123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755 |
- /* Definitions of target machine for GNU compiler. Vax version.
- Copyright (C) 1987 Free Software Foundation, Inc.
- This file is part of GNU CC.
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY. No author or distributor
- accepts responsibility to anyone for the consequences of using it
- or for whether it serves any particular purpose or works at all,
- unless he says so in writing. Refer to the GNU CC General Public
- License for full details.
- Everyone is granted permission to copy, modify and redistribute
- GNU CC, but only under the conditions described in the
- GNU CC General Public License. A copy of this license is
- supposed to have been given to you along with GNU CC so you
- can know your rights and responsibilities. It should be in a
- file named COPYING. Among other things, the copyright notice
- and this notice must be preserved on all copies. */
- /* Names to predefine in the preprocessor for this target machine. */
- #define CPP_PREDEFINES "-Dvax"
- /* Run-time compilation parameters selecting different hardware subsets. */
- extern int target_flags;
- /* Macros used in the machine description to test the flags. */
- /* Nonzero if compiling code that Unix assembler can assemble. */
- #define TARGET_UNIX_ASM (target_flags & 1)
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
- #define TARGET_SWITCHES \
- { {"unix", 1}, \
- { "", 0}}
- /* Target machine storage layout */
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is not true on the vax. */
- /* #define BITS_BIG_ENDIAN */
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is not true on the vax. */
- /* #define BYTES_BIG_ENDIAN */
- /* Define this if most significant word of a multiword number is numbered. */
- /* This is not true on the vax. */
- /* #define WORDS_BIG_ENDIAN */
- /* Number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 32
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
- /* There is no point aligning anything to a rounder boundary than this. */
- #define BIGGEST_ALIGNMENT 32
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- /* #define STRICT_ALIGNMENT */
- /* Standard register usage. */
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers. */
- #define FIRST_PSEUDO_REGISTER 16
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the vax, these are the AP, FP, SP and PC. */
- #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
- On the vax, all registers are one word long. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the vax, all registers can hold all modes. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) 1
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
- /* Vax pc is overloaded on a register. */
- #define PC_REGNUM 15
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 14
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 13
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 12
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 0
- /* Register in which function's value is returned.
- Actually, multiple registers starting with this one may be used
- depending on the machine mode of the value. */
- #define FUNCTION_VALUE_REGNUM 0
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 1
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The vax has only one kind of registers, so NO_REGS and ALL_REGS
- are the only classes. */
- enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
- /* Since GENERAL_REGS is the same class as ALL_REGS,
- don't give it a different class number; just make it an alias. */
- #define GENERAL_REGS ALL_REGS
- /* Give names of register classes as strings for dump file. */
- #define REG_CLASS_NAMES \
- {"NO_REGS", "ALL_REGS" }
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
- #define REG_CLASS_CONTENTS {0, 0xffff}
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
- #define REGNO_REG_CLASS(REGNO) ALL_REGS
- /* Define a table that lets us find quickly all the reg classes
- containing a given one. This is the initializer for an
- N_REG_CLASSES x N_REG_CLASSES array of reg class codes.
- Row N is a sequence containing all the class codes for
- classes that contain all the regs in class N. Each row
- contains no duplicates, and is terminated by LIM_REG_CLASSES. */
- /* We give just a dummy for the first element, which is for NO_REGS. */
- #define REG_CLASS_SUPERCLASSES \
- {{LIM_REG_CLASSES}, {LIM_REG_CLASSES}}
- /* The inverse relationship:
- for each class, a list of all reg classes contained in it. */
- #define REG_CLASS_SUBCLASSES \
- {{LIM_REG_CLASSES}, {LIM_REG_CLASSES}}
- /* Define a table that lets us find quickly the class
- for the subunion of any two classes.
- We say "subunion" because the result need not be exactly
- the union; it may instead be a subclass of the union
- (though the closer to the union, the better).
- But if it contains anything beyond union of the two classes,
- you will lose!
