123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665 |
- #include <QImage>
- #include <QDebug>
- #include <math.h>
- #include <QTime>
- #define PI (3.141592653589793)
- float **generateGaussianKernel(float variance, int dim)
- {
- float **gaussianKernel;
- int i,j;
- gaussianKernel = new float*[dim];
- for (i = 0; i < dim; ++i)
- {
- gaussianKernel[i] = new float[dim];
- }
- float exponentialArg;
- int centerX=dim/2;
- int centerY=dim/2;
- for (i=-centerX;i<=centerX;i++)
- {
- for(j=-centerY;j<=centerY;j++)
- {
- exponentialArg=-(pow(i,2)+pow(j,2))/(2*pow(variance,2));
- gaussianKernel[i+centerX][j+centerY]= exp(exponentialArg)/((2*PI)*(pow(variance,2)));
- }
- }
- return gaussianKernel;
- }
- float **matrixConvolutionNbyN(QImage originalImage, float **kernel, int dim)
- {
- int i,j;
- int rows = originalImage.width()-(dim-1);
- int cols = originalImage.height()-(dim-1);
- int iKernel,jKernel;
- float **matrixImgA = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImgA[i] = new float[cols];
- }
- float computation=0;
- int centerX=dim/2;
- int centerY=dim/2;
- for(i=centerX;i<originalImage.width()-centerX;i++)
- {
- for(j=centerY;j<originalImage.height()-centerY;j++)
- {
- for(iKernel=0;iKernel<dim;iKernel++)
- {
- for(jKernel=0;jKernel<dim;jKernel++)
- {
- computation+=kernel[iKernel][jKernel]*originalImage.pixelIndex(i-centerX+iKernel,j-centerY+jKernel);
- }
- }
- matrixImgA[i-centerX][j-centerY]=computation;
- computation=0;
- }
- }
- for (int w = 0; w < dim; w++)
- delete[] kernel[w];
- delete[] kernel;
- return matrixImgA;
- }
- void matrixConvolutionNbyN(QImage originalImage, float **kernel, int dim, float **matrixImgA)
- {
- int i,j;
- int rows = originalImage.width()-(dim-1);
- int cols = originalImage.height()-(dim-1);
- int iKernel,jKernel;
- float computation=0;
- int centerX=dim/2;
- int centerY=dim/2;
- for(i=centerX;i<rows;i++)
- {
- for(j=centerY;j<cols;j++)
- {
- for(iKernel=0;iKernel<dim;iKernel++)
- {
- for(jKernel=0;jKernel<dim;jKernel++)
- {
- computation+=kernel[iKernel][jKernel]*originalImage.pixelIndex(i-centerX+iKernel,j-centerY+jKernel);
- }
- }
- matrixImgA[i-centerX][j-centerY]=computation;
- computation=0;
- }
- }
- for (int w = 0; w < dim; w++)
- delete[] kernel[w];
- delete[] kernel;
- }
- float **testImageConvolution2by2(QImage originalImage, float kernel[][2])
- {
- int i,j;
- int rows=originalImage.width()-1;
- int cols = originalImage.height()-1;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float computation;
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- computation=kernel[0][0]*originalImage.pixelIndex(i,j)+
- kernel[0][1]*originalImage.pixelIndex(i,j+1)+
- kernel[1][0]*originalImage.pixelIndex(i+1,j)+
- kernel[1][1]*originalImage.pixelIndex(i+1,j+1);
- matrixImg[i][j]=computation;
- }
- }
- return matrixImg;
- }
- QImage normalizeImage(QImage originalImage)
- {
- int i,j;
- int min,max;
- QImage normalizedImage=originalImage;
- min=originalImage.pixelIndex(0,0);
- max=originalImage.pixelIndex(0,0);
- for(i=0;i<originalImage.width();i++)
- {
- for(j=0;j<originalImage.height();j++)
- {
- if(originalImage.pixelIndex(i,j)<min)
- {
- min=originalImage.pixelIndex(i,j);
- }
- if(originalImage.pixelIndex(i,j)>max)
- {
- max=originalImage.pixelIndex(i,j);
- }
- }
- }
- float normalizedPixel;
- for(i=0;i<originalImage.width();i++)
- {
- for(j=0;j<originalImage.height();j++)
- {
- normalizedPixel=(originalImage.pixelIndex(i,j)-min)*(float)(255/(max-min));
- normalizedImage.setPixel(i,j,normalizedPixel);
- }
- }
- return normalizedImage;
- }
- void normalizeMatrix(float **matrixImage, int rows, int cols)
- {
- float normalizedMatrix[rows][cols];
- int i,j;
- float min,max;
- float normalizedPixel,normalizingFactor;
- min=matrixImage[0][0];
- max=matrixImage[0][0];
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- if(matrixImage[i][j]<min)
- {
- min=matrixImage[i][j];
- }
- if(matrixImage[i][j]>max)
- {
- max=matrixImage[i][j];
- }
- }
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- normalizingFactor=(float)255/(max-min);
