;;- Machine description for GNU compiler ;;- Motorola 68000 Version ;; Copyright (C) 1987 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU CC General Public ;; License for full details.
;; Everyone is granted permission to copy, modify and redistribute ;; GNU CC, but only under the conditions described in the ;; GNU CC General Public License. A copy of this license is ;; supposed to have been given to you along with GNU CC so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies.
;;- instruction definitions
;;- @@The original PO technology requires these to be ordered by speed, ;;- @@ so that assigner will pick the fastest.
;;- See file "rtl.def" for documentation on defineinsn, match*, et. al.
;;- When naming insn's (operand 0 of define_insn) be careful about using ;;- names from other targets machine descriptions.
;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code ;;- updates for most instructions.
;;- Operand classes for the register allocator: ;;- 'a' one of the address registers can be used. ;;- 'd' one of the data registers can be used. ;;- 'r' either a data or an address register can be used.
;;- Immedidate integer operands Constrains: ;;- 'I' 1 .. 8 ;;- 'J' -32768 .. 32767 ;;- 'K' -128 .. 127 ;;- 'L' -8 .. -1
;;- Some of these insn's are composites of several m68000 op codes. ;;- The assembler (or final @@??) insures that the appropriate one is ;;- selected. (define_insn "" [(set (match_operand:DF 0 "push_operand" "=m")
(match_operand:DF 1 "general_operand" "ro<>fF"))]
"" "* { if (FP_REG_P (operands[1]))
return \"fmove%.d %f1,%0\";
return output_move_double (operands); }")
(define_insn "" [(set (match_operand:DI 0 "push_operand" "=m")
(match_operand:DI 1 "general_operand" "ro<>"))]
"" "* { return output_move_double (operands); }") (define_insn "tstsi" [(set (cc0)
(match_operand:SI 0 "general_operand" "rm"))]
"" "* { #ifdef ISI_OV /* ISI's assembler fails to handle tstl a0. */ if (! ADDRESS_REG_P (operands[0])) #else if (TARGET_68020 || ! ADDRESS_REG_P (operands[0])) #endif
return \"tst%.l %0\";
/* If you think that the 68020 does not support tstl a0,
reread page B-167 of the 68020 manual more carefully. */
/* On an address reg, cmpw may replace cmpl. */ #ifdef HPUX_ASM return \"cmp%.w %0,%#0\"; #else return \"cmp%.w %#0,%0\"; #endif }")
(define_insn "tsthi" [(set (cc0)
(match_operand:HI 0 "general_operand" "rm"))]
"" "* { #ifdef ISI_OV if (! ADDRESS_REG_P (operands[0])) #else if (TARGET_68020 || ! ADDRESS_REG_P (operands[0])) #endif
return \"tst%.w %0\";
#ifdef HPUX_ASM return \"cmp%.w %0,%#0\"; #else return \"cmp%.w %#0,%0\"; #endif }")
(define_insn "tstqi" [(set (cc0)
(match_operand:QI 0 "general_operand" "dm"))]
"" "tst%.b %0")
(define_insn "tstsf" [(set (cc0)
(match_operand:SF 0 "general_operand" "fdm"))]
"TARGET_68881" "* { cc_status.flags = CC_IN_68881; if (FP_REG_P (operands[0]))
return \"ftst%.x %0\";
return \"ftst%.s %0\"; }")
(define_insn "tstdf" [(set (cc0)
(match_operand:DF 0 "general_operand" "fm"))]
"TARGET_68881" "* { cc_status.flags = CC_IN_68881; if (FP_REG_P (operands[0]))
return \"ftst%.x %0\";
return \"ftst%.d %0\"; }") ;; compare instructions.
;; A composite of the cmp, cmpa, & cmpi m68000 op codes. (define_insn "cmpsi" [(set (cc0)
(minus (match_operand:SI 0 "general_operand" "rKs,mr")
(match_operand:SI 1 "general_operand" "mr,Ksr")))]
"" "* { if (REG_P (operands[1])
|| (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
{ cc_status.flags |= CC_REVERSED;
#ifdef HPUX_ASM
return \"cmp%.l %1,%0\";
#else
return \"cmp%.l %0,%1\";
#endif
}
#ifdef HPUX_ASM return \"cmp%.l %0,%1\"; #else return \"cmp%.l %1,%0\"; #endif }")
(define_insn "cmphi" [(set (cc0)
(minus (match_operand:HI 0 "general_operand" "rn,mr")
(match_operand:HI 1 "general_operand" "mr,nr")))]
"" "* { if (REG_P (operands[1])
|| (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
{ cc_status.flags |= CC_REVERSED;
#ifdef HPUX_ASM
return \"cmp%.w %1,%0\";
#else
return \"cmp%.w %0,%1\";
#endif
}
#ifdef HPUX_ASM return \"cmp%.w %0,%1\"; #else return \"cmp%.w %1,%0\"; #endif }")
(define_insn "" [(set (cc0)
(minus (mem:QI (post_inc:SI (match_operand:SI 0 "general_operand" "+a")))
(mem:QI (post_inc:SI (match_operand:SI 1 "general_operand" "+a")))))]
"! CONSTANT_P (operands[0]) && ! CONSTANT_P (operands[1])" "* #ifdef MOTOROLA return \"cmpm.b (%1)+,(%0)+\"; #else return \"cmpmb %1@+,%0@+\"; #endif ")
(define_insn "cmpqi" [(set (cc0)
(minus (match_operand:QI 0 "general_operand" "dn,md")
(match_operand:QI 1 "general_operand" "dm,nd")))]
"" "* { if (REG_P (operands[1])
|| (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
{ cc_status.flags |= CC_REVERSED;
#ifdef HPUX_ASM
return \"cmp%.b %1,%0\";
#else
return \"cmp%.b %0,%1\";
#endif
}
#ifdef HPUX_ASM return \"cmp%.b %0,%1\"; #else return \"cmp%.b %1,%0\"; #endif }")
(define_insn "cmpdf" [(set (cc0)
(minus:DF (match_operand:DF 0 "general_operand" "f,mG")
(match_operand:DF 1 "general_operand" "fmG,f")))]
"TARGET_68881" "* { cc_status.flags = CC_IN_68881; #ifdef HPUX_ASM if (REG_P (operands[0]))
{
if (REG_P (operands[1]))
return \"fcmp%.x %0,%1\";
else
return \"fcmp%.d %0,%f1\";
}
cc_status.flags |= CC_REVERSED; return \"fcmp%.d %1,%f0\"; #else if (REG_P (operands[0]))
{
if (REG_P (operands[1]))
return \"fcmp%.x %1,%0\";
else
return \"fcmp%.d %f1,%0\";
}
cc_status.flags |= CC_REVERSED; return \"fcmp%.d %f0,%1\"; #endif }")
(define_insn "cmpsf" [(set (cc0)
(minus:SF (match_operand:SF 0 "general_operand" "f,mdG")
(match_operand:SF 1 "general_operand" "fmdG,f")))]
"TARGET_68881" "* { cc_status.flags = CC_IN_68881; #ifdef HPUX_ASM if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return \"fcmp%.x %0,%1\";
else
return \"fcmp%.s %0,%f1\";
}
cc_status.flags |= CC_REVERSED; return \"fcmp%.s %1,%f0\"; #else if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return \"fcmp%.x %1,%0\";
else
return \"fcmp%.s %f1,%0\";
}
cc_status.flags |= CC_REVERSED; return \"fcmp%.s %f0,%1\"; #endif }") ;; Recognizers for btst instructions.
(define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "general_operand" "do")
(const_int 1)
(minus:SI (const_int 7)
(match_operand:SI 1 "general_operand" "di"))))]
"" "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")
(define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "general_operand" "d")
(const_int 1)
(minus:SI (const_int 31)
(match_operand:SI 1 "general_operand" "di"))))]
"" "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")
;; The following two patterns are like the previous two ;; except that they use the fact that bit-number operands ;; are automatically masked to 3 or 5 bits.
