mondromy_lib.tex 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. @c ---content LibInfo---
  2. @comment This file was generated by doc2tex.pl from d2t_singular/mondromy_lib.doc
  3. @comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/mondromy_lib.doc INSTEAD
  4. @c library version: (1.22.2.2,2002/02/20)
  5. @c library file: ../Singular/LIB/mondromy.lib
  6. @cindex mondromy.lib
  7. @cindex mondromy_lib
  8. @table @asis
  9. @item @strong{Library:}
  10. mondromy.lib
  11. @item @strong{Purpose:}
  12. Monodromy of an Isolated Hypersurface Singularity
  13. @item @strong{Author:}
  14. Mathias Schulze, email: mschulze@@mathematik.uni-kl.de
  15. @item @strong{Overview:}
  16. A library to compute the monodromy of an isolated hypersurface singularity.
  17. It uses an algorithm by Brieskorn (manuscripta math. 2 (1970), 103-161) to
  18. compute a connection matrix of the meromorphic Gauss-Manin connection up to
  19. arbitrarily high order, and an algorithm of Gerard and Levelt (Ann. Inst.
  20. Fourier, Grenoble 23,1 (1973), pp. 157-195) to transform it to a simple pole.
  21. @end table
  22. @strong{Procedures:}
  23. @menu
  24. * detadj:: determinant and adjoint matrix of square matrix U
  25. * invunit:: series inverse of polynomial u up to order n
  26. * jacoblift:: lifts f^kappa in jacob(f) with minimal kappa
  27. * monodromyB:: monodromy of isolated hypersurface singularity f
  28. * H2basis:: basis of Brieskorn lattice H''
  29. @end menu
  30. @cindex Monodromy
  31. @cindex hypersurface singularity
  32. @cindex Gauss-Manin connection
  33. @cindex Brieskorn lattice
  34. @c inserted refs from d2t_singular/mondromy_lib.doc:35
  35. @ifinfo
  36. @menu
  37. See also:
  38. * gaussman_lib::
  39. @end menu
  40. @end ifinfo
  41. @iftex
  42. @strong{See also:}
  43. @ref{gaussman_lib}.
  44. @end iftex
  45. @c end inserted refs from d2t_singular/mondromy_lib.doc:35
  46. @c ---end content LibInfo---
  47. @c ------------------- detadj -------------
  48. @node detadj, invunit,, mondromy_lib
  49. @subsubsection detadj
  50. @cindex detadj
  51. @c ---content detadj---
  52. Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
  53. @table @asis
  54. @item @strong{Usage:}
  55. detadj(U); U matrix
  56. @item @strong{Assume:}
  57. U is a square matrix with non zero determinant.
  58. @item @strong{Return:}
  59. The procedure returns a list with at most 2 entries.
  60. @*If U is not a square matrix, the list is empty.
  61. @*If U is a square matrix, then the first entry is the determinant of U.
  62. If U is a square matrix and the determinant of U not zero,
  63. then the second entry is the adjoint matrix of U.
  64. @item @strong{Display:}
  65. The procedure displays comments if printlevel>=1.
  66. @end table
  67. @strong{Example:}
  68. @smallexample
  69. @c computed example detadj d2t_singular/mondromy_lib.doc:68
  70. LIB "mondromy.lib";
  71. ring R=0,x,dp;
  72. matrix U[2][2]=1,1+x,1+x2,1+x3;
  73. list daU=detadj(U);
  74. daU[1];
  75. @expansion{} -x2-x
  76. print(daU[2]);
  77. @expansion{} x3+1, -x-1,
  78. @expansion{} -x2-1,1
  79. @c end example detadj d2t_singular/mondromy_lib.doc:68
  80. @end smallexample
  81. @c ---end content detadj---
  82. @c ------------------- invunit -------------
  83. @node invunit, jacoblift, detadj, mondromy_lib
  84. @subsubsection invunit
  85. @cindex invunit
  86. @c ---content invunit---
  87. Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
  88. @table @asis
  89. @item @strong{Usage:}
  90. invunit(u,n); u poly, n int
  91. @item @strong{Assume:}
  92. The polynomial u is a series unit.
  93. @item @strong{Return:}
  94. The procedure returns the series inverse of u up to order n
  95. or a zero polynomial if u is no series unit.