- normalizedPixel=round((matrixImage[i][j]-min)*normalizingFactor);
- normalizedMatrix[i][j]=normalizedPixel;
- }
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- matrixImage[i][j]=normalizedMatrix[i][j];
- }
- }
- }
- QImage matrixToImage(float **matrixImg, int rows, int cols)
- {
- QImage img(rows, cols, QImage::Format_Indexed8);
- int i,j;
- float roundedMatrixElement;
- QRgb value;
- for (int i = 0; i < 256; ++i) {
- value=qRgb(i,i,i);
- img.setColor(i, value);
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- roundedMatrixElement=round(matrixImg[i][j]);
- img.setPixel(i,j,(int)roundedMatrixElement);
- }
- }
- return img;
- }
- QImage imageConvolution3by3(QImage originalImage, float kernel[][3])
- {
- QImage filteredImage;
- int i,j;
- int rows=originalImage.width()-2;
- int cols = originalImage.height()-2;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float computation;
- for(i=1;i<originalImage.width()-1;i++)
- {
- for(j=1;j<originalImage.height()-1;j++)
- {
- computation=kernel[0][0]*originalImage.pixelIndex(i-1,j-1)+
- kernel[0][1]*originalImage.pixelIndex(i-1,j)+
- kernel[0][2]*originalImage.pixelIndex(i-1,j+1)+
- kernel[1][0]*originalImage.pixelIndex(i,j-1)+
- kernel[1][1]*originalImage.pixelIndex(i,j)+
- kernel[1][2]*originalImage.pixelIndex(i,j+1)+
- kernel[2][0]*originalImage.pixelIndex(i+1,j-1)+
- kernel[2][1]*originalImage.pixelIndex(i+1,j)+
- kernel[2][2]*originalImage.pixelIndex(i+1,j+1);
- matrixImg[i-1][j-1]=round(computation);
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- float **imageConvolution5by5(QImage originalImage, float kernel[][5])
- {
- int i,j;
- int rows=originalImage.width()-4;
- int cols = originalImage.height()-4;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float computation;
- for(i=2;i<originalImage.width()-2;i++)
- {
- for(j=2;j<originalImage.height()-2;j++)
- {
- computation=kernel[0][0]*originalImage.pixelIndex(i-2,j-2)+
- kernel[0][1]*originalImage.pixelIndex(i-2,j-1)+
- kernel[0][2]*originalImage.pixelIndex(i-2,j)+
- kernel[0][3]*originalImage.pixelIndex(i-2,j+1)+
- kernel[0][4]*originalImage.pixelIndex(i-2,j+2)+
- kernel[1][0]*originalImage.pixelIndex(i-1,j-2)+
- kernel[1][1]*originalImage.pixelIndex(i-1,j-1)+
- kernel[1][2]*originalImage.pixelIndex(i-1,j)+
- kernel[1][3]*originalImage.pixelIndex(i-1,j+1)+
- kernel[1][4]*originalImage.pixelIndex(i-1,j+2)+
- kernel[2][0]*originalImage.pixelIndex(i,j-2)+
- kernel[2][1]*originalImage.pixelIndex(i,j-1)+
- kernel[2][2]*originalImage.pixelIndex(i,j)+
- kernel[2][3]*originalImage.pixelIndex(i,j+1)+
- kernel[2][4]*originalImage.pixelIndex(i,j+2)+
- kernel[3][0]*originalImage.pixelIndex(i+1,j-2)+
- kernel[3][1]*originalImage.pixelIndex(i+1,j-1)+
- kernel[3][2]*originalImage.pixelIndex(i+1,j)+
- kernel[3][3]*originalImage.pixelIndex(i+1,j+1)+
- kernel[3][4]*originalImage.pixelIndex(i+1,j+2)+
- kernel[4][0]*originalImage.pixelIndex(i+2,j-2)+
- kernel[4][1]*originalImage.pixelIndex(i+2,j-1)+
- kernel[4][2]*originalImage.pixelIndex(i+2,j)+
- kernel[4][3]*originalImage.pixelIndex(i+2,j+1)+
- kernel[4][4]*originalImage.pixelIndex(i+2,j+2);
- matrixImg[i-2][j-2]=computation;
- }
- }
- return matrixImg;
- }
- float **matrixImageConvolution3by3(QImage originalImage, float kernel[][3])
- {
- int i,j;
- int rows=originalImage.width()-2;
- int cols = originalImage.height()-2;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float computation;
- for(i=1;i<originalImage.width()-1;i++)
- {
- for(j=1;j<originalImage.height()-1;j++)
- {
- computation=kernel[0][0]*originalImage.pixelIndex(i-1,j-1)+
- kernel[0][1]*originalImage.pixelIndex(i-1,j)+
- kernel[0][2]*originalImage.pixelIndex(i-1,j+1)+
- kernel[1][0]*originalImage.pixelIndex(i,j-1)+
- kernel[1][1]*originalImage.pixelIndex(i,j)+
- kernel[1][2]*originalImage.pixelIndex(i,j+1)+
- kernel[2][0]*originalImage.pixelIndex(i+1,j-1)+
- kernel[2][1]*originalImage.pixelIndex(i+1,j)+
- kernel[2][2]*originalImage.pixelIndex(i+1,j+1);
- matrixImg[i-1][j-1]=computation;
- }
- }
- return matrixImg;
- }
- QImage boxFilter(QImage originalImage)
- {