(define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "general_operand" "do")
(const_int 1)
(minus:SI (const_int 7)
(and:SI
(match_operand:SI 1 "general_operand" "d")
(const_int 7)))))]
"" "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")
(define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "general_operand" "d")
(const_int 1)
(minus:SI (const_int 31)
(and:SI
(match_operand:SI 1 "general_operand" "d")
(const_int 31)))))]
"" "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")
(define_insn "" ;; The constraint "o,d" here means that a nonoffsetable memref ;; will match the first alternative, and its address will be reloaded. ;; Copying the memory contents into a reg would be incorrect if the ;; bit position is over 7. [(set (cc0) (zero_extract (match_operand:QI 0 "general_operand" "o,d")
(const_int 1)
(match_operand:SI 1 "general_operand" "i,i")))]
"GET_CODE (operands[1]) == CONST_INT" "* { operands[1] = gen_rtx (CONST_INT, VOIDmode, 7 - INTVAL (operands[1])); return output_btst (operands, operands[1], operands[0], insn, 7); }")
(define_insn "" [(set (cc0) (zero_extract (match_operand:HI 0 "general_operand" "o,d")
(const_int 1)
(match_operand:SI 1 "general_operand" "i,i")))]
"GET_CODE (operands[1]) == CONST_INT" "* { if (GET_CODE (operands[0]) == MEM)
{
operands[0] = adj_offsetable_operand (operands[0],
INTVAL (operands[1]) / 8);
operands[1] = gen_rtx (CONST_INT, VOIDmode,
7 - INTVAL (operands[1]) % 8);
return output_btst (operands, operands[1], operands[0], insn, 7);
}
operands[1] = gen_rtx (CONST_INT, VOIDmode,
15 - INTVAL (operands[1]));
return output_btst (operands, operands[1], operands[0], insn, 15); }")
(define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "general_operand" "do")
(const_int 1)
(match_operand:SI 1 "general_operand" "i")))]
"GET_CODE (operands[1]) == CONST_INT" "* { if (GET_CODE (operands[0]) == MEM)
{
operands[0] = adj_offsetable_operand (operands[0],
INTVAL (operands[1]) / 8);
operands[1] = gen_rtx (CONST_INT, VOIDmode,
7 - INTVAL (operands[1]) % 8);
return output_btst (operands, operands[1], operands[0], insn, 7);
}
operands[1] = gen_rtx (CONST_INT, VOIDmode,
31 - INTVAL (operands[1]));
return output_btst (operands, operands[1], operands[0], insn, 31); }")
(define_insn "" [(set (cc0) (subreg:SI (lshiftrt:QI (match_operand:QI 0 "general_operand" "dm")
(const_int 7))
0))]
"" "* { cc_status.flags = CC_Z_IN_NOT_N | CC_NOT_NEGATIVE; return \"tst%.b %0\"; }")
(define_insn "" [(set (cc0) (and:SI (sign_extend:SI (sign_extend:HI (match_operand:QI 0 "general_operand" "dm")))
(match_operand:SI 1 "general_operand" "i")))]
"(GET_CODE (operands[1]) == CONST_INT
&& (unsigned) INTVAL (operands[1]) < 0x100
&& exact_log2 (INTVAL (operands[1])) >= 0)"
"* { register int log = exact_log2 (INTVAL (operands[1])); operands[1] = gen_rtx (CONST_INT, VOIDmode, log); return output_btst (operands, operands[1], operands[0], insn, 7); }") ;; move instructions (define_insn "swapsi" [(set (match_operand:SI 0 "general_operand" "r")
(match_operand:SI 1 "general_operand" "r"))
(set (match_dup 1) (match_dup 0))] "" "exg %1,%0")
;; Special case of fullword move when source is zero. ;; The reason this is special is to avoid loading a zero ;; into a data reg with moveq in order to store it elsewhere.
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=g")
(const_int 0))]
"" "* { if (ADDRESS_REG_P (operands[0]))
return \"sub%.l %0,%0\";
return \"clr%.l %0\"; }")
;; Another special case in which it is not desirable ;; to reload the constant into a data register. (define_insn "" [(set (match_operand:SI 0 "push_operand" "=m")
(match_operand:SI 1 "general_operand" "J"))]
"GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) >= -0x8000 && INTVAL (operands[1]) < 0x8000" "pea %a1")
;; General case of fullword move. The register constraints ;; force integer constants in range for a moveq to be reloaded ;; if they are headed for memory. (define_insn "movsi" [(set (match_operand:SI 0 "general_operand" "=g,da")
(match_operand:SI 1 "general_operand" "damKs,i"))]
"" "* { if (GET_CODE (operands[1]) == CONST_INT)
{
if (operands[1] == const0_rtx
&& (DATA_REG_P (operands[0])
|| GET_CODE (operands[0]) == MEM))
return \"clr%.l %0\";
else if (DATA_REG_P (operands[0])
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
{
#ifdef MOTOROLA
return \"moveq%.l %1,%0\";
#else
return \"moveq %1,%0\";
#endif
}
else if (ADDRESS_REG_P (operands[0])
&& INTVAL (operands[1]) < 0x8000
&& INTVAL (operands[1]) >= -0x8000)
return \"move%.w %1,%0\";
else if (push_operand (operands[0], SImode)
&& INTVAL (operands[1]) < 0x8000
&& INTVAL (operands[1]) >= -0x8000)
return \"pea %a1\";
}
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& push_operand (operands[0], SImode))
return \"pea %a1\";
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& ADDRESS_REG_P (operands[0]))
return \"lea %a1,%0\";
return \"move%.l %1,%0\"; }")
(define_insn "movhi" [(set (match_operand:HI 0 "general_operand" "=g")
(match_operand:HI 1 "general_operand" "g"))]
"" "* { if (GET_CODE (operands[1]) == CONST_INT)
{
if (operands[1] == const0_rtx
&& (DATA_REG_P (operands[0])
|| GET_CODE (operands[0]) == MEM))
return \"clr%.w %0\";
}
else if (CONSTANT_P (operands[1]))
return \"move%.l %1,%0\";
/* Recognize the insn before a tablejump, one that refers
to a table of offsets. Such an insn will need to refer
to a label on the insn. So output one. Use the label-number
of the table of offsets to generate this label. */
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
&& (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
|| GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF)
&& GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS
&& GET_CODE (XEXP (XEXP (operands[1], 0), 1)) != PLUS)
{
rtx labelref;
if (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF)
labelref = XEXP (XEXP (operands[1], 0), 0);
else
labelref = XEXP (XEXP (operands[1], 0), 1);
#if defined (MOTOROLA) && ! defined (SGS_3B1) #ifdef SGS
fprintf (asm_out_file, \"\\tset %s%d,.+2\\n\", \"LI\",
CODE_LABEL_NUMBER (XEXP (labelref, 0)));
#else
fprintf (asm_out_file, \"\\t.set %s%d,.+2\\n\", \"LI\",
CODE_LABEL_NUMBER (XEXP (labelref, 0)));
#endif #else
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"LI\",
CODE_LABEL_NUMBER (XEXP (labelref, 0)));
#endif
}
return \"move%.w %1,%0\"; }")
(define_insn "movstricthi" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+dm"))
(match_operand:HI 1 "general_operand" "rmn"))]
"" "* { if (GET_CODE (operands[1]) == CONST_INT)
{
if (operands[1] == const0_rtx
&& (DATA_REG_P (operands[0])
|| GET_CODE (operands[0]) == MEM))
return \"clr%.w %0\";
}
return \"move%.w %1,%0\"; }")
(define_insn "movqi" [(set (match_operand:QI 0 "general_operand" "=d,a,m")
(match_operand:QI 1 "general_operand" "g,d,dmi"))]
"" "* { if (operands[1] == const0_rtx)
return \"clr%.b %0\";
if (GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) == -1)
return \"st %0\";
if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
return \"move%.l %1,%0\";
if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
return \"move%.w %1,%0\";
return \"move%.b %1,%0\"; }")
(define_insn "movstrictqi" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+dm"))
(match_operand:QI 1 "general_operand" "dmn"))]
"" "* { if (operands[1] == const0_rtx)
return \"clr%.b %0\";
return \"move%.b %1,%0\"; }")
(define_insn "movsf" [(set (match_operand:SF 0 "general_operand" "=rmf")
(match_operand:SF 1 "general_operand" "rmfF"))]
"" "* { if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return \"fmove%.x %1,%0\";
else if (ADDRESS_REG_P (operands[1]))
return \"move%.l %1,%-\;fmove%.s %+,%0\";
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
return output_move_const_single (operands);
return \"fmove%.s %f1,%0\";
}
if (FP_REG_P (operands[1]))
{
if (ADDRESS_REG_P (operands[0]))
return \"fmove%.s %1,%-\;move%.l %+,%0\";
return \"fmove%.s %f1,%0\";
}
return \"move%.l %1,%0\"; }")
(define_insn "movdf" [(set (match_operand:DF 0 "general_operand" "=rm,&rf,&rof<>")
(match_operand:DF 1 "general_operand" "rf,m,rofF<>"))]
"" "* { if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return \"fmove%.x %1,%0\";
if (REG_P (operands[1]))
{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
output_asm_insn (\"move%.l %1,%-\", xoperands);
output_asm_insn (\"move%.l %1,%-\", operands);
return \"fmove%.d %+,%0\";
}
if (GET_CODE (operands[1]) == CONST_DOUBLE)
return output_move_const_double (operands);
return \"fmove%.d %f1,%0\";
}
else if (FP_REG_P (operands[1]))
{
if (REG_P (operands[0]))
{
output_asm_insn (\"fmove%.d %f1,%-\;move%.l %+,%0\", operands);
operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
return \"move%.l %+,%0\";
}
else
return \"fmove%.d %f1,%0\";
}
return output_move_double (operands); } ")
;; movdi can apply to fp regs in some cases (define_insn "movdi" [(set (match_operand:DI 0 "general_operand" "=rm,&rf,&rof<>")
(match_operand:DI 1 "general_operand" "rf,m,roifF<>"))]
"" "* { if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return \"fmove%.x %1,%0\";
if (REG_P (operands[1]))
{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