  96. @item @strong{Display:}
  97. The procedure displays comments if printlevel>=1.
  98. @end table
  99. @strong{Example:}
  100. @smallexample
  101. @c computed example invunit d2t_singular/mondromy_lib.doc:103
  102. LIB "mondromy.lib";
  103. ring R=0,(x,y),dp;
  104. invunit(2+x3+xy4,10);
  105. @expansion{} 1/8x2y8-1/16x9+1/4x4y4+1/8x6-1/4xy4-1/4x3+1/2
  106. @c end example invunit d2t_singular/mondromy_lib.doc:103
  107. @end smallexample
  108. @c ---end content invunit---
  109. @c ------------------- jacoblift -------------
  110. @node jacoblift, monodromyB, invunit, mondromy_lib
  111. @subsubsection jacoblift
  112. @cindex jacoblift
  113. @c ---content jacoblift---
  114. Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
  115. @table @asis
  116. @item @strong{Usage:}
  117. jacoblift(f); f poly
  118. @item @strong{Assume:}
  119. The polynomial f in a series ring (local ordering) defines
  120. an isolated hypersurface singularity.
  121. @item @strong{Return:}
  122. The procedure returns a list with entries kappa, xi, u of type
  123. int, vector, poly such that kappa is minimal with f^kappa in jacob(f),
  124. u is a unit, and u*f^kappa=(matrix(jacob(f))*xi)[1,1].
  125. @item @strong{Display:}
  126. The procedure displays comments if printlevel>=1.
  127. @end table
  128. @strong{Example:}
  129. @smallexample
  130. @c computed example jacoblift d2t_singular/mondromy_lib.doc:137
  131. LIB "mondromy.lib";
  132. ring R=0,(x,y),ds;
  133. poly f=x2y2+x6+y6;
  134. jacoblift(f);
  135. @expansion{} [1]:
  136. @expansion{} 2
  137. @expansion{} [2]:
  138. @expansion{} 1/2x2y3*gen(2)+1/6x7*gen(1)+5/6x6y*gen(2)-2/3xy6*gen(1)+1/6y7*gen(2)-4\
  139. x4y5*gen(2)-3/2x9y2*gen(1)-15/2x8y3*gen(2)+9/2x3y8*gen(1)-3/2x2y9*gen(2)
  140. @expansion{} [3]:
  141. @expansion{} 1-9x2y2
  142. @c end example jacoblift d2t_singular/mondromy_lib.doc:137
  143. @end smallexample
  144. @c ---end content jacoblift---
  145. @c ------------------- monodromyB -------------
  146. @node monodromyB, H2basis, jacoblift, mondromy_lib
  147. @subsubsection monodromyB
  148. @cindex monodromyB
  149. @c ---content monodromyB---
  150. Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
  151. @table @asis
  152. @item @strong{Usage:}
  153. monodromyB(f[,opt]); f poly, opt int
  154. @item @strong{Assume:}
  155. The polynomial f in a series ring (local ordering) defines
  156. an isolated hypersurface singularity.
  157. @item @strong{Return:}
  158. The procedure returns a residue matrix M of the meromorphic
  159. Gauss-Manin connection of the singularity defined by f
  160. or an empty matrix if the assumptions are not fulfilled.
  161. If opt=0 (default), exp(-2*pi*i*M) is a monodromy matrix of f,
  162. else, only the characteristic polynomial of exp(-2*pi*i*M) coincides
  163. with the characteristic polynomial of the monodromy of f.