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- float **resultMatrix;
- float kernelBoxFilter[3][3]={1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0};
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelBoxFilter);
- filteredImage=matrixToImage(resultMatrix,rows,cols);
- return filteredImage;
- }
- QImage medianFilter(QImage originalImage)
- {
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- QVector<int> elemVector;
- int medianValue=4;
- int i,j;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=1;i<originalImage.width()-1;i++)
- {
- for(j=1;j<originalImage.height()-1;j++)
- {
- elemVector.append(originalImage.pixelIndex(i-1,j-1));
- elemVector.append(originalImage.pixelIndex(i-1,j));
- elemVector.append(originalImage.pixelIndex(i-1,j+1));
- elemVector.append(originalImage.pixelIndex(i,j-1));
- elemVector.append(originalImage.pixelIndex(i,j));
- elemVector.append(originalImage.pixelIndex(i,j+1));
- elemVector.append(originalImage.pixelIndex(i+1,j-1));
- elemVector.append(originalImage.pixelIndex(i+1,j));
- elemVector.append(originalImage.pixelIndex(i+1,j+1));
- qSort(elemVector);
- matrixImg[i-1][j-1]=elemVector.value(medianValue);
- elemVector.clear();
- }
- }
- //normalizeMatrix(resultMatrix, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage rankFilter(QImage originalImage, int dim)
- {
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- QVector<int> elemVector;
- int medianValue=4;
- int i,j;
- float **matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=1;i<originalImage.width()-1;i++)
- {
- for(j=1;j<originalImage.height()-1;j++)
- {
- elemVector.append(originalImage.pixelIndex(i-1,j-1));
- elemVector.append(originalImage.pixelIndex(i-1,j));
- elemVector.append(originalImage.pixelIndex(i-1,j+1));
- elemVector.append(originalImage.pixelIndex(i,j-1));
- elemVector.append(originalImage.pixelIndex(i,j));
- elemVector.append(originalImage.pixelIndex(i,j+1));
- elemVector.append(originalImage.pixelIndex(i+1,j-1));
- elemVector.append(originalImage.pixelIndex(i+1,j));
- elemVector.append(originalImage.pixelIndex(i+1,j+1));
- qSort(elemVector);
- if(dim==3)
- {
- matrixImg[i-1][j-1]=(elemVector.value(medianValue)+elemVector.value(medianValue+1)+elemVector.value(medianValue-1))/3.0;
- elemVector.clear();
- }
- else if(dim==5)
- {
- matrixImg[i-1][j-1]=(elemVector.value(medianValue)+elemVector.value(medianValue+1)+elemVector.value(medianValue-1)+elemVector.value(medianValue+2)+elemVector.value(medianValue-2))/5.0;
- elemVector.clear();
- }
- else
- {
- matrixImg[i-1][j-1]=(elemVector.value(medianValue)+elemVector.value(medianValue+1)+elemVector.value(medianValue-1)+elemVector.value(medianValue+2)+elemVector.value(medianValue-2)+elemVector.value(medianValue+3)+elemVector.value(medianValue-3))/7.0;
- elemVector.clear();
- }
- }
- }
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- float getVarianceFromArray(QVector<int> array)
- {
- float variance;
- int i;
- int numElem=array.size();
- float mean;
- float sum=0;
- for(i=0;i<numElem;i++)
- {
- sum+=array.value(i);
- }
- mean=(float)sum/numElem;
- sum=0;
- for(i=0;i<numElem;i++)
- {
- sum+=pow(array.value(i)-mean,2);
- }
- variance=(float)sum/numElem;
- return variance;
- }
- float getMeanFromArray(QVector<int> array)
- {
- int i;
- int numElem=array.size();
- float mean;
- float sum=0;
- for(i=0;i<numElem;i++)
- {
- sum+=array.value(i);
- }
- mean=(float)sum/numElem;
- return mean;
- }
- QImage nagaoFilter(QImage originalImage)
- {
- QImage filteredImage;
- float** matrixImg;
- int i,j;
- float currentMean;
- QVector<int> nagaoArray;
- int rows = originalImage.width()-4;
- int cols = originalImage.height()-4;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float currentVariance,minVariance;
- for(i=2;i<originalImage.width()-2;i++)
- {
- for(j=2;j<originalImage.height()-2;j++)
- {
- //FIRST NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j));
- nagaoArray.append(originalImage.pixelIndex(i-1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i,j-1));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+1));