output_asm_insn (\"move%.l %1,%-\", xoperands);
output_asm_insn (\"move%.l %1,%-\", operands);
return \"fmove%.d %+,%0\";
}
if (GET_CODE (operands[1]) == CONST_DOUBLE)
return output_move_const_double (operands);
return \"fmove%.d %f1,%0\";
}
else if (FP_REG_P (operands[1]))
{
if (REG_P (operands[0]))
{
output_asm_insn (\"fmove.d %f1,%-\;move%.l %+,%0\", operands);
operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
return \"move%.l %+,%0\";
}
else
return \"fmove%.d %f1,%0\";
}
return output_move_double (operands); } ")
;; These go after the move instructions ;; because the move instructions are better (require no spilling) ;; when they can apply. But these go before the add and subtract insns ;; because it is often shorter to use these when both apply. (define_insn "pushasi" [(set (match_operand:SI 0 "push_operand" "=m")
(match_operand:SI 1 "address_operand" "p"))]
"" "pea %a1")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=a")
(match_operand:QI 1 "address_operand" "p"))]
"" "lea %a1,%0") ;; truncation instructions (define_insn "truncsiqi2" [(set (match_operand:QI 0 "general_operand" "=dm,d")
(truncate:QI
(match_operand:SI 1 "general_operand" "doJ,i")))]
"" "* { if (GET_CODE (operands[0]) == REG)
return \"move%.l %1,%0\";
if (GET_CODE (operands[1]) == MEM)
operands[1] = adj_offsetable_operand (operands[1], 3);
return \"move%.b %1,%0\"; }")
(define_insn "trunchiqi2" [(set (match_operand:QI 0 "general_operand" "=dm,d")
(truncate:QI
(match_operand:HI 1 "general_operand" "doJ,i")))]
"" "* { if (GET_CODE (operands[0]) == REG)
return \"move%.l %1,%0\";
if (GET_CODE (operands[1]) == MEM)
operands[1] = adj_offsetable_operand (operands[1], 1);
return \"move%.b %1,%0\"; }")
(define_insn "truncsihi2" [(set (match_operand:HI 0 "general_operand" "=dm,d")
(truncate:HI
(match_operand:SI 1 "general_operand" "roJ,i")))]
"" "* { if (GET_CODE (operands[0]) == REG)
return \"move%.l %1,%0\";
if (GET_CODE (operands[1]) == MEM)
operands[1] = adj_offsetable_operand (operands[1], 2);
return \"move%.w %1,%0\"; }") ;; zero extension instructions
(define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "")
(const_int 0))
(set (strict_low_part (subreg:HI (match_operand:SI 0 "general_operand" "") 0))
(match_operand:HI 1 "general_operand" ""))]
"" "operands[1] = make_safe_from (operands[1], operands[0]);")
;; Note that the one starting from HImode comes before those for QImode ;; so that a constant operand will match HImode, not QImode. ;(define_insn "zero_extendhisi2" ; [(set (match_operand:SI 0 "general_operand" "=do<>") ; (zero_extend:SI ; (match_operand:HI 1 "general_operand" "rmn")))] ; "" ; "* ;{ ; if (DATA_REG_P (operands[0])) ; { ; if (GET_CODE (operands[1]) == REG ; && REGNO (operands[0]) == REGNO (operands[1])) ; return \"and%.l %#0xFFFF,%0\"; ; if (reg_mentioned_p (operands[0], operands[1])) ; return \"move%.w %1,%0\;and%.l %#0xFFFF,%0\"; ; return \"clr%.l %0\;move%.w %1,%0\"; ; } ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) ; return \"move%.w %1,%0\;clr%.w %0\"; ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == POST_INC) ; return \"clr%.w %0\;move%.w %1,%0\"; ; else ; { ; output_asm_insn (\"clr%.w %0\", operands); ; operands[0] = adj_offsetable_operand (operands[0], 2); ; return \"move%.w %1,%0\"; ; } ;}")
(define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "general_operand" "")
(const_int 0))
(set (strict_low_part (subreg:QI (match_operand:HI 0 "general_operand" "") 0))
(match_operand:QI 1 "general_operand" ""))]
"" "operands[1] = make_safe_from (operands[1], operands[0]);")
;(define_insn "zero_extendqihi2" ; [(set (match_operand:HI 0 "general_operand" "=do<>") ; (zero_extend:HI ; (match_operand:QI 1 "general_operand" "dmn")))] ; "" ; "* ;{ ; if (DATA_REG_P (operands[0])) ; { ; if (GET_CODE (operands[1]) == REG ; && REGNO (operands[0]) == REGNO (operands[1])) ; return \"and%.w %#0xFF,%0\"; ; if (reg_mentioned_p (operands[0], operands[1])) ; return \"move%.b %1,%0\;and%.w %#0xFF,%0\"; ; return \"clr%.w %0\;move%.b %1,%0\"; ; } ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) ; { ; if (REGNO (XEXP (XEXP (operands[0], 0), 0)) ; == STACK_POINTER_REGNUM) ; return \"clr%.w %-\;move%.b %1,%0\"; ; else ; return \"move%.b %1,%0\;clr%.b %0\"; ; } ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == POST_INC) ; return \"clr%.b %0\;move%.b %1,%0\"; ; else ; { ; output_asm_insn (\"clr%.b %0\", operands); ; operands[0] = adj_offsetable_operand (operands[0], 1); ; return \"move%.b %1,%0\"; ; } ;}")
(define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "general_operand" "")
(const_int 0))
(set (strict_low_part (subreg:QI (match_operand:SI 0 "general_operand" "") 0))
(match_operand:QI 1 "general_operand" ""))]
"" " operands[1] = make_safe_from (operands[1], operands[0]); ")
;(define_insn "zero_extendqisi2" ; [(set (match_operand:SI 0 "general_operand" "=do<>") ; (zero_extend:SI ; (match_operand:QI 1 "general_operand" "dmn")))] ; "" ; "* ;{ ; if (DATA_REG_P (operands[0])) ; { ; if (GET_CODE (operands[1]) == REG ; && REGNO (operands[0]) == REGNO (operands[1])) ; return \"and%.l %#0xFF,%0\"; ; if (reg_mentioned_p (operands[0], operands[1])) ; return \"move%.b %1,%0\;and%.l %#0xFF,%0\"; ; return \"clr%.l %0\;move%.b %1,%0\"; ; } ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) ; { ; operands[0] = XEXP (XEXP (operands[0], 0), 0); ;#ifdef MOTOROLA ; return \"clr.l -(%0)\;move%.b %1,(3,%0)\"; ;#else ; return \"clrl %0@-\;moveb %1,%0@(3)\"; ;#endif ; } ; else if (GET_CODE (operands[0]) == MEM ; && GET_CODE (XEXP (operands[0], 0)) == POST_INC) ; { ; operands[0] = XEXP (XEXP (operands[0], 0), 0); ;#ifdef MOTOROLA ; return \"clr.l (%0)+\;move%.b %1,(-1,%0)\"; ;#else ; return \"clrl %0@+\;moveb %1,%0@(-1)\"; ;#endif ; } ; else ; { ; output_asm_insn (\"clr%.l %0\", operands); ; operands[0] = adj_offsetable_operand (operands[0], 3); ; return \"move%.b %1,%0\"; ; } ;}") ;; sign extension instructions ;; Note that the one starting from HImode comes before those for QImode ;; so that a constant operand will match HImode, not QImode.
(define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,rmn")))]
"" "* { if (ADDRESS_REG_P (operands[0]))
return \"move%.w %1,%0\";
return \"ext%.l %0\"; }")
(define_insn "extendqihi2" [(set (match_operand:HI 0 "general_operand" "=d")
(sign_extend:HI
(match_operand:QI 1 "general_operand" "0")))]
"" "ext%.w %0")
(define_insn "extendqisi2" [(set (match_operand:SI 0 "general_operand" "=d")
(sign_extend:SI
(match_operand:QI 1 "general_operand" "0")))]
"TARGET_68020" "extb%.l %0") ;; Conversions between float and double.
(define_insn "extendsfdf2" [(set (match_operand:DF 0 "general_operand" "=*fdm,f")
(float_extend:DF
(match_operand:SF 1 "general_operand" "f,dmF")))]
"TARGET_68881" "* { if (FP_REG_P (operands[0]) && FP_REG_P (operands[1]))
{
if (REGNO (operands[0]) == REGNO (operands[1]))
{
/* Extending float to double in an fp-reg is a no-op.
NOTICE_UPDATE_CC has already assumed that the
cc will be set. So cancel what it did. */
cc_status = cc_prev_status;
return \"\";
}
return \"fmove%.x %1,%0\";
}
if (FP_REG_P (operands[0]))
return \"fmove%.s %f1,%0\";
if (DATA_REG_P (operands[0]) && FP_REG_P (operands[1]))
{
output_asm_insn (\"fmove%.d %f1,%-\;move%.l %+,%0\", operands);
operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
return \"move%.l %+,%0\";
}
return \"fmove%.d %f1,%0\"; }")
;; This cannot output into an f-reg because there is no way to be ;; sure of truncating in that case. (define_insn "truncdfsf2" [(set (match_operand:SF 0 "general_operand" "=dm")
(float_truncate:SF
(match_operand:DF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.s %f1,%0") ;; Conversion between fixed point and floating point. ;; Note that among the fix-to-float insns ;; the ones that start with SImode come first. ;; That is so that an operand that is a CONST_INT ;; (and therefore lacks a specific machine mode). ;; will be recognized as SImode (which is always valid) ;; rather than as QImode or HImode.
(define_insn "floatsisf2" [(set (match_operand:SF 0 "general_operand" "=f")
(float:SF (match_operand:SI 1 "general_operand" "dmi")))]
"TARGET_68881" "fmove%.l %1,%0")
(define_insn "floatsidf2" [(set (match_operand:DF 0 "general_operand" "=f")
(float:DF (match_operand:SI 1 "general_operand" "dmi")))]
"TARGET_68881" "fmove%.l %1,%0")
(define_insn "floathisf2" [(set (match_operand:SF 0 "general_operand" "=f")
(float:SF (match_operand:HI 1 "general_operand" "dmn")))]
"TARGET_68881" "fmove%.w %1,%0")
(define_insn "floathidf2" [(set (match_operand:DF 0 "general_operand" "=f")
(float:DF (match_operand:HI 1 "general_operand" "dmn")))]
"TARGET_68881" "fmove%.w %1,%0")
(define_insn "floatqisf2" [(set (match_operand:SF 0 "general_operand" "=f")
(float:SF (match_operand:QI 1 "general_operand" "dmn")))]
"TARGET_68881" "fmove%.b %1,%0")
(define_insn "floatqidf2" [(set (match_operand:DF 0 "general_operand" "=f")
(float:DF (match_operand:QI 1 "general_operand" "dmn")))]
"TARGET_68881" "fmove%.b %1,%0")
;; Convert a float to a float whose value is an integer. ;; This is the first stage of converting it to an integer type.
