_timerexpire, kn);
  311. timeout_add(to, tticks);
  312. kn->kn_hook = to;
  313. return (0);
  314. }
  315. void
  316. filt_timerdetach(struct knote *kn)
  317. {
  318. struct timeout *to;
  319. to = (struct timeout *)kn->kn_hook;
  320. timeout_del(to);
  321. free(to, M_KEVENT, sizeof(*to));
  322. kq_ntimeouts--;
  323. }
  324. int
  325. filt_timer(struct knote *kn, long hint)
  326. {
  327. return (kn->kn_data != 0);
  328. }
  329. /*
  330. * filt_seltrue:
  331. *
  332. * This filter "event" routine simulates seltrue().
  333. */
  334. int
  335. filt_seltrue(struct knote *kn, long hint)
  336. {
  337. /*
  338. * We don't know how much data can be read/written,
  339. * but we know that it *can* be. This is about as
  340. * good as select/poll does as well.
  341. */
  342. kn->kn_data = 0;
  343. return (1);
  344. }
  345. /*
  346. * This provides full kqfilter entry for device switch tables, which
  347. * has same effect as filter using filt_seltrue() as filter method.
  348. */
  349. void
  350. filt_seltruedetach(struct knote *kn)
  351. {
  352. /* Nothing to do */
  353. }
  354. const struct filterops seltrue_filtops =
  355. { 1, NULL, filt_seltruedetach, filt_seltrue };
  356. int
  357. seltrue_kqfilter(dev_t dev, struct knote *kn)
  358. {
  359. switch (kn->kn_filter) {
  360. case EVFILT_READ:
  361. case EVFILT_WRITE:
  362. kn->kn_fop = &seltrue_filtops;
  363. break;
  364. default:
  365. return (EINVAL);
  366. }
  367. /* Nothing more to do */
  368. return (0);
  369. }
  370. int
  371. sys_kqueue(struct proc *p, void *v, register_t *retval)
  372. {
  373. struct filedesc *fdp = p->p_fd;
  374. struct kqueue *kq;
  375. struct file *fp;
  376. int fd, error;
  377. fdplock(fdp);
  378. error = falloc(p, &fp, &fd);
  379. fdpunlock(fdp);
  380. if (error)
  381. return (error);
  382. fp->f_flag = FREAD | FWRITE;
  383. fp->f_type = DTYPE_KQUEUE;
  384. fp->f_ops = &kqueueops;
  385. kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
  386. TAILQ_INIT(&kq->kq_head);
  387. fp->f_data = kq;
  388. KQREF(kq);
  389. *retval = fd;
  390. if (fdp->fd_knlistsize < 0)
  391. fdp->fd_knlistsize = 0; /* this process has a kq */
  392. kq->kq_fdp = fdp;
  393. FILE_SET_MATURE(fp, p);
  394. return (0);
  395. }
  396. int
  397. sys_kevent(struct proc *p, void *v, register_t *retval)
  398. {
  399. struct filedesc* fdp = p->p_fd;
  400. struct sys_kevent_args /* {
  401. syscallarg(int) fd;
  402. syscallarg(const struct kevent *) changelist;
  403. syscallarg(int) nchanges;
  404. syscallarg(struct kevent *) eventlist;
  405. syscallarg(int) nevents;
  406. syscallarg(const struct timespec *) timeout;
  407. } */ *uap = v;
  408. struct kevent *kevp;
  409. struct kqueue *kq;
  410. struct file *fp;
  411. struct timespec ts;
  412. int i, n, nerrors, error;
  413. if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL ||
  414. (fp->f_type != DTYPE_KQUEUE))
  415. return (EBADF);
  416. FREF(fp);
  417. if (SCARG(uap, timeout) != NULL) {
  418. error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
  419. if (error)
  420. goto done;
  421. #ifdef KTRACE
  422. if (KTRPOINT(p, KTR_STRUCT))
  423. ktrreltimespec(p, &ts);
  424. #endif
  425. SCARG(uap, timeout) = &ts;
  426. }
  427. kq = (struct kqueue *)fp->f_data;
  428. nerrors = 0;
  429. while (SCARG(uap, nchanges) > 0) {
  430. n = SCARG(uap, nchanges) > KQ_NEVENTS