- currentVariance=getVarianceFromArray(nagaoArray);
- currentMean=getMeanFromArray(nagaoArray);
- minVariance=currentVariance;
- nagaoArray.clear();
- //SECOND NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-2,j-1));
- nagaoArray.append(originalImage.pixelIndex(i-2,j));
- nagaoArray.append(originalImage.pixelIndex(i-2,j+1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j));
- nagaoArray.append(originalImage.pixelIndex(i-1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //THIRD NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-1,j-2));
- nagaoArray.append(originalImage.pixelIndex(i-1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i,j-2));
- nagaoArray.append(originalImage.pixelIndex(i,j-1));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-2));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-1));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //FOURTH NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j+2));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i,j+1));
- nagaoArray.append(originalImage.pixelIndex(i,j+2));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+2));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //FIFTH NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+2,j-1));
- nagaoArray.append(originalImage.pixelIndex(i+2,j));
- nagaoArray.append(originalImage.pixelIndex(i+2,j+1));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //SIXTH NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-2,j-2));
- nagaoArray.append(originalImage.pixelIndex(i-2,j-1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j-2));
- nagaoArray.append(originalImage.pixelIndex(i-1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j));
- nagaoArray.append(originalImage.pixelIndex(i,j-1));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //SEVENTH NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i-2,j+1));
- nagaoArray.append(originalImage.pixelIndex(i-2,j+2));
- nagaoArray.append(originalImage.pixelIndex(i-1,j));
- nagaoArray.append(originalImage.pixelIndex(i-1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i-1,j+2));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i,j+1));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //EIGHT NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i,j-1));
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-2));
- nagaoArray.append(originalImage.pixelIndex(i+1,j-1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j));
- nagaoArray.append(originalImage.pixelIndex(i+2,j-2));
- nagaoArray.append(originalImage.pixelIndex(i+2,j-1));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- //NINTH NAGAO SUBBLOCK
- nagaoArray.append(originalImage.pixelIndex(i,j));
- nagaoArray.append(originalImage.pixelIndex(i,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+1,j+2));
- nagaoArray.append(originalImage.pixelIndex(i+2,j+1));
- nagaoArray.append(originalImage.pixelIndex(i+2,j+2));
- currentVariance=getVarianceFromArray(nagaoArray);
- if(currentVariance<minVariance)
- {
- minVariance=currentVariance;
- currentMean=getMeanFromArray(nagaoArray);
- }
- nagaoArray.clear();
- matrixImg[i-2][j-2]=currentMean;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage sharpeningFilter(QImage originalImage)
- {
- QImage filteredImage;
- float kernelBoxFilter[3][3]={1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0};
- float kernelBoxFIlter2Centered[3][3]={0,0,0,0,2.0,0,0,0,0};
- float kernelSharpeningFilter[3][3];
- int i=0,j=0;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- float **resultMatrix;
- for(i=0;i<3;i++)
- {
- for(j=0;j<3;j++)
- {
- kernelSharpeningFilter[i][j]=kernelBoxFIlter2Centered[i][j]-kernelBoxFilter[i][j];
- }
- }
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelSharpeningFilter);
- normalizeMatrix(resultMatrix, rows, cols);
- filteredImage=matrixToImage(resultMatrix,rows,cols);
- return filteredImage;
- }
- float **sobelVerticalFilter(QImage originalImage)
- {
- QImage filteredImage;
- float kernelSobelVerticalFilter[3][3]={-1,-2,-1,0,0,0,1,2,1};
- float **resultMatrix;