  164. @item @strong{Display:}
  165. The procedure displays more comments for higher printlevel.
  166. @end table
  167. @strong{Example:}
  168. @smallexample
  169. @c computed example monodromyB d2t_singular/mondromy_lib.doc:175
  170. LIB "mondromy.lib";
  171. ring R=0,(x,y),ds;
  172. poly f=x2y2+x6+y6;
  173. matrix M=monodromyB(f);
  174. print(M);
  175. @expansion{} 7/6,0, 0,0, 0, 0,0, 0,-1/2,0, 0, 0, 0,
  176. @expansion{} 0, 7/6,0,0, 0, 0,-1/2,0,0, 0, 0, 0, 0,
  177. @expansion{} 0, 0, 1,0, 0, 0,0, 0,0, 0, 0, 0, 0,
  178. @expansion{} 0, 0, 0,4/3,0, 0,0, 0,0, 0, 0, 0, 0,
  179. @expansion{} 0, 0, 0,0, 4/3,0,0, 0,0, 0, 0, 0, 0,
  180. @expansion{} 0, 0, 0,0, 0, 1,0, 0,0, 0, 0, 0, 0,
  181. @expansion{} 0, 0, 0,0, 0, 0,5/6, 0,0, 0, 0, 0, 0,
  182. @expansion{} 0, 0, 0,0, 0, 0,0, 1,0, 0, 0, 0, 0,
  183. @expansion{} 0, 0, 0,0, 0, 0,0, 0,5/6, 0, 0, 0, 0,
  184. @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 2/3,0, 0, 0,
  185. @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 2/3,0, 0,
  186. @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 47/44,-625/396,
  187. @expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 9/44, -3/44
  188. @c end example monodromyB d2t_singular/mondromy_lib.doc:175
  189. @end smallexample
  190. @c ---end content monodromyB---
  191. @c ------------------- H2basis -------------
  192. @node H2basis,, monodromyB, mondromy_lib
  193. @subsubsection H2basis
  194. @cindex H2basis
  195. @c ---content H2basis---
  196. Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
  197. @table @asis
  198. @item @strong{Usage:}
  199. H2basis(f); f poly
  200. @item @strong{Assume:}
  201. The polynomial f in a series ring (local ordering) defines
  202. an isolated hypersurface singularity.
  203. @item @strong{Return:}
  204. The procedure returns a list of representatives of a C@{f@}-basis of the
  205. Brieskorn lattice H''=Omega^(n+1)/df^dOmega^(n-1).
  206. @item @strong{Theory:}
  207. H'' is a free C@{f@}-module of rank milnor(f).
  208. @item @strong{Display:}
  209. The procedure displays more comments for higher printlevel.
  210. @end table
  211. @strong{Example:}
  212. @smallexample
  213. @c computed example H2basis d2t_singular/mondromy_lib.doc:213
  214. LIB "mondromy.lib";
  215. ring R=0,(x,y),ds;
  216. poly f=x2y2+x6+y6;
  217. H2basis(f);
  218. @expansion{} [1]:
  219. @expansion{} x4
  220. @expansion{} [2]:
  221. @expansion{} x2y2
  222. @expansion{} [3]:
  223. @expansion{} y4
  224. @expansion{} [4]:
  225. @expansion{} x3
  226. @expansion{} [5]:
  227. @expansion{} x2y
  228. @expansion{} [6]:
  229. @expansion{} xy2
  230. @expansion{} [7]:
  231. @expansion{} y3
  232. @expansion{} [8]:
  233. @expansion{} x2
  234. @expansion{} [9]:
  235. @expansion{} xy
  236. @expansion{} [10]:
  237. @expansion{} y2
  238. @expansion{} [11]:
  239. @expansion{} x
  240. @expansion{} [12]:
  241. @expansion{} y
  242. @expansion{} [13]:
  243. @expansion{} 1
  244. @c end example H2basis d2t_singular/mondromy_lib.doc:213
  245. @end smallexample
  246. @c ---end content H2basis---