  431. ? KQ_NEVENTS : SCARG(uap, nchanges);
  432. error = copyin(SCARG(uap, changelist), kq->kq_kev,
  433. n * sizeof(struct kevent));
  434. if (error)
  435. goto done;
  436. for (i = 0; i < n; i++) {
  437. kevp = &kq->kq_kev[i];
  438. kevp->flags &= ~EV_SYSFLAGS;
  439. error = kqueue_register(kq, kevp, p);
  440. if (error) {
  441. if (SCARG(uap, nevents) != 0) {
  442. kevp->flags = EV_ERROR;
  443. kevp->data = error;
  444. copyout(kevp, SCARG(uap, eventlist),
  445. sizeof(*kevp));
  446. SCARG(uap, eventlist)++;
  447. SCARG(uap, nevents)--;
  448. nerrors++;
  449. } else {
  450. goto done;
  451. }
  452. }
  453. }
  454. SCARG(uap, nchanges) -= n;
  455. SCARG(uap, changelist) += n;
  456. }
  457. if (nerrors) {
  458. *retval = nerrors;
  459. error = 0;
  460. goto done;
  461. }
  462. KQREF(kq);
  463. FRELE(fp, p);
  464. error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
  465. SCARG(uap, timeout), p, &n);
  466. KQRELE(kq);
  467. *retval = n;
  468. return (error);
  469. done:
  470. FRELE(fp, p);
  471. return (error);
  472. }
  473. int
  474. kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
  475. {
  476. struct filedesc *fdp = kq->kq_fdp;
  477. struct filterops *fops = NULL;
  478. struct file *fp = NULL;
  479. struct knote *kn = NULL;
  480. int s, error = 0;
  481. if (kev->filter < 0) {
  482. if (kev->filter + EVFILT_SYSCOUNT < 0)
  483. return (EINVAL);
  484. fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
  485. }
  486. if (fops == NULL) {
  487. /*
  488. * XXX
  489. * filter attach routine is responsible for ensuring that
  490. * the identifier can be attached to it.
  491. */
  492. return (EINVAL);
  493. }
  494. if (fops->f_isfd) {
  495. /* validate descriptor */
  496. if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
  497. return (EBADF);
  498. FREF(fp);
  499. if (kev->ident < fdp->fd_knlistsize) {
  500. SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
  501. if (kq == kn->kn_kq &&
  502. kev->filter == kn->kn_filter)
  503. break;
  504. }
  505. } else {
  506. if (fdp->fd_knhashmask != 0) {
  507. struct klist *list;
  508. list = &fdp->fd_knhash[
  509. KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
  510. SLIST_FOREACH(kn, list, kn_link)
  511. if (kev->ident == kn->kn_id &&
  512. kq == kn->kn_kq &&
  513. kev->filter == kn->kn_filter)
  514. break;
  515. }
  516. }
  517. if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
  518. error = ENOENT;
  519. goto done;
  520. }
  521. /*
  522. * kn now contains the matching knote, or NULL if no match
  523. */
  524. if (kev->flags & EV_ADD) {
  525. if (kn == NULL) {
  526. kn = knote_alloc();
  527. if (kn == NULL) {
  528. error = ENOMEM;
  529. goto done;
  530. }
  531. kn->kn_fp = fp;
  532. kn->kn_kq = kq;
  533. kn->kn_fop = fops;
  534. /*
  535. * apply reference count to knote structure, and
  536. * do not release it at the end of this routine.
  537. */
  538. fp = NULL;
  539. kn->kn_sfflags = kev->fflags;
  540. kn->kn_sdata = kev->data;
  541. kev->fflags = 0;
  542. kev->data = 0;
  543. kn->kn_kevent = *kev;
  544. knote_attach(kn, fdp);
  545. if ((error = fops->f_attach(kn)) != 0) {
  546. knote_drop(kn, p, fdp);
  547. goto done;
  548. }
  549. } else {
  550. /*
  551. * The user may change some filter values after the
  552. * initial EV_ADD, but doing so will not reset any
  553. * filters which have already been triggered.