(define_insn "ftruncdf2" [(set (match_operand:DF 0 "general_operand" "=f")
(fix:DF (match_operand:DF 1 "general_operand" "fFm")))]
"TARGET_68881" "* { if (FP_REG_P (operands[1]))
return \"fintrz%.x %f1,%0\";
return \"fintrz%.d %f1,%0\"; }")
(define_insn "ftruncsf2" [(set (match_operand:SF 0 "general_operand" "=f")
(fix:SF (match_operand:SF 1 "general_operand" "dfFm")))]
"TARGET_68881" "* { if (FP_REG_P (operands[1]))
return \"fintrz%.x %f1,%0\";
return \"fintrz%.s %f1,%0\"; }")
;; Convert a float whose value is an integer ;; to an actual integer. Second stage of converting float to integer type. (define_insn "fixsfqi2" [(set (match_operand:QI 0 "general_operand" "=dm")
(fix:QI (match_operand:SF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.b %1,%0")
(define_insn "fixsfhi2" [(set (match_operand:HI 0 "general_operand" "=dm")
(fix:HI (match_operand:SF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.w %1,%0")
(define_insn "fixsfsi2" [(set (match_operand:SI 0 "general_operand" "=dm")
(fix:SI (match_operand:SF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.l %1,%0")
(define_insn "fixdfqi2" [(set (match_operand:QI 0 "general_operand" "=dm")
(fix:QI (match_operand:DF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.b %1,%0")
(define_insn "fixdfhi2" [(set (match_operand:HI 0 "general_operand" "=dm")
(fix:HI (match_operand:DF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.w %1,%0")
(define_insn "fixdfsi2" [(set (match_operand:SI 0 "general_operand" "=dm")
(fix:SI (match_operand:DF 1 "general_operand" "f")))]
"TARGET_68881" "fmove%.l %1,%0") ;; add instructions
(define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=m,r,!a")
(plus:SI (match_operand:SI 1 "general_operand" "%0,0,a")
(match_operand:SI 2 "general_operand" "dIKLs,mrIKLs,rJK")))]
"" "* { if (! operands_match_p (operands[0], operands[1]))
{
/* These insns can result from reloads to access
stack slots over 64k from the frame pointer. */
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
return \"move%.l %2,%0\;add%.l %1,%0\";
#ifdef SGS
if (GET_CODE (operands[2]) == REG)
return \"lea (%1,%2.l),%0\";
else
return \"lea %c2(%1),%0\";
#else /* not SGS */ #ifdef MOTOROLA
if (GET_CODE (operands[2]) == REG)
return \"lea (%1,%2.l),%0\";
else
return \"lea (%c2,%1),%0\";
#else /* not MOTOROLA (MIT syntax) */
if (GET_CODE (operands[2]) == REG)
return \"lea %1@(0,%2:l),%0\";
else
return \"lea %1@(%c2),%0\";
#endif /* not MOTOROLA / #endif / not SGS */
}
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 8)
return \"addq%.l %2,%0\";
if (INTVAL (operands[2]) < 0
&& INTVAL (operands[2]) >= -8)
{
operands[2] = gen_rtx (CONST_INT, VOIDmode,
- INTVAL (operands[2]));
return \"subq%.l %2,%0\";
}
if (ADDRESS_REG_P (operands[0])
&& INTVAL (operands[2]) >= -0x8000
&& INTVAL (operands[2]) < 0x8000)
return \"add%.w %2,%0\";
}
return \"add%.l %2,%0\"; }")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=a")
(plus:SI (match_operand:SI 1 "general_operand" "0")
(sign_extend:SI (match_operand:HI 2 "general_operand" "rmn"))))]
"" "add%.w %2,%0")
(define_insn "addhi3" [(set (match_operand:HI 0 "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "dn,rmn")))]
"" "* { if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 8)
return \"addq%.w %2,%0\";
}
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) < 0
&& INTVAL (operands[2]) >= -8)
{
operands[2] = gen_rtx (CONST_INT, VOIDmode,
- INTVAL (operands[2]));
return \"subq%.w %2,%0\";
}
}
return \"add%.w %2,%0\"; }")
(define_insn "" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
(plus:HI (match_dup 0)
(match_operand:HI 1 "general_operand" "dn,rmn")))]
"" "add%.w %1,%0")
(define_insn "addqi3" [(set (match_operand:QI 0 "general_operand" "=m,d")
(plus:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "dn,dmn")))]
"" "* { if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 8)
return \"addq%.b %2,%0\";
}
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) < 0 && INTVAL (operands[2]) >= -8)
{
operands[2] = gen_rtx (CONST_INT, VOIDmode, - INTVAL (operands[2]));
return \"subq%.b %2,%0\";
}
}
return \"add%.b %2,%0\"; }")
(define_insn "" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
(plus:QI (match_dup 0)
(match_operand:QI 1 "general_operand" "dn,dmn")))]
"" "add%.b %1,%0")
(define_insn "adddf3" [(set (match_operand:DF 0 "general_operand" "=f")
(plus:DF (match_operand:DF 1 "general_operand" "%0")
(match_operand:DF 2 "general_operand" "fmG")))]
"TARGET_68881" "* { if (REG_P (operands[2]))
return \"fadd%.x %2,%0\";
return \"fadd%.d %f2,%0\"; }")
(define_insn "addsf3" [(set (match_operand:SF 0 "general_operand" "=f")
(plus:SF (match_operand:SF 1 "general_operand" "%0")
(match_operand:SF 2 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[2]) && ! DATA_REG_P (operands[2]))
return \"fadd%.x %2,%0\";
return \"fadd%.s %f2,%0\"; }") ;; subtract instructions
(define_insn "subsi3" [(set (match_operand:SI 0 "general_operand" "=m,r,!a,?d")
(minus:SI (match_operand:SI 1 "general_operand" "0,0,a,mrIKs")
(match_operand:SI 2 "general_operand" "dIKs,mrIKs,J,0")))]
"" "* { if (! operands_match_p (operands[0], operands[1]))
{
if (operands_match_p (operands[0], operands[2]))
{
if (GET_CODE (operands[1]) == CONST_INT)
{
if (INTVAL (operands[1]) > 0
&& INTVAL (operands[1]) <= 8)
return \"subq%.l %1,%0\;neg%.l %0\";
}
return \"sub%.l %1,%0\;neg%.l %0\";
}
/* This case is matched by J, but negating -0x8000
in an lea would give an invalid displacement.
