md5.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /* $OpenBSD: md5.c,v 1.4 2014/12/28 10:04:35 tedu Exp $ */
  2. /*
  3. * This code implements the MD5 message-digest algorithm.
  4. * The algorithm is due to Ron Rivest. This code was
  5. * written by Colin Plumb in 1993, no copyright is claimed.
  6. * This code is in the public domain; do with it what you wish.
  7. *
  8. * Equivalent code is available from RSA Data Security, Inc.
  9. * This code has been tested against that, and is equivalent,
  10. * except that you don't need to include two pages of legalese
  11. * with every copy.
  12. *
  13. * To compute the message digest of a chunk of bytes, declare an
  14. * MD5Context structure, pass it to MD5Init, call MD5Update as
  15. * needed on buffers full of bytes, and then call MD5Final, which
  16. * will fill a supplied 16-byte array with the digest.
  17. */
  18. #include <sys/param.h>
  19. #include <sys/systm.h>
  20. #include <crypto/md5.h>
  21. #define PUT_64BIT_LE(cp, value) do { \
  22. (cp)[7] = (value) >> 56; \
  23. (cp)[6] = (value) >> 48; \
  24. (cp)[5] = (value) >> 40; \
  25. (cp)[4] = (value) >> 32; \
  26. (cp)[3] = (value) >> 24; \
  27. (cp)[2] = (value) >> 16; \
  28. (cp)[1] = (value) >> 8; \
  29. (cp)[0] = (value); } while (0)
  30. #define PUT_32BIT_LE(cp, value) do { \
  31. (cp)[3] = (value) >> 24; \
  32. (cp)[2] = (value) >> 16; \
  33. (cp)[1] = (value) >> 8; \
  34. (cp)[0] = (value); } while (0)
  35. static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
  36. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  37. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  38. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  39. };
  40. /*
  41. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  42. * initialization constants.
  43. */
  44. void
  45. MD5Init(MD5_CTX *ctx)
  46. {
  47. ctx->count = 0;
  48. ctx->state[0] = 0x67452301;
  49. ctx->state[1] = 0xefcdab89;
  50. ctx->state[2] = 0x98badcfe;
  51. ctx->state[3] = 0x10325476;
  52. }
  53. /*
  54. * Update context to reflect the concatenation of another buffer full
  55. * of bytes.
  56. */
  57. void
  58. MD5Update(MD5_CTX *ctx, const void *inputptr, size_t len)
  59. {
  60. const uint8_t *input = inputptr;
  61. size_t have, need;
  62. /* Check how many bytes we already have and how many more we need. */
  63. have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
  64. need = MD5_BLOCK_LENGTH - have;
  65. /* Update bitcount */
  66. ctx->count += (u_int64_t)len << 3;
  67. if (len >= need) {
  68. if (have != 0) {
  69. memcpy(ctx->buffer + have, input, need);
  70. MD5Transform(ctx->state, ctx->buffer);
  71. input += need;
  72. len -= need;
  73. have = 0;
  74. }
  75. /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
  76. while (len >= MD5_BLOCK_LENGTH) {
  77. MD5Transform(ctx->state, input);
  78. input += MD5_BLOCK_LENGTH;
  79. len -= MD5_BLOCK_LENGTH;
  80. }
  81. }
  82. /* Handle any remaining bytes of data. */
  83. if (len != 0)
  84. memcpy(ctx->buffer + have, input, len);
  85. }
  86. /*
  87. * Final wrapup - pad to 64-byte boundary with the bit pattern
  88. * 1 0* (64-bit count of bits processed, MSB-first)
  89. */
  90. void
  91. MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
  92. {
  93. u_int8_t count[8];
  94. size_t padlen;
  95. int i;
  96. /* Convert count to 8 bytes in little endian order. */
  97. PUT_64BIT_LE(count, ctx->count);
  98. /* Pad out to 56 mod 64. */
  99. padlen = MD5_BLOCK_LENGTH -
  100. ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
  101. if (padlen < 1 + 8)
  102. padlen += MD5_BLOCK_LENGTH;
  103. MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
  104. MD5Update(ctx, count, 8);
  105. for (i = 0; i < 4; i++)
  106. PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
  107. explicit_bzero(ctx, sizeof(*ctx)); /* in case it's sensitive */
  108. }
  109. /* The four core functions - F1 is optimized somewhat */
  110. /* #define F1(x, y, z) (x & y | ~x & z) */
  111. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  112. #define F2(x, y, z) F1(z, x, y)
  113. #define F3(x, y, z) (x ^ y ^ z)
  114. #define F4(x, y, z) (y ^ (x | ~z))
  115. /* This is the central step in the MD5 algorithm. */
  116. #define MD5STEP(f, w, x, y, z, data, s) \
  117. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  118. /*
  119. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  120. * reflect the addition of 16 longwords of new data. MD5Update blocks
  121. * the data and converts bytes into longwords for this routine.
  122. */
  123. void
  124. MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
  125. {
  126. u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
  127. #if BYTE_ORDER == LITTLE_ENDIAN
  128. memcpy(in, block, sizeof(in));
  129. #else
  130. for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
  131. in[a] = (u_int32_t)(
  132. (u_int32_t)(block[a * 4 + 0]) |
  133. (u_int32_t)(block[a * 4 + 1]) << 8 |
  134. (u_int32_t)(block[a * 4 + 2]) << 16 |
  135. (u_int32_t)(block[a * 4 + 3]) << 24);
  136. }
  137. #endif
  138. a = state[0];
  139. b = state[1];
  140. c = state[2];
  141. d = state[3];
  142. MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
  143. MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
  144. MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
  145. MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
  146. MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
  147. MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
  148. MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
  149. MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
  150. MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
  151. MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
  152. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  153. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  154. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  155. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  156. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  157. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  158. MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
  159. MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
  160. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  161. MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
  162. MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
  163. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  164. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  165. MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
  166. MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
  167. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  168. MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
  169. MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
  170. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  171. MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
  172. MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
  173. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  174. MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
  175. MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
  176. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  177. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  178. MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
  179. MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
  180. MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
  181. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  182. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  183. MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
  184. MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
  185. MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
  186. MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
  187. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  188. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  189. MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
  190. MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
  191. MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
  192. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  193. MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
  194. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  195. MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
  196. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  197. MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
  198. MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
  199. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  200. MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
  201. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  202. MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
  203. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  204. MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
  205. MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
  206. state[0] += a;
  207. state[1] += b;
  208. state[2] += c;
  209. state[3] += d;
  210. }