123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- /* Searching in a string. -*- coding: utf-8 -*-
- Copyright (C) 2005-2017 Free Software Foundation, Inc.
- Written by Bruno Haible <bruno@clisp.org>, 2005.
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include <config.h>
- /* Specification. */
- #include <string.h>
- #include <stdbool.h>
- #include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
- #include "malloca.h"
- #include "mbuiter.h"
- /* Knuth-Morris-Pratt algorithm. */
- #define UNIT unsigned char
- #define CANON_ELEMENT(c) c
- #include "str-kmp.h"
- /* Knuth-Morris-Pratt algorithm.
- See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
- Return a boolean indicating success:
- Return true and set *RESULTP if the search was completed.
- Return false if it was aborted because not enough memory was available. */
- static bool
- knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
- const char **resultp)
- {
- size_t m = mbslen (needle);
- mbchar_t *needle_mbchars;
- size_t *table;
- /* Allocate room for needle_mbchars and the table. */
- void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
- void *table_memory;
- if (memory == NULL)
- return false;
- needle_mbchars = memory;
- table_memory = needle_mbchars + m;
- table = table_memory;
- /* Fill needle_mbchars. */
- {
- mbui_iterator_t iter;
- size_t j;
- j = 0;
- for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
- mb_copy (&needle_mbchars[j], &mbui_cur (iter));
- }
- /* Fill the table.
- For 0 < i < m:
- 0 < table[i] <= i is defined such that
- forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
- and table[i] is as large as possible with this property.
- This implies:
- 1) For 0 < i < m:
- If table[i] < i,
- needle[table[i]..i-1] = needle[0..i-1-table[i]].
- 2) For 0 < i < m:
- rhaystack[0..i-1] == needle[0..i-1]
- and exists h, i <= h < m: rhaystack[h] != needle[h]
- implies
- forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
- table[0] remains uninitialized. */
- {
- size_t i, j;
- /* i = 1: Nothing to verify for x = 0. */
- table[1] = 1;
- j = 0;
- for (i = 2; i < m; i++)
- {
- /* Here: j = i-1 - table[i-1].
- The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
- for x < table[i-1], by induction.
- Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
- mbchar_t *b = &needle_mbchars[i - 1];
- for (;;)
- {
- /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
- is known to hold for x < i-1-j.
- Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
- if (mb_equal (*b, needle_mbchars[j]))
- {
- /* Set table[i] := i-1-j. */
- table[i] = i - ++j;
- break;
- }
- /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
- for x = i-1-j, because
- needle[i-1] != needle[j] = needle[i-1-x]. */
- if (j == 0)
- {
- /* The inequality holds for all possible x. */
- table[i] = i;
- break;
- }
- /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
- for i-1-j < x < i-1-j+table[j], because for these x:
- needle[x..i-2]
- = needle[x-(i-1-j)..j-1]
- != needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
- = needle[0..i-2-x],
- hence needle[x..i-1] != needle[0..i-1-x].
- Furthermore
- needle[i-1-j+table[j]..i-2]
- = needle[table[j]..j-1]
- = needle[0..j-1-table[j]] (by definition of table[j]). */
- j = j - table[j];
- }
- /* Here: j = i - table[i]. */
- }
- }
- /* Search, using the table to accelerate the processing. */
- {
- size_t j;
- mbui_iterator_t rhaystack;
- mbui_iterator_t phaystack;
- *resultp = NULL;
- j = 0;
- mbui_init (rhaystack, haystack);
- mbui_init (phaystack, haystack);
- /* Invariant: phaystack = rhaystack + j. */
- while (mbui_avail (phaystack))
- if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
- {
- j++;
- mbui_advance (phaystack);
- if (j == m)
- {
- /* The entire needle has been found. */
- *resultp = mbui_cur_ptr (rhaystack);
- break;
- }
- }
- else if (j > 0)
- {
- /* Found a match of needle[0..j-1], mismatch at needle[j]. */
- size_t count = table[j];
- j -= count;
- for (; count > 0; count--)
- {
- if (!mbui_avail (rhaystack))
- abort ();
- mbui_advance (rhaystack);
- }
- }
- else
- {
- /* Found a mismatch at needle[0] already. */
- if (!mbui_avail (rhaystack))
- abort ();
- mbui_advance (rhaystack);
- mbui_advance (phaystack);
- }
- }
- freea (memory);
- return true;
- }
- /* Find the first occurrence of the character string NEEDLE in the character
- string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
- char *
- mbsstr (const char *haystack, const char *needle)
- {
- /* Be careful not to look at the entire extent of haystack or needle
- until needed. This is useful because of these two cases:
- - haystack may be very long, and a match of needle found early,
- - needle may be very long, and not even a short initial segment of
- needle may be found in haystack. */
- if (MB_CUR_MAX > 1)
- {
- mbui_iterator_t iter_needle;
- mbui_init (iter_needle, needle);
- if (mbui_avail (iter_needle))
- {
- /* Minimizing the worst-case complexity:
- Let n = mbslen(haystack), m = mbslen(needle).
- The naïve algorithm is O(n*m) worst-case.
