1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021 |
- /* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
- Copyright (C) 1987 Free Software Foundation, Inc.
- This file is part of GNU CC.
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY. No author or distributor
- accepts responsibility to anyone for the consequences of using it
- or for whether it serves any particular purpose or works at all,
- unless he says so in writing. Refer to the GNU CC General Public
- License for full details.
- Everyone is granted permission to copy, modify and redistribute
- GNU CC, but only under the conditions described in the
- GNU CC General Public License. A copy of this license is
- supposed to have been given to you along with GNU CC so you
- can know your rights and responsibilities. It should be in a
- file named COPYING. Among other things, the copyright notice
- and this notice must be preserved on all copies. */
- /* Names to predefine in the preprocessor for this target machine. */
- #define CPP_PREDEFINES "-Dmc68000 -Dsun"
- /* Run-time compilation parameters selecting different hardware subsets. */
- extern int target_flags;
- /* Macros used in the machine description to test the flags. */
- #define TARGET_68020 (target_flags & 1)
- #define TARGET_68881 (target_flags & 2)
- #define TARGET_BITFIELD (target_flags & 4)
- #define TARGET_DEFER_POP (target_flags & 040)
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
- #define TARGET_SWITCHES \
- { { "68020", 5}, \
- { "68881", 2}, \
- { "bitfield", 4}, \
- { "68000", -5}, \
- { "soft-float", -2}, \
- { "nobitfield", -4}, \
- { "defer-pop", 040}, \
- { "", 067}}
- /* target machine storage layout */
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is true for 68020 insns such as bfins and bfexts.
- We make it true always by avoiding using the single-bit insns
- except in special cases with constant bit numbers. */
- #define BITS_BIG_ENDIAN
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 68000. */
- #define BYTES_BIG_ENDIAN
- /* Define this if most significant word of a multiword number is numbered. */
- /* For 68000 we can decide arbitrarily
- since there are no machine instructions for them. */
- /* #define WORDS_BIG_ENDIAN */
- /* number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 16
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
- /* There is no point aligning anything to a rounder boundary than this. */
- #define BIGGEST_ALIGNMENT 16
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT
- /* Standard register usage. */
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- For the 68000, we give the data registers numbers 0-7,
- the address registers numbers 010-017,
- and the 68881 floating point registers numbers 020-027. */
- #define FIRST_PSEUDO_REGISTER 24
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 68000, these are the stack pointer and frame pointer. */
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0}
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 0, 0, 0, 0, 0, 0, \
- 1, 1, 0, 0, 0, 0, 1, 1, \
- 1, 1, 0, 0, 0, 0, 0, 0}
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
- On the 68000, ordinary registers hold 32 bits worth;
- for the 68881 registers, a single register is always enough for
- anything that can be stored in them at all. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 16 ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 68000, the cpu registers can hold any mode but the 68881 registers
- can hold only SFmode or DFmode. And the 68881 registers can't hold anything
- if 68881 use is disabled. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 16 || (TARGET_68881 && ((MODE) == SFmode || (MODE) == DFmode)))
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (((MODE1) == SFmode || (MODE1) == DFmode) \
- == ((MODE2) == SFmode || (MODE2) == DFmode))
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
- /* m68000 pc isn't overloaded on a register. */
- /* #define PC_REGNUM */
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 15
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 14
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 14
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 8
- /* Register in which function's value is returned.
- Actually, multiple registers starting with this one may be used
- depending on the machine mode of the value. */
- #define FUNCTION_VALUE_REGNUM 0
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 9
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The 68000 has three kinds of registers, so eight classes would be
- a complete set. One of them is not needed. */
- enum reg_class { NO_REGS, DATA_REGS, ADDR_REGS, GENERAL_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES };
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
- /* Give names of register classes as strings for dump file. */
- #define REG_CLASS_NAMES \
- {"NO_REGS", "DATA_REGS", "ADDR_REGS", "GENERAL_REGS", \
- "FP_REGS", "FP_OR_DATA_REGS", "ALL_REGS" }
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
- #define REG_CLASS_CONTENTS {0, 0xff, 0xff00, 0xffff, 0xff0000, 0xff00ff, 0xffffff}
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) >= 16 ? FP_REGS : (REGNO) < 8 ? DATA_REGS : ADDR_REGS)
- /* Define a table that lets us find quickly all the reg classes
- containing a given one. This is the initializer for an
- N_REG_CLASSES x N_REG_CLASSES array of reg class codes.