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelSobelVerticalFilter);
- return resultMatrix;
- //return filteredImage;
- }
- float **sobelHorizontalFilter(QImage originalImage)
- {
- float kernelSobelHorizontalFilter[3][3]={-1,0,1,-2,0,2,-1,0,1};
- float **resultMatrix;
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelSobelHorizontalFilter);
- return resultMatrix;
- }
- QImage laplacianFilter(QImage originalImage)
- {
- QImage filteredImage;
- int rows=originalImage.width()-4;
- int cols=originalImage.height()-4;
- float **resultMatrix;
- float kernelLaplacianFilter[5][5]={0,0,-1,0,0,0,-1,-2,-1,0,-1,-2,16,-2,-1,0,-1,-2,-1,0,0,0,-1,0,0};
- resultMatrix=imageConvolution5by5(originalImage,kernelLaplacianFilter);
- normalizeMatrix(resultMatrix, rows, cols);
- filteredImage=matrixToImage(resultMatrix,rows,cols);
- return filteredImage;
- }
- QImage gaussianFilter(QImage originalImage)
- {
- QImage filteredImage;
- int rows=originalImage.width()-4;
- int cols=originalImage.height()-4;
- float **resultMatrix;
- float kernelGaussianFilter[5][5]={0.03,0.013,0.022,0.013,0.003,0.0013,0.059,0.097,0.059,0.013,0.022,0.097,0.159,0.097,0.022,0.013,0.059,0.097,0.059,0.013,0.003,0.013,0.022,0.013,0.003};
- resultMatrix=imageConvolution5by5(originalImage,kernelGaussianFilter);
- filteredImage=matrixToImage(resultMatrix,rows,cols);
- return filteredImage;
- }
- QImage sobelModuleFilter(QImage originalImage)
- {
- QImage filteredImage;
- float** matrixImgVertical;
- float** matrixImgHorizontal;
- float** matrixImg;
- int i,j;
- int rows = originalImage.width()-2;
- int cols = originalImage.height()-2;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- matrixImgVertical=sobelVerticalFilter(originalImage);
- matrixImgHorizontal=sobelHorizontalFilter(originalImage);
- float module;
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- module=sqrt(pow(matrixImgVertical[i][j],2)+pow(matrixImgHorizontal[i][j],2));
- matrixImg[i][j]=module;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage sobelPhaseFilter(QImage originalImage)
- {
- float **matrixImgVertical;
- float **matrixImgHorizontal;
- float** matrixImg;
- int i,j;
- int rows = originalImage.width()-2;
- int cols = originalImage.height()-2;
- QImage filteredImage;
- float phase;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- matrixImgVertical=sobelVerticalFilter(originalImage);
- matrixImgHorizontal=sobelHorizontalFilter(originalImage);
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- phase=atan2(matrixImgVertical[i][j],matrixImgHorizontal[i][j]);
- //phaseDegree=(phase*180)/3.14159265359;
- matrixImg[i][j]=phase;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage robertsModuleFilter(QImage originalImage)
- {
- QImage filteredImage;
- float **filteredImageMainDiag;
- float **filteredImageSecDiag;
- float **matrixImg;
- int rows=originalImage.width()-1;
- int cols=originalImage.height()-1;
- float kernelRobertsMainDiagFilter[2][2]={1,0,0,-1};
- float kernelRobertsSecDiagFilter[2][2]={0,1,-1,0};
- int i,j;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float module;
- filteredImageMainDiag=testImageConvolution2by2(originalImage,kernelRobertsMainDiagFilter);
- filteredImageSecDiag=testImageConvolution2by2(originalImage,kernelRobertsSecDiagFilter);
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- module=sqrt(pow(filteredImageMainDiag[i][j],2)+pow(filteredImageSecDiag[i][j],2));
- matrixImg[i][j]=module;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage robertsPhaseFilter(QImage originalImage)
- {
- float **filteredImageMainDiag;
- float **filteredImageSecDiag;
- float **matrixImg;
- int i,j;
- int rows = originalImage.width()-1;
- int cols = originalImage.height()-1;
- float kernelRobertsMainDiagFilter[2][2]={1,0,0,-1};
- float kernelRobertsSecDiagFilter[2][2]={0,1,-1,0};
- QImage filteredImage;
- float phase;
- filteredImageMainDiag=testImageConvolution2by2(originalImage,kernelRobertsMainDiagFilter);
- filteredImageSecDiag=testImageConvolution2by2(originalImage,kernelRobertsSecDiagFilter);
