123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- @c ---content LibInfo---
- @comment This file was generated by doc2tex.pl from d2t_singular/toric_lib.doc
- @comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/toric_lib.doc INSTEAD
- @c library version: (1.11,2001/02/06)
- @c library file: ../Singular/LIB/toric.lib
- @cindex toric.lib
- @cindex toric_lib
- @table @asis
- @item @strong{Library:}
- toric.lib
- @item @strong{Purpose:}
- Standard Basis of Toric Ideals
- @item @strong{Author:}
- Christine Theis, email: ctheis@@math.uni-sb.de
- @end table
- @strong{Procedures:}
- @menu
- * toric_ideal:: computes the toric ideal of A
- * toric_std:: standard basis of I by a specialized Buchberger algorithm
- @end menu
- @c ---end content LibInfo---
- @c ------------------- toric_ideal -------------
- @node toric_ideal, toric_std,, toric_lib
- @subsubsection toric_ideal
- @cindex toric_ideal
- @c ---content toric_ideal---
- Procedure from library @code{toric.lib} (@pxref{toric_lib}).
- @table @asis
- @item @strong{Usage:}
- toric_ideal(A,alg); A intmat, alg string
- @*toric_ideal(A,alg,prsv); A intmat, alg string, prsv intvec
- @item @strong{Return:}
- ideal: standard basis of the toric ideal of A
- @item @strong{Note:}
- These procedures return the standard basis of the toric ideal of A
- with respect to the term ordering in the current basering. Not all
- term orderings are supported: The usual global term orderings may be
- used, but no block orderings combining them.
- @*One may call the procedure with several different algorithms: @*
- - the algorithm of Conti/Traverso using elimination (ect), @*
- - the algorithm of Pottier (pt),
- @*- an algorithm of Bigatti/La Scala/Robbiano (blr),
- @*- the algorithm of Hosten/Sturmfels (hs),
- @*- the algorithm of DiBiase/Urbanke (du).
- @*The argument `alg' should be the abbreviation for an algorithm as
- above: ect, pt, blr, hs or du.
- If `alg' is chosen to be `blr' or `hs', the algorithm needs a vector
- with positive coefficients in the row space of A.
- @*If no row of A contains only positive entries, one has to use the
- second version of toric_ideal which takes such a vector as its third
- argument.
- @*For the mathematical background, see
- @ref{Toric ideals and integer programming}.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example toric_ideal d2t_singular/toric_lib.doc:64
- LIB "toric.lib";
- ring r=0,(x,y,z),dp;
- // call with two arguments
- intmat A[2][3]=1,1,0,0,1,1;
- A;
- @expansion{} 1,1,0,
- @expansion{} 0,1,1
- ideal I=toric_ideal(A,"du");
- I;
- @expansion{} I[1]=xz-y
- I=toric_ideal(A,"blr");
- @expansion{} ERROR: The chosen algorithm needs a positive vector in the row space of t\
- he matrix.
- I;
- @expansion{} I[1]=0
- // call with three arguments
- intvec prsv=1,2,1;
- I=toric_ideal(A,"blr",prsv);
- I;
- @expansion{} I[1]=xz-y
- @c end example toric_ideal d2t_singular/toric_lib.doc:64
- @end smallexample
- @c inserted refs from d2t_singular/toric_lib.doc:80
- @ifinfo
- @menu
- See also:
- * Toric ideals::
- * intprog_lib::
- * toric_lib::
- * toric_std::
- @end menu
- @end ifinfo
- @iftex
- @strong{See also:}
- @ref{Toric ideals};
- @ref{intprog_lib};
- @ref{toric_lib};
- @ref{toric_std}.
- @end iftex
- @c end inserted refs from d2t_singular/toric_lib.doc:80
- @c ---end content toric_ideal---
- @c ------------------- toric_std -------------
- @node toric_std,, toric_ideal, toric_lib
- @subsubsection toric_std
- @cindex toric_std
- @c ---content toric_std---
- Procedure from library @code{toric.lib} (@pxref{toric_lib}).
- @table @asis
- @item @strong{Usage:}
- toric_std(I); I ideal
- @item @strong{Return:}
- ideal: standard basis of I
- @item @strong{Note:}
- This procedure computes the standard basis of I using a specialized
- Buchberger algorithm. The generating system by which I is given has
- to consist of binomials of the form x^u-x^v. There is no real check
- if I is toric. If I is generated by binomials of the above form,
- but not toric, toric_std computes an ideal `between' I and its
- saturation with respect to all variables.
- @*For the mathematical background, see
- @ref{Toric ideals and integer programming}.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example toric_std d2t_singular/toric_lib.doc:114
- LIB "toric.lib";
- ring r=0,(x,y,z),wp(3,2,1);
- // call with toric ideal (of the matrix A=(1,1,1))
- ideal I=x-y,x-z;
- ideal J=toric_std(I);
- J;
- @expansion{} J[1]=y-z
- @expansion{} J[2]=x-z
- // call with the same ideal, but badly chosen generators:
- // 1) not only binomials
- I=x-y,2x-y-z;
- J=toric_std(I);
- @expansion{} ERROR: Generator 2 of the input ideal is no difference of monomials.
- // 2) binomials whose monomials are not relatively prime
- I=x-y,xy-yz,y-z;
- J=toric_std(I);
- @expansion{} Warning: The monomials of generator 2 of the input ideal are not relative\
- ly prime.
- J;
- @expansion{} J[1]=y-z
- @expansion{} J[2]=x-z
- // call with a non-toric ideal that seems to be toric
- I=x-yz,xy-z;
- J=toric_std(I);
- J;
- @expansion{} J[1]=y2-1
- @expansion{} J[2]=x-yz
- // comparison with real standard basis and saturation
- ideal H=std(I);
- H;
- @expansion{} H[1]=x-yz
- @expansion{} H[2]=y2z-z
- LIB "elim.lib";
- sat(H,xyz);
- @expansion{} [1]:
- @expansion{} _[1]=x-yz
- @expansion{} _[2]=y2-1
- @expansion{} [2]:
- @expansion{} 1
- @c end example toric_std d2t_singular/toric_lib.doc:114
- @end smallexample
- @c inserted refs from d2t_singular/toric_lib.doc:140
- @ifinfo
- @menu
- See also:
- * Toric ideals::
- * intprog_lib::
- * toric_ideal::
- * toric_lib::
- @end menu
- @end ifinfo
- @iftex
- @strong{See also:}
- @ref{Toric ideals};
- @ref{intprog_lib};
- @ref{toric_ideal};
- @ref{toric_lib}.
- @end iftex
- @c end inserted refs from d2t_singular/toric_lib.doc:140
- @c ---end content toric_std---
|