- Row N is a sequence containing all the class codes for
- classes that contain all the regs in class N. Each row
- contains no duplicates, and is terminated by LIM_REG_CLASSES. */
- /* We give just a dummy for the first element, which is for NO_REGS. */
- #define REG_CLASS_SUPERCLASSES \
- {{LIM_REG_CLASSES}, \
- {GENERAL_REGS, FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES}, \
- {GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES}, \
- {ALL_REGS, LIM_REG_CLASSES}, \
- {FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES}, \
- {ALL_REGS, LIM_REG_CLASSES}, \
- {LIM_REG_CLASSES}}
- /* The inverse relationship:
- for each class, a list of all reg classes contained in it. */
- #define REG_CLASS_SUBCLASSES \
- {{LIM_REG_CLASSES}, \
- {LIM_REG_CLASSES}, \
- {LIM_REG_CLASSES}, \
- {DATA_REGS, ADDR_REGS, LIM_REG_CLASSES}, \
- {LIM_REG_CLASSES}, \
- {DATA_REGS, FP_REGS, LIM_REG_CLASSES}, \
- {DATA_REGS, ADDR_REGS, FP_REGS, GENERAL_REGS, FP_OR_DATA_REGS, LIM_REG_CLASSES}}
- /* Define a table that lets us find quickly the class
- for the subunion of any two classes.
- We say "subunion" because the result need not be exactly
- the union; it may instead be a subclass of the union
- (though the closer to the union, the better).
- But if it contains anything beyond union of the two classes,
- you will lose!
- This is an initializer for an N_REG_CLASSES x N_REG_CLASSES
- array of reg class codes. The subunion of classes C1 and C2
- is just element [C1, C2]. */
- #define REG_CLASS_SUBUNION \
- {{NO_REGS, DATA_REGS, ADDR_REGS, GENERAL_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
- {DATA_REGS, DATA_REGS, GENERAL_REGS, GENERAL_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
- {ADDR_REGS, GENERAL_REGS, ADDR_REGS, GENERAL_REGS, ADDR_REGS, ADDR_REGS, ALL_REGS}, \
- {GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, ALL_REGS, ALL_REGS, ALL_REGS},\
- {FP_REGS, FP_OR_DATA_REGS, FP_REGS, FP_OR_DATA_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
- {FP_OR_DATA_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
- {ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS}}
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS ADDR_REGS
- /* Get reg_class from a letter such as appears in the machine description. */
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'a' ? ADDR_REGS : ((C) == 'd' ? DATA_REGS : ((C) == 'f' ? FP_REGS : NO_REGS)))
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- For the 68000, `I' is used for the range 1 to 8
- allowed as immediate shift counts and in addq.
- `J' is used for the range of signed numbers that fit in 16 bits.
- `K' is for numbers that moveq can't handle.