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- phase=atan2(filteredImageSecDiag[i][j],filteredImageMainDiag[i][j])+(PI/4);
- matrixImg[i][j]=phase;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- float **isotropicVerticalFilter(QImage originalImage)
- {
- float **resultMatrix;
- float kernelIsotropicVerticalFilter[3][3]={-1,0,1,-sqrt(2),0,sqrt(2),-1,0,1};
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelIsotropicVerticalFilter);
- return resultMatrix;
- }
- float **isotropicHorizontalFilter(QImage originalImage)
- {
- float **resultMatrix;
- float kernelIsotropicHorizontalFilter[3][3]={1,sqrt(2),1,0,0,0,-1,-sqrt(2),-1};
- resultMatrix=matrixImageConvolution3by3(originalImage,kernelIsotropicHorizontalFilter);
- return resultMatrix;
- }
- QImage isotropicModuleFilter(QImage originalImage)
- {
- float **filteredImageVertical=isotropicVerticalFilter(originalImage);
- float **filteredImageHorizontal=isotropicHorizontalFilter(originalImage);
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- QImage filteredImage;
- float module=0;
- int i,j;
- float **matrixImg;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- module=sqrt(pow(filteredImageVertical[i][j],2)+pow(filteredImageHorizontal[i][j],2));
- matrixImg[i][j]=module;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage isotropicPhaseFilter(QImage originalImage)
- {
- float **filteredImageVertical=isotropicVerticalFilter(originalImage);
- float **filteredImageHorizontal=isotropicHorizontalFilter(originalImage);
- float **matrixImg;
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- float phase=0;
- int i,j;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- phase=atan2(filteredImageVertical[i][j],filteredImageHorizontal[i][j]);
- matrixImg[i][j]=phase;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- float **prewittVerticalFilter(QImage originalImage)
- {
- float **resultImg;
- float kernelPrewittVerticalFilter[3][3]={-1,-1,-1,0,0,0,1,1,1};
- resultImg=matrixImageConvolution3by3(originalImage,kernelPrewittVerticalFilter);
- return resultImg;
- }
- float **prewittHorizontalFilter(QImage originalImage)
- {
- float **resultImg;
- float kernelPrewittHorizontalFilter[3][3]={-1,0,1,-1,0,1,-1,0,1};
- resultImg=matrixImageConvolution3by3(originalImage,kernelPrewittHorizontalFilter);
- return resultImg;
- }
- QImage prewittModuleFilter(QImage originalImage)
- {
- float **filteredImageVertical=prewittVerticalFilter(originalImage);
- float **filteredImageHorizontal=prewittHorizontalFilter(originalImage);
- QImage filteredImage;
- float module=0;
- int i,j;
- float **matrixImg;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- module=sqrt(pow(filteredImageVertical[i][j],2)+pow(filteredImageHorizontal[i][j],2));
- matrixImg[i][j]=module;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage prewittPhaseFilter(QImage originalImage)
- {
- float **filteredImageVertical=prewittVerticalFilter(originalImage);
- float **filteredImageHorizontal=prewittHorizontalFilter(originalImage);
- QImage filteredImage;
- double phase=0;
- int i,j;
- float **matrixImg;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- phase=atan2(filteredImageVertical[i][j],filteredImageHorizontal[i][j]);
- matrixImg[i][j]=phase;
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- void rotateKernel(float kernel[3][3])
- {
- float rotatedNewKernel[3][3];
- int i,j;
- rotatedNewKernel[0][0]=kernel[0][1];
- rotatedNewKernel[0][1]=kernel[0][2];
- rotatedNewKernel[0][2]=kernel[1][2];
- rotatedNewKernel[1][0]=kernel[0][0];
- rotatedNewKernel[1][1]=kernel[1][1];
- rotatedNewKernel[1][2]=kernel[2][2];
- rotatedNewKernel[2][0]=kernel[1][0];
- rotatedNewKernel[2][1]=kernel[2][0];
- rotatedNewKernel[2][2]=kernel[2][1];
- for(i=0;i<3;i++)
- {
- for(j=0;j<3;j++)
- {
- kernel[i][j]=rotatedNewKernel[i][j];
- }
- }
- }
- QImage kirschFilter(QImage originalImage)
- {
- float **filteredMatrix;
- float **finalFilteredImage;
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- float **matrixImg;
- int i,j,k;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- float kernelKirschFilter[3][3]={5,5,5,-3,0,-3,-3,-3,-3};