  554. */
  555. kn->kn_sfflags = kev->fflags;
  556. kn->kn_sdata = kev->data;
  557. kn->kn_kevent.udata = kev->udata;
  558. }
  559. s = splhigh();
  560. if (kn->kn_fop->f_event(kn, 0))
  561. KNOTE_ACTIVATE(kn);
  562. splx(s);
  563. } else if (kev->flags & EV_DELETE) {
  564. kn->kn_fop->f_detach(kn);
  565. knote_drop(kn, p, p->p_fd);
  566. goto done;
  567. }
  568. if ((kev->flags & EV_DISABLE) &&
  569. ((kn->kn_status & KN_DISABLED) == 0)) {
  570. s = splhigh();
  571. kn->kn_status |= KN_DISABLED;
  572. splx(s);
  573. }
  574. if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
  575. s = splhigh();
  576. kn->kn_status &= ~KN_DISABLED;
  577. if ((kn->kn_status & KN_ACTIVE) &&
  578. ((kn->kn_status & KN_QUEUED) == 0))
  579. knote_enqueue(kn);
  580. splx(s);
  581. }
  582. done:
  583. if (fp != NULL)
  584. FRELE(fp, p);
  585. return (error);
  586. }
  587. int
  588. kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
  589. const struct timespec *tsp, struct proc *p, int *retval)
  590. {
  591. struct kevent *kevp;
  592. struct timeval atv, rtv, ttv;
  593. struct knote *kn, marker;
  594. int s, count, timeout, nkev = 0, error = 0;
  595. count = maxevents;
  596. if (count == 0)
  597. goto done;
  598. if (tsp != NULL) {
  599. TIMESPEC_TO_TIMEVAL(&atv, tsp);
  600. if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
  601. /* No timeout, just poll */
  602. timeout = -1;
  603. goto start;
  604. }
  605. if (itimerfix(&atv)) {
  606. error = EINVAL;
  607. goto done;
  608. }
  609. timeout = atv.tv_sec > 24 * 60 * 60 ?
  610. 24 * 60 * 60 * hz : tvtohz(&atv);
  611. getmicrouptime(&rtv);
  612. timeradd(&atv, &rtv, &atv);
  613. } else {
  614. atv.tv_sec = 0;
  615. atv.tv_usec = 0;
  616. timeout = 0;
  617. }
  618. goto start;
  619. retry:
  620. if (atv.tv_sec || atv.tv_usec) {
  621. getmicrouptime(&rtv);
  622. if (timercmp(&rtv, &atv, >=))
  623. goto done;
  624. ttv = atv;
  625. timersub(&ttv, &rtv, &ttv);
  626. timeout = ttv.tv_sec > 24 * 60 * 60 ?
  627. 24 * 60 * 60 * hz : tvtohz(&ttv);
  628. }
  629. start:
  630. if (kq->kq_state & KQ_DYING) {
  631. error = EBADF;
  632. goto done;
  633. }
  634. kevp = kq->kq_kev;
  635. s = splhigh();
  636. if (kq->kq_count == 0) {
  637. if (timeout < 0) {
  638. error = EWOULDBLOCK;
  639. } else {
  640. kq->kq_state |= KQ_SLEEP;
  641. error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
  642. }
  643. splx(s);
  644. if (error == 0)
  645. goto retry;
  646. /* don't restart after signals... */
  647. if (error == ERESTART)
  648. error = EINTR;
  649. else if (error == EWOULDBLOCK)
  650. error = 0;
  651. goto done;
  652. }
  653. TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
  654. while (count) {
  655. kn = TAILQ_FIRST(&kq->kq_head);
  656. TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
  657. if (kn == &marker) {
  658. splx(s);
  659. if (count == maxevents)
  660. goto retry;
  661. goto done;
  662. }
  663. if (kn->kn_status & KN_DISABLED) {
  664. kn->kn_status &= ~KN_QUEUED;
  665. kq->kq_count--;
  666. continue;
  667. }
  668. if ((kn->kn_flags & EV_ONESHOT) == 0 &&
  669. kn->kn_fop->f_event(kn, 0) == 0) {
  670. kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
  671. kq->kq_count--;
  672. continue;
  673. }
  674. *kevp = kn->kn_kevent;
  675. kevp++;
  676. nkev++;
  677. if (kn->kn_flags & EV_ONESHOT) {
  678. kn->kn_status &= ~KN_QUEUED;
  679. kq->kq_count--;
  680. splx(s);
  681. kn->kn_fop->f_detach(kn);
  682. knote_drop(kn, p, p->p_fd);
  683. s = splhigh();
  684. } else if (kn->kn_flags & EV_CLEAR) {
  685. kn->kn_data = 0;
  686. kn->kn_fflags = 0;
  687. kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
  688. kq->kq_count--;
  689. } else {
  690. TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
  691. }
  692. count--;
  693. if (nkev == KQ_NEVENTS) {
  694. splx(s);
  695. error = copyout(&kq->kq_kev, ulistp,
  696. sizeof(struct kevent) * nkev);
  697. ulistp += nkev;
  698. nkev = 0;
  699. kevp = kq->kq_kev;
  700. s = splhigh();
  701. if (error)
  702. break;
  703. }
  704. }
  705. TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
  706. splx(s);
  707. done:
  708. if (nkev != 0)
  709. error = copyout(&kq->kq_kev, ulistp,
  710. sizeof(struct kevent) * nkev);
  711. *retval = maxevents - count;
  712. return (error);
  713. }
  714. /*
  715. * XXX
  716. * This could be expanded to call kqueue_scan, if desired.