So do this specially. */
if (INTVAL (operands[2]) == -0x8000)
return \"move%.l %1,%0\;sub%.l %2,%0\";
#ifdef SGS
return \"lea %n2(%1),%0\";
#else #ifdef MOTOROLA
return \"lea (%n2,%1),%0\";
#else /* not MOTOROLA (MIT syntax) */
return \"lea %1@(%n2),%0\";
#endif /* not MOTOROLA / #endif / not SGS */
}
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 8)
return \"subq%.l %2,%0\";
if (ADDRESS_REG_P (operands[0])
&& INTVAL (operands[2]) >= -0x8000
&& INTVAL (operands[2]) < 0x8000)
return \"sub%.w %2,%0\";
}
return \"sub%.l %2,%0\"; }")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=a")
(minus:SI (match_operand:SI 1 "general_operand" "0")
(sign_extend:SI (match_operand:HI 2 "general_operand" "rmn"))))]
"" "sub%.w %2,%0")
(define_insn "subhi3" [(set (match_operand:HI 0 "general_operand" "=m,r")
(minus:HI (match_operand:HI 1 "general_operand" "0,0")
(match_operand:HI 2 "general_operand" "dn,rmn")))]
"" "sub%.w %2,%0")
(define_insn "" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
(minus:HI (match_dup 0)
(match_operand:HI 1 "general_operand" "dn,rmn")))]
"" "sub%.w %1,%0")
(define_insn "subqi3" [(set (match_operand:QI 0 "general_operand" "=m,d")
(minus:QI (match_operand:QI 1 "general_operand" "0,0")
(match_operand:QI 2 "general_operand" "dn,dmn")))]
"" "sub%.b %2,%0")
(define_insn "" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
(minus:QI (match_dup 0)
(match_operand:QI 1 "general_operand" "dn,dmn")))]
"" "sub%.b %1,%0")
(define_insn "subdf3" [(set (match_operand:DF 0 "general_operand" "=f")
(minus:DF (match_operand:DF 1 "general_operand" "0")
(match_operand:DF 2 "general_operand" "fmG")))]
"TARGET_68881" "* { if (REG_P (operands[2]))
return \"fsub%.x %2,%0\";
return \"fsub%.d %f2,%0\"; }")
(define_insn "subsf3" [(set (match_operand:SF 0 "general_operand" "=f")
(minus:SF (match_operand:SF 1 "general_operand" "0")
(match_operand:SF 2 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[2]) && ! DATA_REG_P (operands[2]))
return \"fsub%.x %2,%0\";
return \"fsub%.s %f2,%0\"; }") ;; multiply instructions
(define_insn "mulhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(mult:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"muls.w %2,%0\"; #else return \"muls %2,%0\"; #endif }")
(define_insn "mulhisi3" [(set (match_operand:SI 0 "general_operand" "=d")
(mult:SI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"muls.w %2,%0\"; #else return \"muls %2,%0\"; #endif }")
(define_insn "mulsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(mult:SI (match_operand:SI 1 "general_operand" "%0")
(match_operand:SI 2 "general_operand" "dmsK")))]
"TARGET_68020" "muls%.l %2,%0")
(define_insn "umulhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(umult:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"mulu.w %2,%0\"; #else return \"mulu %2,%0\"; #endif }")
(define_insn "umulhisi3" [(set (match_operand:SI 0 "general_operand" "=d")
(umult:SI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"mulu.w %2,%0\"; #else return \"mulu %2,%0\"; #endif }")
(define_insn "umulsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(umult:SI (match_operand:SI 1 "general_operand" "%0")
(match_operand:SI 2 "general_operand" "dmsK")))]
"TARGET_68020" "mulu%.l %2,%0")
(define_insn "muldf3" [(set (match_operand:DF 0 "general_operand" "=f")
(mult:DF (match_operand:DF 1 "general_operand" "%0")
(match_operand:DF 2 "general_operand" "fmG")))]
"TARGET_68881" "* { if (REG_P (operands[2]))
return \"fmul%.x %2,%0\";
return \"fmul%.d %f2,%0\"; }")
(define_insn "mulsf3" [(set (match_operand:SF 0 "general_operand" "=f")
(mult:SF (match_operand:SF 1 "general_operand" "%0")
(match_operand:SF 2 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[2]) && ! DATA_REG_P (operands[2]))
return \"fsglmul%.x %2,%0\";
return \"fsglmul%.s %f2,%0\"; }") ;; divide instructions
(define_insn "divhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(div:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"ext.l %0\;divs.w %2,%0\"; #else return \"extl %0\;divs %2,%0\"; #endif }")
(define_insn "divhisi3" [(set (match_operand:HI 0 "general_operand" "=d")
(div:HI (match_operand:SI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"divs.w %2,%0\"; #else return \"divs %2,%0\"; #endif }")
(define_insn "divsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))]
"TARGET_68020" "divs%.l %2,%0")
(define_insn "udivhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(udiv:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"and.l %#0xFFFF,%0\;divu.w %2,%0\"; #else return \"andl %#0xFFFF,%0\;divu %2,%0\"; #endif }")
(define_insn "udivhisi3" [(set (match_operand:HI 0 "general_operand" "=d")
(udiv:HI (match_operand:SI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { #ifdef MOTOROLA return \"divu.w %2,%0\"; #else return \"divu %2,%0\"; #endif }")
(define_insn "udivsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(udiv:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))]
"TARGET_68020" "divu%.l %2,%0")
(define_insn "divdf3" [(set (match_operand:DF 0 "general_operand" "=f")
(div:DF (match_operand:DF 1 "general_operand" "0")
(match_operand:DF 2 "general_operand" "fmG")))]
"TARGET_68881" "* { if (REG_P (operands[2]))
return \"fdiv%.x %2,%0\";
return \"fdiv%.d %f2,%0\"; }")
(define_insn "divsf3" [(set (match_operand:SF 0 "general_operand" "=f")
(div:SF (match_operand:SF 1 "general_operand" "0")
(match_operand:SF 2 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[2]) && ! DATA_REG_P (operands[2]))
return \"fsgldiv%.x %2,%0\";
return \"fsgldiv%.s %f2,%0\"; }") ;; Remainder instructions.
(define_insn "modhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(mod:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { /* The swap insn produces cc's that don't correspond to the result. */ CC_STATUS_INIT; #ifdef MOTOROLA return \"ext.l %0\;divs.w %2,%0\;swap %0\"; #else return \"extl %0\;divs %2,%0\;swap %0\"; #endif }")
(define_insn "modhisi3" [(set (match_operand:HI 0 "general_operand" "=d")
(mod:HI (match_operand:SI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { /* The swap insn produces cc's that don't correspond to the result. */ CC_STATUS_INIT; #ifdef MOTOROLA return \"divs.w %2,%0\;swap %0\"; #else return \"divs %2,%0\;swap %0\"; #endif }")
(define_insn "umodhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(umod:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { /* The swap insn produces cc's that don't correspond to the result. */ CC_STATUS_INIT; #ifdef MOTOROLA return \"and.l %#0xFFFF,%0\;divu.w %2,%0\;swap %0\"; #else return \"andl %#0xFFFF,%0\;divu %2,%0\;swap %0\"; #endif }")
(define_insn "umodhisi3" [(set (match_operand:HI 0 "general_operand" "=d")
(umod:HI (match_operand:SI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dmn")))]
"" "* { /* The swap insn produces cc's that don't correspond to the result. */ CC_STATUS_INIT; #ifdef MOTOROLA return \"divu.w %2,%0\;swap %0\"; #else return \"divu %2,%0\;swap %0\"; #endif }")
(define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d")
(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]
"TARGET_68020" "divsl%.l %2,%3:%0")
(define_insn "udivmodsi4" [(set (match_operand:SI 0 "general_operand" "=d")
(udiv:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand" "=d")
(umod:SI (match_dup 1) (match_dup 2)))]
"TARGET_68020" "divul%.l %2,%3:%0") ;; logical-and instructions
(define_insn "andsi3" [(set (match_operand:SI 0 "general_operand" "=m,d")
(and:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
"" "* { if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) | 0xffff) == 0xffffffff
&& (DATA_REG_P (operands[0])
|| offsetable_memref_p (operands[0])))
{
if (GET_CODE (operands[0]) != REG)
operands[0] = adj_offsetable_operand (operands[0], 2);
operands[2] = gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[2]) & 0xffff);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
return \"and%.w %2,%0\";
}
return \"and%.l %2,%0\"; }")
(define_insn "andhi3" [(set (match_operand:HI 0 "general_operand" "=m,d")
(and:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "dn,dmn")))]
"" "and%.w %2,%0")
(define_insn "andqi3" [(set (match_operand:QI 0 "general_operand" "=m,d")
(and:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "dn,dmn")))]
"" "and%.b %2,%0")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(and:SI (zero_extend:SI (match_operand:HI 1 "general_operand" "dm"))
(match_operand:SI 2 "general_operand" "0")))]
"GET_CODE (operands[2]) == CONST_INT && (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (HImode))" "and%.w %1,%0")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(and:SI (zero_extend:SI (match_operand:QI 1 "general_operand" "dm"))
(match_operand:SI 2 "general_operand" "0")))]
"GET_CODE (operands[2]) == CONST_INT && (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (QImode))" "and%.b %1,%0") ;; inclusive-or instructions
(define_insn "iorsi3" [(set (match_operand:SI 0 "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
"" "* { register int logval; if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) >> 16 == 0
&& (DATA_REG_P (operands[0])
|| offsetable_memref_p (operands[0])))
{
if (GET_CODE (operands[0]) != REG)
operands[0] = adj_offsetable_operand (operands[0], 2);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
return \"or%.w %2,%0\";
}
if (GET_CODE (operands[2]) == CONST_INT
&& (logval = exact_log2 (INTVAL (operands[2]))) >= 0
&& (DATA_REG_P (operands[0])
|| offsetable_memref_p (operands[0])))
{
if (DATA_REG_P (operands[0]))
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, logval);
}
else
{
operands[0] = adj_offsetable_operand (operands[0], 3 - (logval / 8));
operands[1] = gen_rtx (CONST_INT, VOIDmode, logval % 8);
}
return \"bset %1,%0\";
}
return \"or%.l %2,%0\"; }")
(define_insn "iorhi3" [(set (match_operand:HI 0 "general_operand" "=m,d")
(ior:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "dn,dmn")))]
"" "or%.w %2,%0")
(define_insn "iorqi3" [(set (match_operand:QI 0 "general_operand" "=m,d")
(ior:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "dn,dmn")))]
"" "or%.b %2,%0") ;; xor instructions
(define_insn "xorsi3" [(set (match_operand:SI 0 "general_operand" "=do,m")
(xor:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "di,dKs")))]
"" "* { if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) >> 16 == 0
&& (offsetable_memref_p (operands[0]) || DATA_REG_P (operands[0])))
{
if (! DATA_REG_P (operands[0]))
operands[0] = adj_offsetable_operand (operands[0], 2);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
return \"eor%.w %2,%0\";
}
return \"eor%.l %2,%0\"; }")
(define_insn "xorhi3" [(set (match_operand:HI 0 "general_operand" "=dm")
(xor:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dn")))]
"" "eor%.w %2,%0")
(define_insn "xorqi3" [(set (match_operand:QI 0 "general_operand" "=dm")
(xor:QI (match_operand:QI 1 "general_operand" "%0")
(match_operand:QI 2 "general_operand" "dn")))]
"" "eor%.b %2,%0") ;; negation instructions
(define_insn "negsi2" [(set (match_operand:SI 0 "general_operand" "=dm")
(neg:SI (match_operand:SI 1 "general_operand" "0")))]
"" "neg%.l %0")
(define_insn "neghi2" [(set (match_operand:HI 0 "general_operand" "=dm")
(neg:HI (match_operand:HI 1 "general_operand" "0")))]
"" "neg%.w %0")
(define_insn "negqi2" [(set (match_operand:QI 0 "general_operand" "=dm")
(neg:QI (match_operand:QI 1 "general_operand" "0")))]
"" "neg%.b %0")
(define_insn "negsf2" [(set (match_operand:SF 0 "general_operand" "=f")
(neg:SF (match_operand:SF 1 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[1]) && ! DATA_REG_P (operands[1]))
return \"fneg%.x %1,%0\";
return \"fneg%.s %f1,%0\"; }")
(define_insn "negdf2" [(set (match_operand:DF 0 "general_operand" "=f")
(neg:DF (match_operand:DF 1 "general_operand" "fmF")))]
"TARGET_68881" "* { if (REG_P (operands[1]) && ! DATA_REG_P (operands[1]))
return \"fneg%.x %1,%0\";
return \"fneg%.d %f1,%0\"; }") ;; Absolute value instructions
(define_insn "abssf2" [(set (match_operand:SF 0 "general_operand" "=f")
(abs:SF (match_operand:SF 1 "general_operand" "fdmF")))]
"TARGET_68881" "* { if (REG_P (operands[1]) && ! DATA_REG_P (operands[1]))
return \"fabs%.x %1,%0\";
return \"fabs%.s %f1,%0\"; }")
(define_insn "absdf2" [(set (match_operand:DF 0 "general_operand" "=f")
(abs:DF (match_operand:DF 1 "general_operand" "fmF")))]
"TARGET_68881" "* { if (REG_P (operands[1]) && ! DATA_REG_P (operands[1]))
return \"fabs%.x %1,%0\";
return \"fabs%.d %f1,%0\"; }") ;; one complement instructions
(define_insn "one_cmplsi2" [(set (match_operand:SI 0 "general_operand" "=dm")
(not:SI (match_operand:SI 1 "general_operand" "0")))]
"" "not%.l %0")
(define_insn "one_cmplhi2" [(set (match_operand:HI 0 "general_operand" "=dm")
(not:HI (match_operand:HI 1 "general_operand" "0")))]
"" "not%.w %0")
(define_insn "one_cmplqi2" [(set (match_operand:QI 0 "general_operand" "=dm")
(not:QI (match_operand:QI 1 "general_operand" "0")))]
"" "not%.b %0") ;; Optimized special case of shifting. ;; Must precede the general case.