- The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
- memory allocation.
- To achieve linear complexity and yet amortize the cost of the
- memory allocation, we activate the Knuth-Morris-Pratt algorithm
- only once the naïve algorithm has already run for some time; more
- precisely, when
- - the outer loop count is >= 10,
- - the average number of comparisons per outer loop is >= 5,
- - the total number of comparisons is >= m.
- But we try it only once. If the memory allocation attempt failed,
- we don't retry it. */
- bool try_kmp = true;
- size_t outer_loop_count = 0;
- size_t comparison_count = 0;
- size_t last_ccount = 0; /* last comparison count */
- mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
- mbui_iterator_t iter_haystack;
- mbui_init (iter_needle_last_ccount, needle);
- mbui_init (iter_haystack, haystack);
- for (;; mbui_advance (iter_haystack))
- {
- if (!mbui_avail (iter_haystack))
- /* No match. */
- return NULL;
- /* See whether it's advisable to use an asymptotically faster
- algorithm. */
- if (try_kmp
- && outer_loop_count >= 10
- && comparison_count >= 5 * outer_loop_count)
- {
- /* See if needle + comparison_count now reaches the end of
- needle. */
- size_t count = comparison_count - last_ccount;
- for (;
- count > 0 && mbui_avail (iter_needle_last_ccount);
- count--)
- mbui_advance (iter_needle_last_ccount);
- last_ccount = comparison_count;
- if (!mbui_avail (iter_needle_last_ccount))
- {
- /* Try the Knuth-Morris-Pratt algorithm. */
- const char *result;
- bool success =
- knuth_morris_pratt_multibyte (haystack, needle,
- &result);
- if (success)
- return (char *) result;
- try_kmp = false;
- }
- }
- outer_loop_count++;
- comparison_count++;
- if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
- /* The first character matches. */
- {
- mbui_iterator_t rhaystack;
- mbui_iterator_t rneedle;
- memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
- mbui_advance (rhaystack);
- mbui_init (rneedle, needle);
- if (!mbui_avail (rneedle))
- abort ();
- mbui_advance (rneedle);
- for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
- {
- if (!mbui_avail (rneedle))
- /* Found a match. */
- return (char *) mbui_cur_ptr (iter_haystack);
- if (!mbui_avail (rhaystack))
- /* No match. */
- return NULL;
- comparison_count++;
- if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
- /* Nothing in this round. */
- break;
- }
- }
- }
- }
- else
- return (char *) haystack;
- }
- else
- {
- if (*needle != '\0')
- {
- /* Minimizing the worst-case complexity:
- Let n = strlen(haystack), m = strlen(needle).
- The naïve algorithm is O(n*m) worst-case.
- The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
- memory allocation.
- To achieve linear complexity and yet amortize the cost of the
- memory allocation, we activate the Knuth-Morris-Pratt algorithm
- only once the naïve algorithm has already run for some time; more
- precisely, when
- - the outer loop count is >= 10,
- - the average number of comparisons per outer loop is >= 5,
- - the total number of comparisons is >= m.
- But we try it only once. If the memory allocation attempt failed,
- we don't retry it. */
- bool try_kmp = true;
- size_t outer_loop_count = 0;
- size_t comparison_count = 0;
- size_t last_ccount = 0; /* last comparison count */
- const char *needle_last_ccount = needle; /* = needle + last_ccount */
- /* Speed up the following searches of needle by caching its first
- character. */
- char b = *needle++;
- for (;; haystack++)
- {
- if (*haystack == '\0')
- /* No match. */
- return NULL;
- /* See whether it's advisable to use an asymptotically faster
- algorithm. */
- if (try_kmp
- && outer_loop_count >= 10
- && comparison_count >= 5 * outer_loop_count)
- {
- /* See if needle + comparison_count now reaches the end of
- needle. */
- if (needle_last_ccount != NULL)
- {
- needle_last_ccount +=
- strnlen (needle_last_ccount,
- comparison_count - last_ccount);
- if (*needle_last_ccount == '\0')
- needle_last_ccount = NULL;
- last_ccount = comparison_count;
- }
- if (needle_last_ccount == NULL)
- {
- /* Try the Knuth-Morris-Pratt algorithm. */
- const unsigned char *result;
- bool success =
- knuth_morris_pratt ((const unsigned char *) haystack,
- (const unsigned char *) (needle - 1),
- strlen (needle - 1),
- &result);
- if (success)
- return (char *) result;
- try_kmp = false;
- }
- }
- outer_loop_count++;
- comparison_count++;
- if (*haystack == b)
- /* The first character matches. */
- {
- const char *rhaystack = haystack + 1;
- const char *rneedle = needle;
- for (;; rhaystack++, rneedle++)
- {
- if (*rneedle == '\0')
- /* Found a match. */
- return (char *) haystack;
- if (*rhaystack == '\0')
- /* No match. */
- return NULL;
- comparison_count++;
- if (*rhaystack != *rneedle)
- /* Nothing in this round. */
- break;
- }
- }
- }
- }
- else
- return (char *) haystack;
- }
- }
|