123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- @c ---content LibInfo---
- @comment This file was generated by doc2tex.pl from d2t_singular/mondromy_lib.doc
- @comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/mondromy_lib.doc INSTEAD
- @c library version: (1.22.2.2,2002/02/20)
- @c library file: ../Singular/LIB/mondromy.lib
- @cindex mondromy.lib
- @cindex mondromy_lib
- @table @asis
- @item @strong{Library:}
- mondromy.lib
- @item @strong{Purpose:}
- Monodromy of an Isolated Hypersurface Singularity
- @item @strong{Author:}
- Mathias Schulze, email: mschulze@@mathematik.uni-kl.de
- @item @strong{Overview:}
- A library to compute the monodromy of an isolated hypersurface singularity.
- It uses an algorithm by Brieskorn (manuscripta math. 2 (1970), 103-161) to
- compute a connection matrix of the meromorphic Gauss-Manin connection up to
- arbitrarily high order, and an algorithm of Gerard and Levelt (Ann. Inst.
- Fourier, Grenoble 23,1 (1973), pp. 157-195) to transform it to a simple pole.
- @end table
- @strong{Procedures:}
- @menu
- * detadj:: determinant and adjoint matrix of square matrix U
- * invunit:: series inverse of polynomial u up to order n
- * jacoblift:: lifts f^kappa in jacob(f) with minimal kappa
- * monodromyB:: monodromy of isolated hypersurface singularity f
- * H2basis:: basis of Brieskorn lattice H''
- @end menu
- @cindex Monodromy
- @cindex hypersurface singularity
- @cindex Gauss-Manin connection
- @cindex Brieskorn lattice
- @c inserted refs from d2t_singular/mondromy_lib.doc:35
- @ifinfo
- @menu
- See also:
- * gaussman_lib::
- @end menu
- @end ifinfo
- @iftex
- @strong{See also:}
- @ref{gaussman_lib}.
- @end iftex
- @c end inserted refs from d2t_singular/mondromy_lib.doc:35
- @c ---end content LibInfo---
- @c ------------------- detadj -------------
- @node detadj, invunit,, mondromy_lib
- @subsubsection detadj
- @cindex detadj
- @c ---content detadj---
- Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
- @table @asis
- @item @strong{Usage:}
- detadj(U); U matrix
- @item @strong{Assume:}
- U is a square matrix with non zero determinant.
- @item @strong{Return:}
- The procedure returns a list with at most 2 entries.
- @*If U is not a square matrix, the list is empty.
- @*If U is a square matrix, then the first entry is the determinant of U.
- If U is a square matrix and the determinant of U not zero,
- then the second entry is the adjoint matrix of U.
- @item @strong{Display:}
- The procedure displays comments if printlevel>=1.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example detadj d2t_singular/mondromy_lib.doc:68
- LIB "mondromy.lib";
- ring R=0,x,dp;
- matrix U[2][2]=1,1+x,1+x2,1+x3;
- list daU=detadj(U);
- daU[1];
- @expansion{} -x2-x
- print(daU[2]);
- @expansion{} x3+1, -x-1,
- @expansion{} -x2-1,1
- @c end example detadj d2t_singular/mondromy_lib.doc:68
- @end smallexample
- @c ---end content detadj---
- @c ------------------- invunit -------------
- @node invunit, jacoblift, detadj, mondromy_lib
- @subsubsection invunit
- @cindex invunit
- @c ---content invunit---
- Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
- @table @asis
- @item @strong{Usage:}
- invunit(u,n); u poly, n int
- @item @strong{Assume:}
- The polynomial u is a series unit.
- @item @strong{Return:}
- The procedure returns the series inverse of u up to order n
- or a zero polynomial if u is no series unit.
- @item @strong{Display:}
- The procedure displays comments if printlevel>=1.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example invunit d2t_singular/mondromy_lib.doc:103
- LIB "mondromy.lib";
- ring R=0,(x,y),dp;
- invunit(2+x3+xy4,10);
- @expansion{} 1/8x2y8-1/16x9+1/4x4y4+1/8x6-1/4xy4-1/4x3+1/2
- @c end example invunit d2t_singular/mondromy_lib.doc:103
- @end smallexample
- @c ---end content invunit---
- @c ------------------- jacoblift -------------
- @node jacoblift, monodromyB, invunit, mondromy_lib
- @subsubsection jacoblift
- @cindex jacoblift
- @c ---content jacoblift---
- Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
- @table @asis
- @item @strong{Usage:}
- jacoblift(f); f poly
- @item @strong{Assume:}
- The polynomial f in a series ring (local ordering) defines
- an isolated hypersurface singularity.
- @item @strong{Return:}
- The procedure returns a list with entries kappa, xi, u of type
- int, vector, poly such that kappa is minimal with f^kappa in jacob(f),
- u is a unit, and u*f^kappa=(matrix(jacob(f))*xi)[1,1].