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(ashiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 24)))]
"" "* { if (TARGET_68020)
return \"move%.b %1,%0\;extb%.l %0\";
return \"move%.b %1,%0\;ext%.w %0\;ext%.l %0\"; }")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 24)))]
"" "* { if (reg_mentioned_p (operands[0], operands[1]))
return \"move%.b %1,%0\;and%.l %#0xFF,%0\";
return \"clr%.l %0\;move%.b %1,%0\"; }")
(define_insn "" [(set (cc0) (minus (match_operand:QI 0 "general_operand" "i")
(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 24))))]
"(GET_CODE (operands[0]) == CONST_INT
&& (INTVAL (operands[0]) & ~0xff) == 0)"
"* cc_status.flags |= CC_REVERSED; #ifdef HPUX_ASM return \"cmp%.b %1,%0\"; #else return \"cmp%.b %0,%1\"; #endif ")
(define_insn "" [(set (cc0) (minus (lshiftrt:SI (match_operand:SI 0 "memory_operand" "m")
(const_int 24))
(match_operand:QI 1 "general_operand" "i")))]
"(GET_CODE (operands[1]) == CONST_INT
&& (INTVAL (operands[1]) & ~0xff) == 0)"
"* #ifdef HPUX_ASM return \"cmp%.b %0,%1\"; #else return \"cmp%.b %1,%0\"; #endif ")
(define_insn "" [(set (cc0) (minus (match_operand:QI 0 "general_operand" "i")
(ashiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 24))))]
"(GET_CODE (operands[0]) == CONST_INT
&& ((INTVAL (operands[0]) + 0x80) & ~0xff) == 0)"
"* cc_status.flags |= CC_REVERSED; #ifdef HPUX_ASM return \"cmp%.b %1,%0\"; #else return \"cmp%.b %0,%1\"; #endif ")
(define_insn "" [(set (cc0) (minus (ashiftrt:SI (match_operand:SI 0 "memory_operand" "m")
(const_int 24))
(match_operand:QI 1 "general_operand" "i")))]
"(GET_CODE (operands[1]) == CONST_INT
&& ((INTVAL (operands[1]) + 0x80) & ~0xff) == 0)"
"* #ifdef HPUX_ASM return \"cmp%.b %0,%1\"; #else return \"cmp%.b %1,%0\"; #endif ") ;; arithmetic shift instructions ;; We don't need the shift memory by 1 bit instruction
(define_insn "ashlsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(ashift:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "asl%.l %2,%0")
(define_insn "ashlhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(ashift:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "asl%.w %2,%0")
(define_insn "ashlqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(ashift:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "asl%.b %2,%0")
(define_insn "ashrsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "asr%.l %2,%0")
(define_insn "ashrhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(ashiftrt:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "asr%.w %2,%0")
(define_insn "ashrqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(ashiftrt:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "asr%.b %2,%0") ;; logical shift instructions
(define_insn "lshlsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(lshift:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "lsl%.l %2,%0")
(define_insn "lshlhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(lshift:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "lsl%.w %2,%0")
(define_insn "lshlqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(lshift:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "lsl%.b %2,%0")
(define_insn "lshrsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(lshiftrt:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "lsr%.l %2,%0")
(define_insn "lshrhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(lshiftrt:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "lsr%.w %2,%0")
(define_insn "lshrqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(lshiftrt:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "lsr%.b %2,%0") ;; rotate instructions
(define_insn "rotlsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(rotate:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "rol%.l %2,%0")
(define_insn "rotlhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(rotate:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "rol%.w %2,%0")
(define_insn "rotlqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(rotate:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "rol%.b %2,%0")
(define_insn "rotrsi3" [(set (match_operand:SI 0 "general_operand" "=d")
(rotatert:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dI")))]
"" "ror%.l %2,%0")
(define_insn "rotrhi3" [(set (match_operand:HI 0 "general_operand" "=d")
(rotatert:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dI")))]
"" "ror%.w %2,%0")
(define_insn "rotrqi3" [(set (match_operand:QI 0 "general_operand" "=d")
(rotatert:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "dI")))]
"" "ror%.b %2,%0") ;; Special cases of bit-field insns which we should ;; recognize in preference to the general case. ;; These handle aligned 8-bit and 16-bit fields, ;; which can usually be done with move instructions.
(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+do")
(match_operand:SI 1 "immediate_operand" "i")
(match_operand:SI 2 "immediate_operand" "i"))
(match_operand:SI 3 "general_operand" "d"))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT && (INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16) && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) % INTVAL (operands[1]) == 0 && (GET_CODE (operands[0]) == REG
|| ! mode_dependent_address_p (XEXP (operands[0], 0)))"
"* { if (REG_P (operands[0]))
{
if (INTVAL (operands[1]) + INTVAL (operands[2]) != 32)
return \"bfins %3,%0{%b2:%b1}\";
}
else
operands[0]
= adj_offsetable_operand (operands[0], INTVAL (operands[2]) / 8);
if (GET_CODE (operands[3]) == MEM)
operands[3] = adj_offsetable_operand (operands[3],
(32 - INTVAL (operands[1])) / 8);
if (INTVAL (operands[1]) == 8)
return \"move%.b %3,%0\";
return \"move%.w %3,%0\"; }")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=&d")
(zero_extract:SI (match_operand:SI 1 "general_operand" "do")
(match_operand:SI 2 "immediate_operand" "i")
(match_operand:SI 3 "immediate_operand" "i")))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[2]) == CONST_INT && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16) && GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) % INTVAL (operands[2]) == 0 && (GET_CODE (operands[1]) == REG
|| ! mode_dependent_address_p (XEXP (operands[1], 0)))"
"* { if (REG_P (operands[1]))
{
if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
return \"bfextu %1{%b3:%b2},%0\";
}
else
operands[1]
= adj_offsetable_operand (operands[1], INTVAL (operands[3]) / 8);
output_asm_insn (\"clr%.l %0\", operands); if (GET_CODE (operands[0]) == MEM)
operands[0] = adj_offsetable_operand (operands[0],
(32 - INTVAL (operands[1])) / 8);
if (INTVAL (operands[2]) == 8)
return \"move%.b %1,%0\";
return \"move%.w %1,%0\"; }")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(sign_extract:SI (match_operand:SI 1 "general_operand" "do")
(match_operand:SI 2 "immediate_operand" "i")
(match_operand:SI 3 "immediate_operand" "i")))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[2]) == CONST_INT && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16) && GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) % INTVAL (operands[2]) == 0 && (GET_CODE (operands[1]) == REG
|| ! mode_dependent_address_p (XEXP (operands[1], 0)))"
"* { if (REG_P (operands[1]))
{
if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
return \"bfexts %1{%b3:%b2},%0\";
}
else
operands[1]
= adj_offsetable_operand (operands[1], INTVAL (operands[3]) / 8);
if (INTVAL (operands[2]) == 8)
return \"move%.b %1,%0\;extb%.l %0\";
return \"move%.w %1,%0\;ext%.l %0\"; }") ;; Bit field instructions, general cases. ;; "o,d" constraint causes a nonoffsetable memref to match the "o" ;; so that its address is reloaded.
