1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- library(tidyverse)
- brasil <- read_csv2("app/data/brasil.csv")
- data <- read_csv2("app/data/amostra.csv", na = "NA",
- col_types = cols(
- st_acidente_feriado = col_character(),
- ds_agente_causador = col_character(),
- ano_cat = col_integer(),
- ds_cnae_classe_cat = col_character(),
- dt_acidente = col_date(format = "%d/%m/%Y"),
- st_dia_semana_acidente = col_character(),
- ds_emitente_cat = col_character(),
- hora_acidente = col_time(format = "%H%M"),
- idade_cat = col_integer(),
- cd_indica_obito = col_character(),
- nm_municipio = col_character(),
- nome_uf = col_character(),
- ds_natureza_lesao = col_character(),
- ds_cbo = col_character(),
- ds_parte_corpo_atingida = col_character(),
- cd_tipo_sexo_empregado_cat = col_character(),
- ds_tipo_acidente = col_character(),
- ds_tipo_local_acidente = col_character()
- ))
- # Remove codenames for localities and use better names for variables
- #brasil <- brasil %>%
- # select(Nome_UF, Nome_Mesorregião, Nome_Microrregião, Nome_Município) %>%
- # rename(uf = Nome_UF,
- # mesorregiao = Nome_Mesorregião,
- # microrregiao = Nome_Microrregião,
- # municipio = Nome_Município)
- # Use better variable names for dataset and put locality data in front
- data <- rename(data, uf = nome_uf,
- municipio = nm_municipio) %>%
- select(uf, municipio, everything())
- # Add correponding locality data from brasil to data
- complete <- brasil %>% inner_join(data, by = c("uf", "municipio"))
- write.csv2(complete, "completo.csv", row.names=FALSE)
- # Number of accidents:
- country <- group_by(complete, pais) %>% summarize(acidentes = n())
- by_region <- group_by(complete, regiao) %>% summarize(acidentes = n())
- by_uf <- group_by(complete, uf) %>% summarize(acidentes = n())
- by_meso <- group_by(complete, mesorregiao) %>% summarize(acidentes = n())
- by_micro <- group_by(complete, microrregiao) %>% summarize(acidentes = n())
- by_town <- group_by(complete, municipio) %>% summarize(acidentes = n())
- # Write the summaries
- write.csv2(country, "acidentes-total.csv", row.names=FALSE)
- write.csv2(by_region, "acidentes-regiao.csv", row.names=FALSE)
- write.csv2(by_uf, "acidentes-uf.csv", row.names=FALSE)
- write.csv2(by_meso, "acidentes-meso.csv", row.names=FALSE)
- write.csv2(by_micro,"acidentes-micro.csv", row.names=FALSE)
- write.csv2(by_town, "acidentes-municipio.csv", row.names=FALSE)
- # Put everything accident alongside locality (this is temporary)
- acidentes <- brasil %>% inner_join(country, by = c("pais")) %>%
- inner_join(by_region, by = c("regiao")) %>%
- inner_join(by_uf, by = c("uf")) %>%
- inner_join(by_meso, by = c("mesorregiao")) %>%
- inner_join(by_micro, by = c("microrregiao")) %>%
- inner_join(by_town, by = c("municipio")) %>%
- select(pais,
- total = acidentes.x,
- regiao,
- acidentes_regiao = acidentes.y,
- uf,
- acidentes_uf = acidentes.x.x,
- mesorregiao,
- acidentes_meso = acidentes.y.y,
- microrregiao,
- acidentes_micro = acidentes.x.x.x,
- municipio,
- acidentes_municipio = acidentes.y.y.y)
- write.csv2(acidentes, "acidentes.csv", row.names=FALSE)
|