- `L' is for range -8 to -1, range of values that can be added with subq. */
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
- (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
- (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
- (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 1)
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 68000 series, use a data reg if possible when the
- value is a constant in the range where moveq could be used. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_INT \
- && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
- && (CLASS) != ADDR_REGS) \
- ? DATA_REGS : (CLASS))
- /* Stack layout; function entry, exit and calling. */
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the 68000, sp@- in a byte insn really pushes a word. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET 8
- /* Define if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call. */
- /* #define RETURN_POPS_ARGS On the 68000, the caller must pop them. */
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { register int regno; \
- register int mask = 0; \
- static char dont_save_regs[] = CALL_USED_REGISTERS; \
- static char *reg_names[] = REGISTER_NAMES; \
- fprintf (FILE, "\tlink a6,#%d\n", (SIZE)); \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
- mask |= 1 << (23 - regno); \
- if (mask & 0xff) \
- fprintf (FILE, "\tfmovem #0x%x,sp@-\n", mask & 0xff); \
- mask >>= 8; \
- if (exact_log2 (mask) >= 0) \
- fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[15 - exact_log2 (mask)]); \
- else if (mask) fprintf (FILE, "\tmoveml #0x%x,sp@-\n", mask); }
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { register int regno; \
- register int mask; \
- register int nregs; \
- int offset; \
- static char dont_save_regs[] = CALL_USED_REGISTERS; \
- static char *reg_names[] = REGISTER_NAMES; \
- nregs = 0; mask = 0; \
- for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
- { nregs++; mask |= 1 << (regno - 16); } \
- offset = nregs * 12; \
- if (mask) \
- fprintf (FILE, "\tfmovem a6@(-%d),#0x%x\n", \
- offset - (SIZE), mask); \
- nregs = 0; mask = 0; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
- { nregs++; mask |= 1 << regno; } \
- offset += nregs * 4; \
- if (exact_log2 (mask) >= 0) \
- fprintf (FILE, "\tmovl a6@(-%d),%s\n", \
- offset - (SIZE), reg_names[exact_log2 (mask)]); \
- else if (mask) \
- fprintf (FILE, "\tmoveml a6@(-%d),#0x%x\n", \
- offset - (SIZE), mask); \
- fprintf (FILE, "\tunlk a6\n\trts\n"); }
- /* Addressing modes, and classification of registers for them. */
- #define HAVE_POST_INCREMENT
- /* #define HAVE_POST_DECREMENT */
- #define HAVE_PRE_DECREMENT
- /* #define HAVE_PRE_INCREMENT */
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- These definitions are NOT overridden anywhere. */
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- (((REGNO) ^ 010) < 8 || ((unsigned) reg_renumber[REGNO] ^ 010) < 8)
- #define REGNO_OK_FOR_DATA_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 020) < 8 || ((unsigned) reg_renumber[REGNO] ^ 020) < 8)
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is actually machine-independent. */
- #define MAX_REGS_PER_ADDRESS 2
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects them all.
- The symbol REG_OK_STRICT causes the latter definition to be used.
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Some source files that are used after register allocation
- need to be strict. */
- #ifndef REG_OK_STRICT
- /* Nonzero if X is a hard reg that can be used as an index or if
- it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
- /* Nonzero if X is a hard reg that can be used as a base reg
- of if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
- /* Nonzero if X is a data reg or a pseudo reg. */
- #define REG_OK_FOR_DATA_P(X) ((unsigned) (REGNO (X) - 8) >= 16)
- /* Nonzero if X is a floating point reg or a pseudo reg. */
- #define REG_OK_FOR_FP_P(X) (REGNO (X) >= 16)
- #else
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- /* Nonzero if X is a data reg. */
- #define REG_OK_FOR_DATA_P(X) REGNO_OK_FOR_DATA_P (REGNO (X))
- /* Nonzero if X is a floating point reg. */
- #define REG_OK_FOR_FP_P(X) REGNO_OK_FOR_FP_P (REGNO (X))
- #endif
- #define REG_OK_FOR_CLASS_P(X, C) \
- (((C) == 'd' && REG_OK_FOR_DATA_P(X)) \
- || (C) == 'a' && REG_OK_FOR_BASE_P(X) \
- || (C) == 'f' && REG_OK_FOR_FP_P(X))
- #define REGNO_OK_FOR_CLASS_P(X, C) \
- (((C) == 'd' && REGNO_OK_FOR_DATA_P(X)) \
- || (C) == 'a' && REGNO_OK_FOR_BASE_P(X) \
- || (C) == 'f' && REGNO_OK_FOR_FP_P(X))
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT \
- || GET_CODE (X) == CONST)
- #define REG_P(X) \
- (GET_CODE (X) == REG)
- #define DATA_REG_P(X) \
- (GET_CODE (X) == REG && REGNO_OK_FOR_DATA_P (REGNO (X)))
- #define FP_REG_P(X) \
- (GET_CODE (X) == REG && REGNO_OK_FOR_FP_P (REGNO (X)))
- #define ADDRESS_REG_P(X) \
- (GET_CODE (X) == REG && REGNO_OK_FOR_BASE_P (REGNO (X)))
- #define INDIRECTABLE_1_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- || (GET_CODE (X) == PLUS \
- && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
- #if 0
- /* This should replace the last two lines
- except that Sun's assembler does not seem to handle such operands. */
- && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
- : (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
- #endif
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
- #define GO_IF_INDEXABLE_BASE(X, ADDR) \
- { if (GET_CODE (X) == LABEL_REF) goto ADDR; \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
- #define GO_IF_INDEXING(X, ADDR) \
- { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
- #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
- { GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
- GO_IF_INDEXING (XEXP (X, 0), ADDR); \
- if (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
- GO_IF_INDEXING (XEXP (X, 1), ADDR); } }
- #if 0
- /* Note we allow a constant address here if it is a LABEL_REF.