  717. */
  718. /*ARGSUSED*/
  719. int
  720. kqueue_read(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
  721. {
  722. return (ENXIO);
  723. }
  724. /*ARGSUSED*/
  725. int
  726. kqueue_write(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
  727. {
  728. return (ENXIO);
  729. }
  730. /*ARGSUSED*/
  731. int
  732. kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
  733. {
  734. return (ENOTTY);
  735. }
  736. /*ARGSUSED*/
  737. int
  738. kqueue_poll(struct file *fp, int events, struct proc *p)
  739. {
  740. struct kqueue *kq = (struct kqueue *)fp->f_data;
  741. int revents = 0;
  742. int s = splhigh();
  743. if (events & (POLLIN | POLLRDNORM)) {
  744. if (kq->kq_count) {
  745. revents |= events & (POLLIN | POLLRDNORM);
  746. } else {
  747. selrecord(p, &kq->kq_sel);
  748. kq->kq_state |= KQ_SEL;
  749. }
  750. }
  751. splx(s);
  752. return (revents);
  753. }
  754. /*ARGSUSED*/
  755. int
  756. kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
  757. {
  758. struct kqueue *kq = (struct kqueue *)fp->f_data;
  759. memset(st, 0, sizeof(*st));
  760. st->st_size = kq->kq_count;
  761. st->st_blksize = sizeof(struct kevent);
  762. st->st_mode = S_IFIFO;
  763. return (0);
  764. }
  765. /*ARGSUSED*/
  766. int
  767. kqueue_close(struct file *fp, struct proc *p)
  768. {
  769. struct kqueue *kq = (struct kqueue *)fp->f_data;
  770. struct filedesc *fdp = p->p_fd;
  771. struct knote **knp, *kn, *kn0;
  772. int i;
  773. for (i = 0; i < fdp->fd_knlistsize; i++) {
  774. knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
  775. kn = *knp;
  776. while (kn != NULL) {
  777. kn0 = SLIST_NEXT(kn, kn_link);
  778. if (kq == kn->kn_kq) {
  779. kn->kn_fop->f_detach(kn);
  780. FRELE(kn->kn_fp, p);
  781. knote_free(kn);
  782. *knp = kn0;
  783. } else {
  784. knp = &SLIST_NEXT(kn, kn_link);
  785. }
  786. kn = kn0;
  787. }
  788. }
  789. if (fdp->fd_knhashmask != 0) {
  790. for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
  791. knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
  792. kn = *knp;
  793. while (kn != NULL) {
  794. kn0 = SLIST_NEXT(kn, kn_link);
  795. if (kq == kn->kn_kq) {
  796. kn->kn_fop->f_detach(kn);
  797. /* XXX non-fd release of kn->kn_ptr */
  798. knote_free(kn);
  799. *knp = kn0;
  800. } else {
  801. knp = &SLIST_NEXT(kn, kn_link);
  802. }
  803. kn = kn0;
  804. }
  805. }
  806. }
  807. fp->f_data = NULL;
  808. kq->kq_state |= KQ_DYING;
  809. kqueue_wakeup(kq);
  810. KQRELE(kq);
  811. return (0);
  812. }
  813. void
  814. kqueue_wakeup(struct kqueue *kq)
  815. {
  816. if (kq->kq_state & KQ_SLEEP) {
  817. kq->kq_state &= ~KQ_SLEEP;
  818. wakeup(kq);
  819. }
  820. if (kq->kq_state & KQ_SEL) {
  821. kq->kq_state &= ~KQ_SEL;
  822. selwakeup(&kq->kq_sel);
  823. } else
  824. KNOTE(&kq->kq_sel.si_note, 0);
  825. }
  826. /*
  827. * activate one knote.
  828. */
  829. void
  830. knote_activate(struct knote *kn)
  831. {
  832. KNOTE_ACTIVATE(kn);
  833. }
  834. /*
  835. * walk down a list of knotes, activating them if their event has triggered.