- @item @strong{Display:}
- The procedure displays comments if printlevel>=1.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example jacoblift d2t_singular/mondromy_lib.doc:137
- LIB "mondromy.lib";
- ring R=0,(x,y),ds;
- poly f=x2y2+x6+y6;
- jacoblift(f);
- @expansion{} [1]:
- @expansion{} 2
- @expansion{} [2]:
- @expansion{} 1/2x2y3*gen(2)+1/6x7*gen(1)+5/6x6y*gen(2)-2/3xy6*gen(1)+1/6y7*gen(2)-4\
- x4y5*gen(2)-3/2x9y2*gen(1)-15/2x8y3*gen(2)+9/2x3y8*gen(1)-3/2x2y9*gen(2)
- @expansion{} [3]:
- @expansion{} 1-9x2y2
- @c end example jacoblift d2t_singular/mondromy_lib.doc:137
- @end smallexample
- @c ---end content jacoblift---
- @c ------------------- monodromyB -------------
- @node monodromyB, H2basis, jacoblift, mondromy_lib
- @subsubsection monodromyB
- @cindex monodromyB
- @c ---content monodromyB---
- Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
- @table @asis
- @item @strong{Usage:}
- monodromyB(f[,opt]); f poly, opt int
- @item @strong{Assume:}
- The polynomial f in a series ring (local ordering) defines
- an isolated hypersurface singularity.
- @item @strong{Return:}
- The procedure returns a residue matrix M of the meromorphic
- Gauss-Manin connection of the singularity defined by f
- or an empty matrix if the assumptions are not fulfilled.
- If opt=0 (default), exp(-2*pi*i*M) is a monodromy matrix of f,
- else, only the characteristic polynomial of exp(-2*pi*i*M) coincides
- with the characteristic polynomial of the monodromy of f.
- @item @strong{Display:}
- The procedure displays more comments for higher printlevel.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example monodromyB d2t_singular/mondromy_lib.doc:175
- LIB "mondromy.lib";
- ring R=0,(x,y),ds;
- poly f=x2y2+x6+y6;
- matrix M=monodromyB(f);
- print(M);
- @expansion{} 7/6,0, 0,0, 0, 0,0, 0,-1/2,0, 0, 0, 0,
- @expansion{} 0, 7/6,0,0, 0, 0,-1/2,0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 1,0, 0, 0,0, 0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,4/3,0, 0,0, 0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 4/3,0,0, 0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 1,0, 0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,5/6, 0,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,0, 1,0, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,0, 0,5/6, 0, 0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 2/3,0, 0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 2/3,0, 0,
- @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 47/44,-625/396,
- @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 9/44, -3/44
- @c end example monodromyB d2t_singular/mondromy_lib.doc:175
- @end smallexample
- @c ---end content monodromyB---
- @c ------------------- H2basis -------------
- @node H2basis,, monodromyB, mondromy_lib
- @subsubsection H2basis
- @cindex H2basis
- @c ---content H2basis---
- Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
- @table @asis
- @item @strong{Usage:}
- H2basis(f); f poly
- @item @strong{Assume:}
- The polynomial f in a series ring (local ordering) defines
- an isolated hypersurface singularity.
- @item @strong{Return:}
- The procedure returns a list of representatives of a C@{f@}-basis of the
- Brieskorn lattice H''=Omega^(n+1)/df^dOmega^(n-1).
- @item @strong{Theory:}
- H'' is a free C@{f@}-module of rank milnor(f).
- @item @strong{Display:}
- The procedure displays more comments for higher printlevel.
- @end table
- @strong{Example:}
- @smallexample
- @c computed example H2basis d2t_singular/mondromy_lib.doc:213
- LIB "mondromy.lib";
- ring R=0,(x,y),ds;
- poly f=x2y2+x6+y6;
- H2basis(f);
- @expansion{} [1]:
- @expansion{} x4
- @expansion{} [2]:
- @expansion{} x2y2
- @expansion{} [3]:
- @expansion{} y4
- @expansion{} [4]:
- @expansion{} x3
- @expansion{} [5]:
- @expansion{} x2y
- @expansion{} [6]:
- @expansion{} xy2
- @expansion{} [7]:
- @expansion{} y3
- @expansion{} [8]:
- @expansion{} x2
- @expansion{} [9]:
- @expansion{} xy
- @expansion{} [10]:
- @expansion{} y2
- @expansion{} [11]:
- @expansion{} x
- @expansion{} [12]:
- @expansion{} y
- @expansion{} [13]:
- @expansion{} 1
- @c end example H2basis d2t_singular/mondromy_lib.doc:213
- @end smallexample
- @c ---end content H2basis---
|