- That is not strictly correct, since the CODE_LABEL has to be less than
- 2**7 bytes away from this insn. But that is true in the only cases
- that matter, which occur in switch statements. */
- #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
- { if (GET_CODE (X) == LABEL_REF) goto ADDR; \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
- if (GET_CODE (X) == PLUS && \
- ((REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
- || \
- (REG_P (XEXP (X, 1)) && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))) \
- goto ADDR; }
- #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
- { if (GET_CODE (X) == LABEL_REF) goto ADDR; \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
- if (GET_CODE (X) == PLUS && \
- ((REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
- : (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))) \
- || \
- (REG_P (XEXP (X, 1)) && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 0)) \
- : (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))))) \
- goto ADDR; }
- #endif
- #define LEGITIMATE_INDEX_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SIGN_EXTEND \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_MODE (XEXP (X, 0)) == HImode \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (TARGET_68020 && GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
- GO_IF_INDEXED_ADDRESS (X, ADDR); }
- #if 0
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_ADDRESS (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_ADDRESS (XEXP (X, 0), ADDR); } }
- #endif
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
- For the 68000, we handle X+REG by loading X into a register R and
- using R+REG. R will go in an address reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in an address reg. */
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { register int ch = (X) != (OLDX); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == MULT) \
- ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- return X; \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG \
- || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), temp); \
- if (val != temp) emit_move_insn (temp, val, 0); \
- XEXP (X, 1) = temp; \
- return X; } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), temp); \
- if (val != temp) emit_move_insn (temp, val, 0); \
- XEXP (X, 0) = temp; \
- return X; }}}
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
- /* Define this if zero-extension is slow (more than one real instruction). */
- #define SLOW_ZERO_EXTEND
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- #define SHIFT_COUNT_TRUNCATED
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
- /* Tell final.c how to eliminate redundant test instructions. */
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
- /* Set if the cc value is actually in the 68881, so a floating point
- conditional branch must be output. */
- #define CC_IN_68881 040
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
- /* On the 68000, all the insns to store in an address register
- fail to set the cc's. However, in some cases these instructions
- can make it possibly invalid to use the saved cc's. In those
- cases we clear out some or all of the saved cc's so they won't be used. */
- #define NOTICE_UPDATE_CC(EXP) \
- { if (GET_CODE (EXP) == SET) \
- { if (ADDRESS_REG_P (XEXP (EXP, 0))) \
- { if (cc_status.value1 \
- && reg_mentioned_p (XEXP (EXP, 0), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_mentioned_p (XEXP (EXP, 0), cc_status.value2)) \
- cc_status.value2 = 0; } \
- else if (XEXP (EXP, 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (EXP, 0); \
- cc_status.value2 = XEXP (EXP, 1); } } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
- CC_STATUS_INIT; \
- else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
- cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
- else CC_STATUS_INIT; \
- if (cc_status.value2 != 0 \
- && ADDRESS_REG_P (cc_status.value2) \
- && GET_MODE (cc_status.value2) == QImode) \
- CC_STATUS_INIT; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
- || (cc_status.value2 && FP_REG_P (cc_status.value2))) \
- cc_status.flags = CC_IN_68881; \
- if (cc_status.value2 != 0) \
- switch (GET_CODE (cc_status.value2)) \
- { case PLUS: case MINUS: case MULT: case UMULT: \
- case DIV: case UDIV: case ASHIFT: case LSHIFT: \
- case NEG: \
- if (GET_MODE (cc_status.value2) != VOIDmode) \
- cc_status.flags |= CC_NO_OVERFLOW; }}
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { if (cc_status.flags & CC_IN_68881) \
- return FLOAT; \
- if (cc_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
- /* Control the assembler format that we output. */
- #define TEXT_SECTION_ASM_OP ".text"
- #define DATA_SECTION_ASM_OP ".data"
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
- #define REGISTER_NAMES \
- {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
- "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
- "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7"}
- /* How to renumber registers for dbx and gdb.