  836. */
  837. void
  838. knote(struct klist *list, long hint)
  839. {
  840. struct knote *kn;
  841. SLIST_FOREACH(kn, list, kn_selnext)
  842. if (kn->kn_fop->f_event(kn, hint))
  843. KNOTE_ACTIVATE(kn);
  844. }
  845. /*
  846. * remove all knotes from a specified klist
  847. */
  848. void
  849. knote_remove(struct proc *p, struct klist *list)
  850. {
  851. struct knote *kn;
  852. while ((kn = SLIST_FIRST(list)) != NULL) {
  853. kn->kn_fop->f_detach(kn);
  854. knote_drop(kn, p, p->p_fd);
  855. }
  856. }
  857. /*
  858. * remove all knotes referencing a specified fd
  859. */
  860. void
  861. knote_fdclose(struct proc *p, int fd)
  862. {
  863. struct filedesc *fdp = p->p_fd;
  864. struct klist *list = &fdp->fd_knlist[fd];
  865. knote_remove(p, list);
  866. }
  867. /*
  868. * handle a process exiting, including the triggering of NOTE_EXIT notes
  869. * XXX this could be more efficient, doing a single pass down the klist
  870. */
  871. void
  872. knote_processexit(struct proc *p)
  873. {
  874. struct process *pr = p->p_p;
  875. KNOTE(&pr->ps_klist, NOTE_EXIT);
  876. /* remove other knotes hanging off the process */
  877. knote_remove(p, &pr->ps_klist);
  878. }
  879. void
  880. knote_attach(struct knote *kn, struct filedesc *fdp)
  881. {
  882. struct klist *list;
  883. int size;
  884. if (! kn->kn_fop->f_isfd) {
  885. if (fdp->fd_knhashmask == 0)
  886. fdp->fd_knhash = hashinit(KN_HASHSIZE, M_TEMP,
  887. M_WAITOK, &fdp->fd_knhashmask);
  888. list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
  889. goto done;
  890. }
  891. if (fdp->fd_knlistsize <= kn->kn_id) {
  892. size = fdp->fd_knlistsize;
  893. while (size <= kn->kn_id)
  894. size += KQEXTENT;
  895. list = mallocarray(size, sizeof(struct klist), M_TEMP,
  896. M_WAITOK);
  897. memcpy(list, fdp->fd_knlist,
  898. fdp->fd_knlistsize * sizeof(struct klist));
  899. memset(&list[fdp->fd_knlistsize], 0,
  900. (size - fdp->fd_knlistsize) * sizeof(struct klist));
  901. if (fdp->fd_knlist != NULL)
  902. free(fdp->fd_knlist, M_TEMP, 0);
  903. fdp->fd_knlistsize = size;
  904. fdp->fd_knlist = list;
  905. }
  906. list = &fdp->fd_knlist[kn->kn_id];
  907. done:
  908. SLIST_INSERT_HEAD(list, kn, kn_link);
  909. kn->kn_status = 0;
  910. }
  911. /*
  912. * should be called at spl == 0, since we don't want to hold spl
  913. * while calling FRELE and knote_free.
  914. */
  915. void
  916. knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
  917. {
  918. struct klist *list;
  919. if (kn->kn_fop->f_isfd)
  920. list = &fdp->fd_knlist[kn->kn_id];
  921. else
  922. list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
  923. SLIST_REMOVE(list, kn, knote, kn_link);
  924. if (kn->kn_status & KN_QUEUED)
  925. knote_dequeue(kn);
  926. if (kn->kn_fop->f_isfd) {
  927. FRELE(kn->kn_fp, p);
  928. }
  929. knote_free(kn);
  930. }
  931. void
  932. knote_enqueue(struct knote *kn)
  933. {
  934. struct kqueue *kq = kn->kn_kq;
  935. int s = splhigh();
  936. KASSERT((kn->kn_status & KN_QUEUED) == 0);
  937. TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
  938. kn->kn_status |= KN_QUEUED;
  939. kq->kq_count++;
  940. splx(s);
  941. kqueue_wakeup(kq);
  942. }
  943. void
  944. knote_dequeue(struct knote *kn)
  945. {
  946. struct kqueue *kq = kn->kn_kq;
  947. int s = splhigh();
  948. KASSERT(kn->kn_status & KN_QUEUED);
  949. TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
  950. kn->kn_status &= ~KN_QUEUED;
  951. kq->kq_count--;
  952. splx(s);
  953. }
  954. void
  955. klist_invalidate(struct klist *list)
  956. {
  957. struct knote *kn;
  958. SLIST_FOREACH(kn, list, kn_selnext) {
  959. kn->kn_status |= KN_DETACHED;
  960. kn->kn_flags |= EV_EOF | EV_ONESHOT;
  961. }
  962. }