- filteredMatrix=matrixImageConvolution3by3(originalImage,kernelKirschFilter);
- finalFilteredImage=matrixImageConvolution3by3(originalImage,kernelKirschFilter);
- rotateKernel(kernelKirschFilter);
- for(i=0;i<7;i++)
- {
- filteredMatrix=matrixImageConvolution3by3(originalImage,kernelKirschFilter);
- for(j=0;j<rows;j++)
- {
- for(k=0;k<cols;k++)
- {
- if(filteredMatrix[j][k]>finalFilteredImage[j][k])
- {
- finalFilteredImage[j][k]=filteredMatrix[j][k];
- }
- }
- }
- rotateKernel(kernelKirschFilter);
- }
- normalizeMatrix(finalFilteredImage, rows, cols);
- filteredImage=matrixToImage(finalFilteredImage,rows,cols);
- return filteredImage;
- }
- float **thresholdMatrix(float **matrixToThreshold, int rows, int cols)
- {
- int i,j;
- float **thresholdedMatrix;
- thresholdedMatrix = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- thresholdedMatrix[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- if(matrixToThreshold[i][j]>=0)
- {
- thresholdedMatrix[i][j]=255;
- }
- else
- {
- thresholdedMatrix[i][j]=0;
- }
- }
- }
- return thresholdedMatrix;
- }
- QImage threeNineFilter(QImage originalImage)
- {
- float **filteredMatrix;
- float **sumMatrix;
- float **finalFilteredImage;
- QImage filteredImage;
- int rows=originalImage.width()-2;
- int cols=originalImage.height()-2;
- float **matrixImg;
- int i,j,k;
- float kernelBlockSum[3][3]={1,1,1,1,1,1,1,1,1};
- float kernelThreeNineFilter[3][3]={1,1,1,0,0,0,0,0,0};
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- sumMatrix=matrixImageConvolution3by3(originalImage,kernelBlockSum);
- filteredMatrix=matrixImageConvolution3by3(originalImage,kernelThreeNineFilter);
- finalFilteredImage=matrixImageConvolution3by3(originalImage,kernelThreeNineFilter);
- rotateKernel(kernelThreeNineFilter);
- for(i=0;i<7;i++)
- {
- filteredMatrix=matrixImageConvolution3by3(originalImage,kernelThreeNineFilter);
- for(j=0;j<rows;j++)
- {
- for(k=0;k<cols;k++)
- {
- if(filteredMatrix[j][k]>finalFilteredImage[j][k])
- {
- finalFilteredImage[j][k]=filteredMatrix[j][k];
- }
- }
- }
- rotateKernel(kernelThreeNineFilter);
- }
- for(j=0;j<rows;j++)
- {
- for(k=0;k<cols;k++)
- {
- if(sumMatrix[j][k]==0)
- {
- matrixImg[j][k]=0;
- }
- else
- {
- matrixImg[j][k]=1.5*( (finalFilteredImage[j][k]/sumMatrix[j][k])-0.333 );
- }
- }
- }
- normalizeMatrix(matrixImg, rows, cols);
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage DoGFilter(QImage originalImage, float firstVar, float secondVar)
- {
- QImage filteredImage,thresholdedImage;
- float **maxVarKernel;
- float **minVarKernel;
- float **diffKernel;
- float **convolutedMatrix;
- float **thresholdedMatrix;
- float maxVar,minVar;
- int kernelMaxDim;
- int i,j;
- if(firstVar>=secondVar)
- {
- maxVar=firstVar;
- minVar=secondVar;
- }
- else
- {
- maxVar=secondVar;
- minVar=firstVar;
- }
- float floatKernelMaxDim=6.0*maxVar;
- if((int)floatKernelMaxDim%2==0)
- {
- kernelMaxDim=(int)floatKernelMaxDim+1;
- }
- else
- {
- kernelMaxDim=(int)floatKernelMaxDim;
- }
- int rows = originalImage.width()-(kernelMaxDim-1);
- int cols = originalImage.height()-(kernelMaxDim-1);
- diffKernel = new float*[kernelMaxDim];
- for (i = 0; i < kernelMaxDim; ++i)
- {
- diffKernel[i] = new float[kernelMaxDim];
- }
- maxVarKernel=generateGaussianKernel(maxVar, kernelMaxDim);
- minVarKernel=generateGaussianKernel(minVar, kernelMaxDim);
- for(i=0;i<kernelMaxDim;i++)
- {
- for(j=0;j<kernelMaxDim;j++)
- {
- diffKernel[i][j]=maxVarKernel[i][j]-minVarKernel[i][j];
- }
- }
- convolutedMatrix=matrixConvolutionNbyN(originalImage,diffKernel,kernelMaxDim);
- //normalizeMatrix(convolutedMatrix,rows,cols);
- thresholdedMatrix=thresholdMatrix(convolutedMatrix,rows,cols);
- //thresholdedImage=matrixToImage(thresholdedMatrix,rows,cols);
- float **sumMatrix;//=matrixImageConvolution3by3(thresholdedImage,unitaryKernel);
- sumMatrix = new float*[rows-2];
- for (i = 0; i <rows-2; ++i)
- {
- sumMatrix[i] = new float[cols-2];
- }
- int center;
- for(i=1;i<rows-1;i++)
- {
- for(j=1;j<cols-1;j++)
- {
- center=thresholdedMatrix[i][j];