- On the Sun-3, the floating point registers have numbers
- 18 to 25, not 16 to 23 as they do in the compiler. */
- #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
- /* This is how to output an assembler line defining a `double' constant. */
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "\t.double 0r%e\n", (VALUE))
- /* This is how to output an assembler line defining a `float' constant. */
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { union { float f; long l;} tem; \
- tem.f = (VALUE); \
- fprintf (FILE, "\t.long 0x%x\n", tem.l); \
- } while (0)
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) == 1) \
- fprintf (FILE, "\t.even\n"); \
- else if ((LOG) != 0) \
- abort ();
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.skip %d\n", (SIZE))
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
- /* Specify what to precede various sizes of constant with
- in the output file. */
- #define ASM_INT_OP ".long "
- #define ASM_SHORT_OP ".word "
- #define ASM_CHAR_OP ".byte "
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
- #define PRINT_OPERAND(FILE, X) \
- { if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_name [REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
- { union { double d; int i[2]; } u; \
- union { float f; int i; } u1; \
- u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
- u1.f = u.d; \
- fprintf (FILE, "#0x%x", u1.i); } \
- else if (GET_CODE (X) == CONST_DOUBLE) \
- { union { double d; int i[2]; } u; \
- u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
- fprintf (FILE, "#0r%g", u.d); } \
- else { putc ('#', FILE); output_addr_const (FILE, X); }}
- /* Note that this contains a kludge that knows that the only reason
- we have an address (plus (label_ref...) (reg...))
- is in the insn before a tablejump, and the displacement must be 6. */
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx reg1, reg2, breg, ireg; \
- register rtx addr = ADDR; \
- rtx offset; \
- switch (GET_CODE (addr)) \
- { \
- case REG: \
- fprintf (FILE, "%s@", reg_name [REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- fprintf (FILE, "%s@-", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- fprintf (FILE, "%s@+", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
- { \
- offset = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
- { \
- offset = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) != PLUS) ; \
- else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
- || GET_CODE (addr) == SIGN_EXTEND) \
- { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
- /* for OLD_INDEXING \
- else if (GET_CODE (addr) == PLUS) \
- { \
- if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg2 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg2 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- } \
- */ \
- if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
- if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
- || GET_CODE (reg1) == MULT)) \
- || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
- { breg = reg2; ireg = reg1; } \
- else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
- { breg = reg1; ireg = reg2; } \
- if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
- { int scale = 1; \
- if (GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "pc@(6,%s:w", reg_name[REGNO (XEXP (ireg, 0))]); \
- else \
- fprintf (FILE, "pc@(6,%s:l", reg_name[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, ":%d", scale); \
- putc (')', FILE); \
- break; } \
- if (ireg != 0 || breg != 0) \
- { int scale = 1; \
- if (breg == 0) \
- abort (); \
- fprintf (FILE, "%s@(", reg_name[REGNO (breg)]); \
- if (addr != 0) \
- output_addr_const (FILE, addr); \
- if (addr != 0 && ireg != 0) \
- putc (',', FILE); \
- if (ireg != 0 && GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "%s:w", reg_name[REGNO (XEXP (ireg, 0))]); \
- else if (ireg != 0) \
- fprintf (FILE, "%s:l", reg_name[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, ":%d", scale); \
- putc (')', FILE); \
- break; \
- } \
- else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
- { fprintf (FILE, "pc@(6,%s:w)", reg_name[REGNO (reg1)]); \
- break; } \
- default: \
- if (GET_CODE (addr) == CONST_INT \
- && INTVAL (addr) < 0x8000 \
- && INTVAL (addr) >= -0x8000) \
- fprintf (FILE, "%d:w", INTVAL (addr)); \
- else \
- output_addr_const (FILE, addr); \
- }}
- /*
- Local variables:
- version-control: t
- End:
- */
|