- This is an initializer for an N_REG_CLASSES x N_REG_CLASSES
- array of reg class codes. The subunion of classes C1 and C2
- is just element [C1, C2]. */
- #define REG_CLASS_SUBUNION \
- {{NO_REGS, ALL_REGS}, \
- {ALL_REGS, ALL_REGS}}
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS ALL_REGS
- #define BASE_REG_CLASS ALL_REGS
- /* Get reg_class from a letter such as appears in the machine description. */
- #define REG_CLASS_FROM_LETTER(C) NO_REGS
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C. */
- #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
- /* Stack layout; function entry, exit and calling. */
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the vax, sp@- in a byte insn really pushes a word. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET 4
- /* Define if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call. */
- #define RETURN_POPS_ARGS
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { register int regno; \
- register int mask = 0; \
- static char dont_save_regs[] = CALL_USED_REGISTERS; \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && !dont_save_regs[regno]) \
- mask |= 1 << regno; \
- fprintf (FILE, "\t.word 0x%x\n", mask & ~077); \
- if ((SIZE) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", SIZE);\
- else if (SIZE) fprintf (FILE, "\tsubl2 $%d,sp\n", - (SIZE)); }
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE. */
- /* #define FUNCTION_EPILOGUE(FILE, SIZE) */
- /* Addressing modes, and classification of registers for them. */
- #define HAVE_POST_INCREMENT
- /* #define HAVE_POST_DECREMENT */
- #define HAVE_PRE_DECREMENT
- /* #define HAVE_PRE_INCREMENT */
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- These definitions are NOT overridden anywhere. */
- #define REGNO_OK_FOR_INDEX_P(regno) \
- ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
- #define REGNO_OK_FOR_BASE_P(regno) \
- ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects them all.
- The symbol REG_OK_STRICT causes the latter definition to be used.
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Some source files that are used after register allocation
- need to be strict. */
- #ifndef REG_OK_STRICT
- /* Nonzero if X is a hard reg that can be used as an index or if
- it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) 1
- /* Nonzero if X is a hard reg that can be used as a base reg
- of if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) 1
- #else
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- #endif
- #define REG_OK_FOR_CLASS_P(X, C) 0
- #define REGNO_OK_FOR_CLASS_P(X, C) 0
- /* Maximum number of registers that can appear in a valid memory address. */
- #define MAX_REGS_PER_ADDRESS 2
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is actually machine-independent. */
- /* 1 if X is an address that we could indirect through. */
- #define INDIRECTABLE_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))))
- /* Go to ADDR if X is a valid address not using indexing.
- (This much is the easy part.) */
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { register rtx xfoob = (X); \
- if (GET_CODE (xfoob) == REG) goto ADDR; \
- if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
- xfoob = XEXP (X, 0); \
- if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
- goto ADDR; \
- if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
- goto ADDR; }
- /* 1 if PROD is either a reg times size of mode MODE
- or just a reg, if MODE is just one byte.
- This macro's expansion uses the temporary variables xfoo0 and xfoo1
- that must be declared in the surrounding context. */
- #define INDEX_TERM_P(PROD, MODE) \
- (GET_MODE_SIZE (MODE) == 1 \
- ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
- : (GET_CODE (PROD) == MULT \
- && \
- (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
- ((GET_CODE (xfoo0) == CONST_INT \
- && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
- && GET_CODE (xfoo1) == REG \
- && REG_OK_FOR_INDEX_P (xfoo1)) \
- || \
- (GET_CODE (xfoo1) == CONST_INT \
- && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
- && GET_CODE (xfoo0) == REG \
- && REG_OK_FOR_INDEX_P (xfoo0))))))
- /* Go to ADDR if X is the sum of a register
- and a valid index term for mode MODE. */
- #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
- { register rtx xfooa; \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && (xfooa = XEXP (X, 1), \
- INDEX_TERM_P (xfooa, MODE))) \
- goto ADDR; \
- if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && (xfooa = XEXP (X, 0), \
- INDEX_TERM_P (xfooa, MODE))) \
- goto ADDR; } }
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { register rtx xfoo, xfoo0, xfoo1; \
- GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { /* Handle <address>[index] represented with index-sum outermost */\
- xfoo = XEXP (X, 0); \
- if (INDEX_TERM_P (xfoo, MODE)) \
- { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
- xfoo = XEXP (X, 1); \
- if (INDEX_TERM_P (xfoo, MODE)) \
- { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
- /* Handle offset(reg)[index] with offset added outermost */ \
- if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
- { if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- goto ADDR; \
- GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