- if(thresholdedMatrix[i-1][j-1]!=center || thresholdedMatrix[i-1][j]!=center || thresholdedMatrix[i-1][j+1]!=center || thresholdedMatrix[i][j-1]!=center || thresholdedMatrix[i][j+1]!=center || thresholdedMatrix[i+1][j-1]!=center || thresholdedMatrix[i+1][j]!=center || thresholdedMatrix[i+1][j+1]!=center)
- {
- sumMatrix[i-1][j-1]=255;
- }
- else
- {
- sumMatrix[i-1][j-1]=0;
- }
- }
- }
- filteredImage=matrixToImage(sumMatrix,rows-2,cols-2);
- return filteredImage;
- }
- double randomValue()
- {
- double randNumber = ((double) rand() / (RAND_MAX));
- return randNumber;
- }
- int randomValueFromMinToMax(int min, int max)
- {
- int randNumber=(rand()%(max-min))+min;
- return randNumber;
- }
- double nextGaussian(double *nextNextGaussian, bool *haveNextNextGaussian)
- {
- if (*haveNextNextGaussian)
- {
- *haveNextNextGaussian = false;
- return *nextNextGaussian;
- }
- else
- {
- double v1, v2, s;
- do
- {
- v1 = 2 * randomValue() - 1;
- v2 = 2 * randomValue() - 1;
- s = v1 * v1 + v2 * v2;
- }
- while (s >= 1 || s == 0);
- double multiplier = sqrt(-2 * log(s)/s);
- *nextNextGaussian = v2 * multiplier;
- *haveNextNextGaussian = true;
- return v1 * multiplier;
- }
- }
- QImage uniformNoise(QImage originalImage, int maxNoiseIntensity)
- {
- QImage filteredImage;
- QTime time = QTime::currentTime();
- qsrand((uint)time.msec());
- float **matrixImg;
- int rows=originalImage.width();
- int cols=originalImage.height();
- int i,j;
- double computation=0;
- double computationWithNoise=0;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- double randNumber = ((double) rand() / (RAND_MAX));
- computation= 2*maxNoiseIntensity*(randNumber-0.5);
- computationWithNoise=originalImage.pixelIndex(i,j)+computation;
- if(computationWithNoise>=255)
- {
- matrixImg[i][j]=255;
- }
- else if(computationWithNoise<=0)
- {
- matrixImg[i][j]=0;
- }
- else
- {
- matrixImg[i][j]=computationWithNoise;
- }
- }
- }
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage gaussianNoise(QImage originalImage, float mean, float variance)
- {
- QImage filteredImage;
- double nextNextGaussian=0;
- bool haveNextNextGaussian = false;
- float **matrixImg;
- int rows=originalImage.width();
- int cols=originalImage.height();
- int i,j;
- double computation=0;
- double computationWithNoise=0;
- matrixImg = new float*[rows];
- for (i = 0; i < rows; ++i)
- {
- matrixImg[i] = new float[cols];
- }
- for(i=0;i<rows;i++)
- {
- for(j=0;j<cols;j++)
- {
- computation= (nextGaussian(&nextNextGaussian,&haveNextNextGaussian) * sqrt(variance)) + mean;
- computationWithNoise=originalImage.pixelIndex(i,j)+computation;
- if(computationWithNoise>=255)
- {
- matrixImg[i][j]=255;
- }
- else if(computationWithNoise<=0)
- {
- matrixImg[i][j]=0;
- }
- else
- {
- matrixImg[i][j]=computationWithNoise;
- }
- }
- }
- filteredImage=matrixToImage(matrixImg,rows,cols);
- return filteredImage;
- }
- QImage saltPepperNoise(QImage originalImage, int percentage)
- {
- QImage filteredImage=originalImage;
- float floatedPercentage= (float) percentage/100;
- int rows=originalImage.width();
- int cols=originalImage.height();
- int totalPixels=rows*cols;
- int modifiedPixels= (int) totalPixels*floatedPercentage;
- int i;
- int xCasual, yCasual;
- int flipCoin;
- for(i=0;i<modifiedPixels;i++)
- {
- xCasual=randomValueFromMinToMax(0,rows);
- yCasual=randomValueFromMinToMax(0,cols);
- flipCoin=randomValueFromMinToMax(0,2);
- if(flipCoin==0)
- {
- filteredImage.setPixel(xCasual,yCasual,0);
- }
- else
- {
- filteredImage.setPixel(xCasual,yCasual,255);
- }
- }
- return filteredImage;
- }
- QImage impulseNoise(QImage originalImage, int percentage)
- {
- QImage filteredImage=originalImage;
- float floatedPercentage= (float) percentage/100;
- int rows=originalImage.width();
- int cols=originalImage.height();
- int totalPixels=rows*cols;
- int modifiedPixels= (int) totalPixels*floatedPercentage;
- int i;
- int xCasual, yCasual;
- for(i=0;i<modifiedPixels;i++)
- {
- xCasual=randomValueFromMinToMax(0,rows);
- yCasual=randomValueFromMinToMax(0,cols);
- filteredImage.setPixel(xCasual,yCasual,255);
- }
- return filteredImage;
- }
|