(define_insn "extv" [(set (match_operand:SI 0 "general_operand" "=d")
(sign_extract:SI (match_operand:QI 1 "general_operand" "o,d")
(match_operand:SI 2 "general_operand" "di,di")
(match_operand:SI 3 "general_operand" "di,di")))]
"TARGET_68020 && TARGET_BITFIELD" "bfexts %1{%b3:%b2},%0")
(define_insn "extzv" [(set (match_operand:SI 0 "general_operand" "=d")
(zero_extract:SI (match_operand:QI 1 "general_operand" "o,d")
(match_operand:SI 2 "general_operand" "di,di")
(match_operand:SI 3 "general_operand" "di,di")))]
"TARGET_68020 && TARGET_BITFIELD" "bfextu %1{%b3:%b2},%0")
(define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "general_operand" "+o,d")
(match_operand:SI 1 "general_operand" "di,di")
(match_operand:SI 2 "general_operand" "di,di"))
(xor:SI (zero_extract:SI (match_dup 0) (match_dup 1) (match_dup 2))
(match_operand 3 "immediate_operand" "i")))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[3]) == CONST_INT && (INTVAL (operands[3]) == -1
|| (GET_CODE (operands[1]) == CONST_INT
&& (~ INTVAL (operands[3]) & ((1 << INTVAL (operands[1]))- 1)) == 0))"
"bfchg %0{%b2:%b1}")
(define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "general_operand" "+o,d")
(match_operand:SI 1 "general_operand" "di,di")
(match_operand:SI 2 "general_operand" "di,di"))
(const_int 0))]
"TARGET_68020 && TARGET_BITFIELD" "bfclr %0{%b2:%b1}")
(define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "general_operand" "+o,d")
(match_operand:SI 1 "general_operand" "di,di")
(match_operand:SI 2 "general_operand" "di,di"))
(const_int -1))]
"TARGET_68020 && TARGET_BITFIELD" "bfset %0{%b2:%b1}")
(define_insn "insv" [(set (zero_extract:SI (match_operand:QI 0 "general_operand" "+o,d")
(match_operand:SI 1 "general_operand" "di,di")
(match_operand:SI 2 "general_operand" "di,di"))
(match_operand:SI 3 "general_operand" "d"))]
"TARGET_68020 && TARGET_BITFIELD" "bfins %3,%0{%b2:%b1}")
;; Now recognize bit field insns that operate on registers ;; (or at least were intended to do so).
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(sign_extract:SI (match_operand:SI 1 "general_operand" "d")
(match_operand:SI 2 "general_operand" "di")
(match_operand:SI 3 "general_operand" "di")))]
"TARGET_68020 && TARGET_BITFIELD" "bfexts %1{%b3:%b2},%0")
(define_insn "" [(set (match_operand:SI 0 "general_operand" "=d")
(zero_extract:SI (match_operand:SI 1 "general_operand" "d")
(match_operand:SI 2 "general_operand" "di")
(match_operand:SI 3 "general_operand" "di")))]
"TARGET_68020 && TARGET_BITFIELD" "bfextu %1{%b3:%b2},%0")
(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
(const_int 0))]
"TARGET_68020 && TARGET_BITFIELD" "bfclr %0{%b2:%b1}")
(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
(const_int -1))]
"TARGET_68020 && TARGET_BITFIELD" "bfset %0{%b2:%b1}")
(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
(match_operand:SI 3 "general_operand" "d"))]
"TARGET_68020 && TARGET_BITFIELD" "* { #if 0 /* These special cases are now recognized by a specific pattern. */ if (GET_CODE (operands[1]) == CONST_INT && GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[1]) == 16 && INTVAL (operands[2]) == 16)
return \"move%.w %3,%0\";
if (GET_CODE (operands[1]) == CONST_INT && GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[1]) == 24 && INTVAL (operands[2]) == 8)
return \"move%.b %3,%0\";
#endif return \"bfins %3,%0{%b2:%b1}\"; }") ;; Special patterns for optimizing bit-field instructions.
(define_insn "" [(set (cc0)
(zero_extract:SI (match_operand:QI 0 "memory_operand" "o")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di")))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }")
(define_insn "" [(set (cc0)
(subreg:QI
(zero_extract:SI (match_operand:QI 0 "memory_operand" "o")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
0))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }")
(define_insn "" [(set (cc0)
(subreg:HI
(zero_extract:SI (match_operand:QI 0 "memory_operand" "o")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
0))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }")
;;; now handle the register cases (define_insn "" [(set (cc0)
(zero_extract:SI (match_operand:SI 0 "general_operand" "d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di")))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }")
(define_insn "" [(set (cc0)
(subreg:QI
(zero_extract:SI (match_operand:SI 0 "general_operand" "d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
0))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }")
(define_insn "" [(set (cc0)
(subreg:HI
(zero_extract:SI (match_operand:SI 0 "general_operand" "d")
(match_operand:SI 1 "general_operand" "di")
(match_operand:SI 2 "general_operand" "di"))
0))]
"TARGET_68020 && TARGET_BITFIELD && GET_CODE (operands[1]) == CONST_INT" "* { if (operands[1] == const1_rtx
&& GET_CODE (operands[2]) == CONST_INT)
{
int width = GET_CODE (operands[0]) == REG ? 31 : 7;
return output_btst (operands,
gen_rtx (CONST_INT, VOIDmode,
width - INTVAL (operands[2])),
operands[0],
insn, 1000);
/* Pass 1000 as SIGNPOS argument so that btst will
not think we are testing the sign bit for an `and'
and assume that nonzero implies a negative result. */
}
if (INTVAL (operands[1]) != 32)
cc_status.flags = CC_NOT_NEGATIVE;
return \"bftst %0{%b2:%b1}\"; }") (define_insn "seq" [(set (match_operand:QI 0 "general_operand" "=d")
(eq (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status; if (cc_status.flags & CC_Z_IN_NOT_N)
return \"spl %0\";
OUTPUT_JUMP (\"seq %0\", \"fseq %0\", \"seq %0\"); ")
(define_insn "sne" [(set (match_operand:QI 0 "general_operand" "=d")
(ne (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status; if (cc_status.flags & CC_Z_IN_NOT_N)
return \"smi %0\";
OUTPUT_JUMP (\"sne %0\", \"fsne %0\", \"sne %0\"); ")
(define_insn "sgt" [(set (match_operand:QI 0 "general_operand" "=d")
(gt (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sgt %0\", \"fsgt %0\", \"and%.b %#0xc,%!\;sgt %0\"); ")
(define_insn "sgtu" [(set (match_operand:QI 0 "general_operand" "=d")
(gtu (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
return \"shi %0\"; ")
(define_insn "slt" [(set (match_operand:QI 0 "general_operand" "=d")
(lt (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
OUTPUT_JUMP (\"slt %0\", \"fslt %0\", \"smi %0\"); ")
(define_insn "sltu" [(set (match_operand:QI 0 "general_operand" "=d")
(ltu (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
return \"scs %0\"; ")
(define_insn "sge" [(set (match_operand:QI 0 "general_operand" "=d")
(ge (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
OUTPUT_JUMP (\"sge %0\", \"fsge %0\", \"spl %0\"); ")
(define_insn "sgeu" [(set (match_operand:QI 0 "general_operand" "=d")
(geu (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
return \"scc %0\"; ")
(define_insn "sle" [(set (match_operand:QI 0 "general_operand" "=d")
(le (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sle %0\", \"fsle %0\", \"and%.b %#0xc,%!\;sle %0\"); ")
(define_insn "sleu" [(set (match_operand:QI 0 "general_operand" "=d")
(leu (cc0) (const_int 0)))]
"" "* cc_status = cc_prev_status;
return \"sls %0\"; ")
;; Basic conditional jump instructions.
(define_insn "beq" [(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* { if (cc_status.flags & CC_Z_IN_NOT_N) #ifdef MOTOROLA
return \"jbpl %l0\";
#else
return \"jpl %l0\";
#endif #ifdef MOTOROLA OUTPUT_JUMP (\"jbeq %l0\", \"fbeq %l0\", \"jbeq %l0\"); #else OUTPUT_JUMP (\"jeq %l0\", \"fjeq %l0\", \"jeq %l0\"); #endif }")
(define_insn "bne" [(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* { if (cc_status.flags & CC_Z_IN_NOT_N) #ifdef MOTOROLA
return \"jbmi %l0\";
#else
return \"jmi %l0\";
#endif #ifdef MOTOROLA OUTPUT_JUMP (\"jbne %l0\", \"fbne %l0\", \"jbne %l0\"); #else OUTPUT_JUMP (\"jne %l0\", \"fjne %l0\", \"jne %l0\"); #endif }")
(define_insn "bgt" [(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jbgt %l0\", \"fbgt %l0\", \"and%.b %#0xc,%!\;jbgt %l0\"); #else OUTPUT_JUMP (\"jgt %l0\", \"fjgt %l0\", \"andb %#0xc,%!\;jgt %l0\"); #endif ")
(define_insn "bgtu" [(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA return \"jbhi %l0\"; #else return \"jhi %l0\"; #endif ")
(define_insn "blt" [(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jblt %l0\", \"fblt %l0\", \"jbmi %l0\"); #else OUTPUT_JUMP (\"jlt %l0\", \"fjlt %l0\", \"jmi %l0\"); #endif ")
(define_insn "bltu" [(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA return \"jbcs %l0\"; #else return \"jcs %l0\"; #endif ")
(define_insn "bge" [(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jbge %l0\", \"fbge %l0\", \"jbpl %l0\"); #else OUTPUT_JUMP (\"jge %l0\", \"fjge %l0\", \"jpl %l0\"); #endif ")
(define_insn "bgeu" [(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA return \"jbcc %l0\"; #else return \"jcc %l0\"; #endif ")
(define_insn "ble" [(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jble %l0\", \"fble %l0\", \"and%.b %#0xc,%!\;jble %l0\"); #else OUTPUT_JUMP (\"jle %l0\", \"fjle %l0\", \"and%.b %#0xc,%!\;jle %l0\"); #endif ")
(define_insn "bleu" [(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
"" "* #ifdef MOTOROLA return \"jbls %l0\"; #else return \"jls %l0\"; #endif ") ;; Negated conditional jump instructions.