- if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- { if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- goto ADDR; \
- GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT \
- || GET_CODE (X) == CONST)
- #define REG_P(X) \
- (GET_CODE (X) == REG)
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
- For the vax, nothing needs to be done. */
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 16
- /* Define this if zero-extension is slow (more than one real instruction). */
- /* #define SLOW_ZERO_EXTEND */
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- /* #define SHIFT_COUNT_TRUNCATED */
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
- /* Tell final.c how to eliminate redundant test instructions. */
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). No extra ones are needed for the vax. */
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
- /* On the 68000, all the insns to store in an address register
- fail to set the cc's. However, in some cases these instructions
- can make it possibly invalid to use the saved cc's. In those
- cases we clear out some or all of the saved cc's so they won't be used. */
- #define NOTICE_UPDATE_CC(EXP) \
- { if (GET_CODE (EXP) == SET) \
- { if (GET_CODE (SET_DEST (EXP)) != PC) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (EXP); \
- cc_status.value2 = SET_SRC (EXP); } } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
- cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } } \
- else CC_STATUS_INIT; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
- && cc_status.value2 \
- && GET_CODE (cc_status.value2) == MEM) \
- cc_status.value2 = 0; }
- /* Actual condition, one line up, should be that value2's address
- depends on value1, but that is too much of a pain. */
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { if (cc_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
- /* Control the assembler format that we output. */
- #define TEXT_SECTION_ASM_OP ".text"
- #define DATA_SECTION_ASM_OP ".data"
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
- #define REGISTER_NAMES \
- {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
- "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
- /* How to renumber registers for dbx and gdb.
- Vax needs no change in the numeration. */
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
- /* This is how to output an assembler line defining a `double' constant. */
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "\t.double 0d%.12e\n", (VALUE))
- /* This is how to output an assembler line defining a `float' constant. */
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- fprintf (FILE, "\t.float 0f%.6e\n", (VALUE))
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- fprintf (FILE, "\t.align %d\n", (LOG))
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
- /* Specify what to precede various sizes of constant with
- in the output file. */
- #define ASM_INT_OP ".long "
- #define ASM_SHORT_OP ".word "
- #define ASM_CHAR_OP ".byte "
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
- /* Print an instruction operand X on file FILE. */
- #define PRINT_OPERAND(FILE, X) \
- { if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_name [REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == CONST_DOUBLE) \
- { union { double d; int i[2]; } u; \
- u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
- fprintf (FILE, "$0d%.12e", u.d); } \
- else { putc ('$', FILE); output_addr_const (FILE, X); }}
- /* Print a memory operand whose address is X, on file FILE. */
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx reg1, reg2, breg, ireg; \
- register rtx addr = ADDR; \
- rtx offset; \
- retry: \
- switch (GET_CODE (addr)) \
- { \
- case MEM: \
- fprintf (FILE, "*"); \
- addr = XEXP (addr, 0); \
- goto retry; \
- case REG: \
- fprintf (FILE, "(%s)", reg_name [REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- fprintf (FILE, "-(%s)", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- fprintf (FILE, "(%s)+", reg_name [REGNO (XEXP (addr, 0))]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
- || GET_CODE (XEXP (addr, 0)) == MEM) \
- { \
- offset = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
- || GET_CODE (XEXP (addr, 1)) == MEM) \
- { \
- offset = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) != PLUS) ; \
- else if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT) \
- { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
- if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
- if (reg1 != 0 && GET_CODE (reg1) == MULT) \
- { breg = reg2; ireg = reg1; } \
- else if (reg2 != 0 && GET_CODE (reg2) == MULT) \
- { breg = reg1; ireg = reg2; } \
- else if (reg2 != 0 || GET_CODE (addr) == MEM) \
- { breg = reg2; ireg = reg1; } \
- else \
- { breg = reg1; ireg = reg2; } \
- if (addr != 0) \
- output_address (offset); \
- if (breg != 0) \
- { if (GET_CODE (breg) != REG) abort (); \
- fprintf (FILE, "(%s)", reg_name[REGNO (breg)]); } \
- if (ireg != 0) \
- { if (GET_CODE (ireg) == MULT) ireg = XEXP (ireg, 0); \
- if (GET_CODE (ireg) != REG) abort (); \
- fprintf (FILE, "[%s]", reg_name[REGNO (ireg)]); } \
- break; \
- default: \
- output_addr_const (FILE, addr); \
- }}
|