(define_insn "" [(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* { if (cc_status.flags & CC_Z_IN_NOT_N) #ifdef MOTOROLA
return \"jbmi %l0\";
#else
return \"jmi %l0\";
#endif #ifdef MOTOROLA OUTPUT_JUMP (\"jbne %l0\", \"fbne %l0\", \"jbne %l0\"); #else OUTPUT_JUMP (\"jne %l0\", \"fjne %l0\", \"jne %l0\"); #endif }")
(define_insn "" [(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* { if (cc_status.flags & CC_Z_IN_NOT_N) #ifdef MOTOROLA
return \"jbpl %l0\";
#else
return \"jpl %l0\";
#endif #ifdef MOTOROLA OUTPUT_JUMP (\"jbeq %l0\", \"fbeq %l0\", \"jbeq %l0\"); #else OUTPUT_JUMP (\"jeq %l0\", \"fjeq %l0\", \"jeq %l0\"); #endif }")
(define_insn "" [(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jble %l0\", \"fbngt %l0\", \"and%.b %#0xc,%!\;jble %l0\"); #else OUTPUT_JUMP (\"jle %l0\", \"fjngt %l0\", \"and%.b %#0xc,%!\;jle %l0\"); #endif ")
(define_insn "" [(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA return \"jbls %l0\"; #else return \"jls %l0\"; #endif ")
(define_insn "" [(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jbge %l0\", \"fbnlt %l0\", \"jbpl %l0\"); #else OUTPUT_JUMP (\"jge %l0\", \"fjnlt %l0\", \"jpl %l0\"); #endif ")
(define_insn "" [(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA return \"jbcc %l0\"; #else return \"jcc %l0\"; #endif ")
(define_insn "" [(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jblt %l0\", \"fbnge %l0\", \"jbmi %l0\"); #else OUTPUT_JUMP (\"jlt %l0\", \"fjnge %l0\", \"jmi %l0\"); #endif ")
(define_insn "" [(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA return \"jbcs %l0\"; #else return \"jcs %l0\"; #endif ")
(define_insn "" [(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA OUTPUT_JUMP (\"jbgt %l0\", \"fbnle %l0\", \"and%.b %#0xc,%!\;jbgt %l0\"); #else OUTPUT_JUMP (\"jgt %l0\", \"fjnle %l0\", \"and%.b %#0xc,%!\;jgt %l0\"); #endif ")
(define_insn "" [(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
"" "* #ifdef MOTOROLA return \"jbhi %l0\"; #else return \"jhi %l0\"; #endif ") ;; Subroutines of "casesi".
(define_expand "casesi_1" [(set (match_operand:SI 3 "general_operand" "")
(plus:SI (match_operand:SI 0 "general_operand" "")
;; Note operand 1 has been negated!
(match_operand:SI 1 "immediate_operand" "")))
(set (cc0) (minus (match_operand:SI 2 "general_operand" "")
(match_dup 3)))
(set (pc) (if_then_else (ltu (cc0) (const_int 0))
(label_ref (match_operand 4 "" "")) (pc)))]
"" "")
(define_expand "casesi_2" [(set (match_operand:SI 0 "" "") (mem:HI (match_operand:SI 1 "" ""))) ;; The USE here is so that at least one jump-insn will refer to the label, ;; to keep it alive in jump_optimize. (parallel [(set (pc)
(plus:SI (pc) (match_dup 0)))
(use (label_ref (match_operand 2 "" "")))])]
"" "")
;; Operand 0 is index (in bytes); operand 1 is minimum, operand 2 themaximum; ;; operand 3 is CODE_LABEL for the table; ;; operand 4 is the CODE_LABEL to go to if index out of range. (define_expand "casesi" [(set (match_dup 7) (plus:SI (match_operand:SI 0 "general_operand" "")
;; Note operand 1 has been negated!
(match_operand:SI 1 "immediate_operand" "")))
(set (cc0) (minus (match_operand:SI 2 "general_operand" "")
(match_dup 7)))
(set (pc) (if_then_else (ltu (cc0) (const_int 0))
(label_ref (match_operand 4 "" "")) (pc)))
(set (match_dup 5) (mem:HI (match_dup 6))) ;; The USE here is so that at least one jump-insn will refer to the label, ;; to keep it alive in jump_optimize. (parallel [(set (pc)
(plus:SI (pc) (match_dup 5)))
(use (label_ref (match_operand 3 "" "")))])]
"" " { extern rtx negate_rtx (); rtx table_elt_addr; rtx index_diff;
operands[1] = negate_rtx (operands[1]); index_diff = gen_reg_rtx (SImode); /* Emit the first few insns. */ emit_insn (gen_casesi_1 (operands[0], operands[1], operands[2],
index_diff, operands[4]));
/* Construct a memory address. This may emit some insns. */ table_elt_addr
= memory_address (HImode,
gen_rtx (PLUS, Pmode,
gen_rtx (MULT, Pmode, index_diff,
gen_rtx (CONST_INT, VOIDmode, 2)),
gen_rtx (LABEL_REF, VOIDmode, operands[3])));
/* Emit the last few insns. */ emit_insn (gen_casesi_2 (gen_reg_rtx (HImode), table_elt_addr, operands[3])); DONE; }")
;; Recognize one of the insns resulting from casesi_2. (define_insn "" [(set (pc)
(plus:SI (pc) (match_operand:HI 0 "general_operand" "r")))
(use (label_ref (match_operand 1 "" "")))] "" "* #ifdef SGS #ifdef ASM_OUTPUT_CASE_LABEL return \"jmp 6(%%pc,%0.w)\"; #else return \"jmp 2(%%pc,%0.w)\"; #endif #else #ifdef MOTOROLA return \"jmp (2,pc,%0.w)\"; #else return \"jmp pc@(2,%0:w)\"; #endif #endif ") ;; Unconditional and other jump instructions (define_insn "jump" [(set (pc)
(label_ref (match_operand 0 "" "")))]
"" "* #ifdef MOTOROLA return \"jbra %l0\"; #else return \"jra %l0\"; #endif ")
(define_insn "" [(set (pc)
(if_then_else
(ne (minus (plus:HI (match_operand:HI 0 "general_operand" "g")
(const_int -1))
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:HI (match_dup 0)
(const_int -1)))]
"" "* { if (DATA_REG_P (operands[0]))
return \"dbra %0,%l1\";
if (GET_CODE (operands[0]) == MEM)
{
#ifdef MOTOROLA
return \"subq%.w %#1,%0\;jbcc %l1\";
#else
return \"subqw %#1,%0\;jcc %l1\";
#endif
}
#ifdef MOTOROLA #ifdef HPUX_ASM return \"subq%.w %#1,%0\;cmp%.w %0,%#-1\;jbne %l1\"; #else return \"subq%.w %#1,%0\;cmp%.w %#-1,%0\;jbne %l1\"; #endif #else return \"subqw %#1,%0\;cmpw %#-1,%0\;jne %l1\"; #endif }")
(define_insn "" [(set (pc)
(if_then_else
(ne (minus (plus:SI (match_operand:SI 0 "general_operand" "g")
(const_int -1))
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"" "* { #ifdef MOTOROLA if (DATA_REG_P (operands[0]))
return \"dbra %0,%l1\;clr.w %0\;subq.l %#1,%0\;jbcc %l1\";
if (GET_CODE (operands[0]) == MEM)
return \"subq.l %#1,%0\;jbcc %l1\";
#ifdef HPUX_ASM return \"subq.l %#1,%0\;cmp.l %0,%#-1\;jbne %l1\"; #else return \"subq.l %#1,%0\;cmp.l %#-1,%0\;jbne %l1\"; #endif #else if (DATA_REG_P (operands[0]))
return \"dbra %0,%l1\;clrw %0\;subql %#1,%0\;jcc %l1\";
if (GET_CODE (operands[0]) == MEM)
return \"subql %#1,%0\;jcc %l1\";
return \"subql %#1,%0\;cmpl %#-1,%0\;jne %l1\"; #endif }")
;; Call subroutine with no return value. (define_insn "call" [(call (match_operand:QI 0 "general_operand" "m")
(match_operand:SI 1 "general_operand" "g"))]
;; Operand 1 not really used on the m68000.
"" "* #ifdef MOTOROLA return \"jsr %0\"; #else return \"jbsr %0\"; #endif ")
;; Call subroutine, returning value in operand 0 ;; (which must be a hard register). (define_insn "call_value" [(set (match_operand 0 "" "rf")
(call (match_operand:QI 1 "general_operand" "m")
(match_operand:SI 2 "general_operand" "g")))]
;; Operand 2 not really used on the m68000. "" "* #ifdef MOTOROLA return \"jsr %1\"; #else return \"jbsr %1\"; #endif ")
(define_insn "return" [(return)] "" "rts") ;; This is the first machine-dependent peephole optimization. ;; It is useful when a floating value is returned from a function call ;; and then is moved into an FP register. ;; But it is mainly intended to test the support for these optimizations.
(define_peephole [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4))) (set (match_operand:DF 0 "register_operand" "f")
(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])" "* { rtx xoperands[2]; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); output_asm_insn (\"move%.l %1,%s\", xoperands); output_asm_insn (\"move%.l %1,%-\", operands); return \"fmove%.d %+,%0\"; } ") ;;- Local variables: ;;- mode:emacs-lisp ;;- comment-start: ";;- " ;;- eval: (set-syntax-table (copy-sequence (syntax-table))) ;;- eval: (modify-syntax-entry ?[ "(]") ;;- eval: (modify-syntax-entry ?] ")[") ;;- eval: (modify-syntax-entry ?{ "(}") ;;- eval: (modify-syntax-entry ?} "){") ;;- End: