1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252 |
- @c -*-texinfo-*-
- @c This is part of the GNU Emacs Lisp Reference Manual.
- @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software
- @c Foundation, Inc.
- @c See the file elisp.texi for copying conditions.
- @node Numbers
- @chapter Numbers
- @cindex integers
- @cindex numbers
- GNU Emacs supports two numeric data types: @dfn{integers} and
- @dfn{floating-point numbers}. Integers are whole numbers such as
- @minus{}3, 0, 7, 13, and 511. Floating-point numbers are numbers with
- fractional parts, such as @minus{}4.5, 0.0, and 2.71828. They can
- also be expressed in exponential notation: @samp{1.5e2} is the same as
- @samp{150.0}; here, @samp{e2} stands for ten to the second power, and
- that is multiplied by 1.5. Integer computations are exact, though
- they may overflow. Floating-point computations often involve rounding
- errors, as the numbers have a fixed amount of precision.
- @menu
- * Integer Basics:: Representation and range of integers.
- * Float Basics:: Representation and range of floating point.
- * Predicates on Numbers:: Testing for numbers.
- * Comparison of Numbers:: Equality and inequality predicates.
- * Numeric Conversions:: Converting float to integer and vice versa.
- * Arithmetic Operations:: How to add, subtract, multiply and divide.
- * Rounding Operations:: Explicitly rounding floating-point numbers.
- * Bitwise Operations:: Logical and, or, not, shifting.
- * Math Functions:: Trig, exponential and logarithmic functions.
- * Random Numbers:: Obtaining random integers, predictable or not.
- @end menu
- @node Integer Basics
- @section Integer Basics
- The range of values for an integer depends on the machine. The
- minimum range is @minus{}536,870,912 to 536,870,911 (30 bits; i.e.,
- @ifnottex
- @minus{}2**29
- @end ifnottex
- @tex
- @math{-2^{29}}
- @end tex
- to
- @ifnottex
- 2**29 @minus{} 1),
- @end ifnottex
- @tex
- @math{2^{29}-1}),
- @end tex
- but many machines provide a wider range. Many examples in this
- chapter assume the minimum integer width of 30 bits.
- @cindex overflow
- The Lisp reader reads an integer as a sequence of digits with optional
- initial sign and optional final period. An integer that is out of the
- Emacs range is treated as a floating-point number.
- @example
- 1 ; @r{The integer 1.}
- 1. ; @r{The integer 1.}
- +1 ; @r{Also the integer 1.}
- -1 ; @r{The integer @minus{}1.}
- 9000000000000000000
- ; @r{The floating-point number 9e18.}
- 0 ; @r{The integer 0.}
- -0 ; @r{The integer 0.}
- @end example
- @cindex integers in specific radix
- @cindex radix for reading an integer
- @cindex base for reading an integer
- @cindex hex numbers
- @cindex octal numbers
- @cindex reading numbers in hex, octal, and binary
- The syntax for integers in bases other than 10 uses @samp{#}
- followed by a letter that specifies the radix: @samp{b} for binary,
- @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
- specify radix @var{radix}. Case is not significant for the letter
- that specifies the radix. Thus, @samp{#b@var{integer}} reads
- @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
- @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
- from 2 to 36. For example:
- @example
- #b101100 @result{} 44
- #o54 @result{} 44
- #x2c @result{} 44
- #24r1k @result{} 44
- @end example
- To understand how various functions work on integers, especially the
- bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
- view the numbers in their binary form.
- In 30-bit binary, the decimal integer 5 looks like this:
- @example
- 0000...000101 (30 bits total)
- @end example
- @noindent
- (The @samp{...} stands for enough bits to fill out a 30-bit word; in
- this case, @samp{...} stands for twenty 0 bits. Later examples also
- use the @samp{...} notation to make binary integers easier to read.)
- The integer @minus{}1 looks like this:
- @example
- 1111...111111 (30 bits total)
- @end example
- @noindent
- @cindex two's complement
- @minus{}1 is represented as 30 ones. (This is called @dfn{two's
- complement} notation.)
- Subtracting 4 from @minus{}1 returns the negative integer @minus{}5.
- In binary, the decimal integer 4 is 100. Consequently,
- @minus{}5 looks like this:
- @example
- 1111...111011 (30 bits total)
- @end example
- In this implementation, the largest 30-bit binary integer is
- 536,870,911 in decimal. In binary, it looks like this:
- @example
- 0111...111111 (30 bits total)
- @end example
- Since the arithmetic functions do not check whether integers go
- outside their range, when you add 1 to 536,870,911, the value is the
- negative integer @minus{}536,870,912:
- @example
- (+ 1 536870911)
- @result{} -536870912
- @result{} 1000...000000 (30 bits total)
- @end example
- Many of the functions described in this chapter accept markers for
- arguments in place of numbers. (@xref{Markers}.) Since the actual
- arguments to such functions may be either numbers or markers, we often
- give these arguments the name @var{number-or-marker}. When the argument
- value is a marker, its position value is used and its buffer is ignored.
- @cindex largest Lisp integer
- @cindex maximum Lisp integer
- @defvar most-positive-fixnum
- The value of this variable is the largest integer that Emacs Lisp can
- handle. Typical values are
- @ifnottex
- 2**29 @minus{} 1
- @end ifnottex
- @tex
- @math{2^{29}-1}
- @end tex
- on 32-bit and
- @ifnottex
- 2**61 @minus{} 1
- @end ifnottex
- @tex
- @math{2^{61}-1}
- @end tex
- on 64-bit platforms.
- @end defvar
- @cindex smallest Lisp integer
- @cindex minimum Lisp integer
- @defvar most-negative-fixnum
- The value of this variable is the smallest integer that Emacs Lisp can
- handle. It is negative. Typical values are
- @ifnottex
- @minus{}2**29
- @end ifnottex
- @tex
- @math{-2^{29}}
- @end tex
- on 32-bit and
- @ifnottex
- @minus{}2**61
- @end ifnottex
- @tex
- @math{-2^{61}}
- @end tex
- on 64-bit platforms.
- @end defvar
- In Emacs Lisp, text characters are represented by integers. Any
- integer between zero and the value of @code{(max-char)}, inclusive, is
- considered to be valid as a character. @xref{Character Codes}.
- @node Float Basics
- @section Floating-Point Basics
- @cindex @acronym{IEEE} floating point
- Floating-point numbers are useful for representing numbers that are
- not integral. The range of floating-point numbers is
- the same as the range of the C data type @code{double} on the machine
- you are using. On all computers currently supported by Emacs, this is
- double-precision @acronym{IEEE} floating point.
- The read syntax for floating-point numbers requires either a decimal
- point, an exponent, or both. Optional signs (@samp{+} or @samp{-})
- precede the number and its exponent. For example, @samp{1500.0},
- @samp{+15e2}, @samp{15.0e+2}, @samp{+1500000e-3}, and @samp{.15e4} are
- five ways of writing a floating-point number whose value is 1500.
- They are all equivalent. Like Common Lisp, Emacs Lisp requires at
- least one digit after any decimal point in a floating-point number;
- @samp{1500.} is an integer, not a floating-point number.
- Emacs Lisp treats @code{-0.0} as numerically equal to ordinary zero
- with respect to @code{equal} and @code{=}. This follows the
- @acronym{IEEE} floating-point standard, which says @code{-0.0} and
- @code{0.0} are numerically equal even though other operations can
- distinguish them.
- @cindex positive infinity
- @cindex negative infinity
- @cindex infinity
- @cindex NaN
- The @acronym{IEEE} floating-point standard supports positive
- infinity and negative infinity as floating-point values. It also
- provides for a class of values called NaN or ``not-a-number'';
- numerical functions return such values in cases where there is no
- correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN@.
- Although NaN values carry a sign, for practical purposes there is no other
- significant difference between different NaN values in Emacs Lisp.
- Here are read syntaxes for these special floating-point values:
- @table @asis
- @item infinity
- @samp{1.0e+INF} and @samp{-1.0e+INF}
- @item not-a-number
- @samp{0.0e+NaN} and @samp{-0.0e+NaN}
- @end table
- The following functions are specialized for handling floating-point
- numbers:
- @defun isnan x
- This predicate returns @code{t} if its floating-point argument is a NaN,
- @code{nil} otherwise.
- @end defun
- @defun frexp x
- This function returns a cons cell @code{(@var{s} . @var{e})},
- where @var{s} and @var{e} are respectively the significand and
- exponent of the floating-point number @var{x}.
- If @var{x} is finite, then @var{s} is a floating-point number between 0.5
- (inclusive) and 1.0 (exclusive), @var{e} is an integer, and
- @ifnottex
- @var{x} = @var{s} * 2**@var{e}.
- @end ifnottex
- @tex
- @math{x = s 2^e}.
- @end tex
- If @var{x} is zero or infinity, then @var{s} is the same as @var{x}.
- If @var{x} is a NaN, then @var{s} is also a NaN@.
- If @var{x} is zero, then @var{e} is 0.
- @end defun
- @defun ldexp s e
- Given a numeric significand @var{s} and an integer exponent @var{e},
- this function returns the floating point number
- @ifnottex
- @var{s} * 2**@var{e}.
- @end ifnottex
- @tex
- @math{s 2^e}.
- @end tex
- @end defun
- @defun copysign x1 x2
- This function copies the sign of @var{x2} to the value of @var{x1},
- and returns the result. @var{x1} and @var{x2} must be floating point.
- @end defun
- @defun logb x
- This function returns the binary exponent of @var{x}. More
- precisely, the value is the logarithm base 2 of @math{|x|}, rounded
- down to an integer.
- @example
- (logb 10)
- @result{} 3
- (logb 10.0e20)
- @result{} 69
- @end example
- @end defun
- @node Predicates on Numbers
- @section Type Predicates for Numbers
- @cindex predicates for numbers
- The functions in this section test for numbers, or for a specific
- type of number. The functions @code{integerp} and @code{floatp} can
- take any type of Lisp object as argument (they would not be of much
- use otherwise), but the @code{zerop} predicate requires a number as
- its argument. See also @code{integer-or-marker-p} and
- @code{number-or-marker-p}, in @ref{Predicates on Markers}.
- @defun floatp object
- This predicate tests whether its argument is floating point
- and returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun integerp object
- This predicate tests whether its argument is an integer, and returns
- @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun numberp object
- This predicate tests whether its argument is a number (either integer or
- floating point), and returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun natnump object
- @cindex natural numbers
- This predicate (whose name comes from the phrase ``natural number'')
- tests to see whether its argument is a nonnegative integer, and
- returns @code{t} if so, @code{nil} otherwise. 0 is considered
- non-negative.
- @findex wholenump
- @code{wholenump} is a synonym for @code{natnump}.
- @end defun
- @defun zerop number
- This predicate tests whether its argument is zero, and returns @code{t}
- if so, @code{nil} otherwise. The argument must be a number.
- @code{(zerop x)} is equivalent to @code{(= x 0)}.
- @end defun
- @node Comparison of Numbers
- @section Comparison of Numbers
- @cindex number comparison
- @cindex comparing numbers
- To test numbers for numerical equality, you should normally use
- @code{=}, not @code{eq}. There can be many distinct floating-point
- objects with the same numeric value. If you use @code{eq} to
- compare them, then you test whether two values are the same
- @emph{object}. By contrast, @code{=} compares only the numeric values
- of the objects.
- In Emacs Lisp, each integer is a unique Lisp object.
- Therefore, @code{eq} is equivalent to @code{=} where integers are
- concerned. It is sometimes convenient to use @code{eq} for comparing
- an unknown value with an integer, because @code{eq} does not report an
- error if the unknown value is not a number---it accepts arguments of
- any type. By contrast, @code{=} signals an error if the arguments are
- not numbers or markers. However, it is better programming practice to
- use @code{=} if you can, even for comparing integers.
- Sometimes it is useful to compare numbers with @code{equal}, which
- treats two numbers as equal if they have the same data type (both
- integers, or both floating point) and the same value. By contrast,
- @code{=} can treat an integer and a floating-point number as equal.
- @xref{Equality Predicates}.
- There is another wrinkle: because floating-point arithmetic is not
- exact, it is often a bad idea to check for equality of floating-point
- values. Usually it is better to test for approximate equality.
- Here's a function to do this:
- @example
- (defvar fuzz-factor 1.0e-6)
- (defun approx-equal (x y)
- (or (= x y)
- (< (/ (abs (- x y))
- (max (abs x) (abs y)))
- fuzz-factor)))
- @end example
- @cindex CL note---integers vrs @code{eq}
- @quotation
- @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
- @code{=} because Common Lisp implements multi-word integers, and two
- distinct integer objects can have the same numeric value. Emacs Lisp
- can have just one integer object for any given value because it has a
- limited range of integers.
- @end quotation
- @defun = number-or-marker &rest number-or-markers
- This function tests whether all its arguments are numerically equal,
- and returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun eql value1 value2
- This function acts like @code{eq} except when both arguments are
- numbers. It compares numbers by type and numeric value, so that
- @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
- @code{(eql 1 1)} both return @code{t}.
- @end defun
- @defun /= number-or-marker1 number-or-marker2
- This function tests whether its arguments are numerically equal, and
- returns @code{t} if they are not, and @code{nil} if they are.
- @end defun
- @defun < number-or-marker &rest number-or-markers
- This function tests whether each argument is strictly less than the
- following argument. It returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun <= number-or-marker &rest number-or-markers
- This function tests whether each argument is less than or equal to
- the following argument. It returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun > number-or-marker &rest number-or-markers
- This function tests whether each argument is strictly greater than
- the following argument. It returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun >= number-or-marker &rest number-or-markers
- This function tests whether each argument is greater than or equal to
- the following argument. It returns @code{t} if so, @code{nil} otherwise.
- @end defun
- @defun max number-or-marker &rest numbers-or-markers
- This function returns the largest of its arguments.
- If any of the arguments is floating point, the value is returned
- as floating point, even if it was given as an integer.
- @example
- (max 20)
- @result{} 20
- (max 1 2.5)
- @result{} 2.5
- (max 1 3 2.5)
- @result{} 3.0
- @end example
- @end defun
- @defun min number-or-marker &rest numbers-or-markers
- This function returns the smallest of its arguments.
- If any of the arguments is floating point, the value is returned
- as floating point, even if it was given as an integer.
- @example
- (min -4 1)
- @result{} -4
- @end example
- @end defun
- @defun abs number
- This function returns the absolute value of @var{number}.
- @end defun
- @node Numeric Conversions
- @section Numeric Conversions
- @cindex rounding in conversions
- @cindex number conversions
- @cindex converting numbers
- To convert an integer to floating point, use the function @code{float}.
- @defun float number
- This returns @var{number} converted to floating point.
- If @var{number} is already floating point, @code{float} returns
- it unchanged.
- @end defun
- There are four functions to convert floating-point numbers to
- integers; they differ in how they round. All accept an argument
- @var{number} and an optional argument @var{divisor}. Both arguments
- may be integers or floating-point numbers. @var{divisor} may also be
- @code{nil}. If @var{divisor} is @code{nil} or omitted, these
- functions convert @var{number} to an integer, or return it unchanged
- if it already is an integer. If @var{divisor} is non-@code{nil}, they
- divide @var{number} by @var{divisor} and convert the result to an
- integer. If @var{divisor} is zero (whether integer or
- floating point), Emacs signals an @code{arith-error} error.
- @defun truncate number &optional divisor
- This returns @var{number}, converted to an integer by rounding towards
- zero.
- @example
- (truncate 1.2)
- @result{} 1
- (truncate 1.7)
- @result{} 1
- (truncate -1.2)
- @result{} -1
- (truncate -1.7)
- @result{} -1
- @end example
- @end defun
- @defun floor number &optional divisor
- This returns @var{number}, converted to an integer by rounding downward
- (towards negative infinity).
- If @var{divisor} is specified, this uses the kind of division
- operation that corresponds to @code{mod}, rounding downward.
- @example
- (floor 1.2)
- @result{} 1
- (floor 1.7)
- @result{} 1
- (floor -1.2)
- @result{} -2
- (floor -1.7)
- @result{} -2
- (floor 5.99 3)
- @result{} 1
- @end example
- @end defun
- @defun ceiling number &optional divisor
- This returns @var{number}, converted to an integer by rounding upward
- (towards positive infinity).
- @example
- (ceiling 1.2)
- @result{} 2
- (ceiling 1.7)
- @result{} 2
- (ceiling -1.2)
- @result{} -1
- (ceiling -1.7)
- @result{} -1
- @end example
- @end defun
- @defun round number &optional divisor
- This returns @var{number}, converted to an integer by rounding towards the
- nearest integer. Rounding a value equidistant between two integers
- returns the even integer.
- @example
- (round 1.2)
- @result{} 1
- (round 1.7)
- @result{} 2
- (round -1.2)
- @result{} -1
- (round -1.7)
- @result{} -2
- @end example
- @end defun
- @node Arithmetic Operations
- @section Arithmetic Operations
- @cindex arithmetic operations
- Emacs Lisp provides the traditional four arithmetic operations
- (addition, subtraction, multiplication, and division), as well as
- remainder and modulus functions, and functions to add or subtract 1.
- Except for @code{%}, each of these functions accepts both integer and
- floating-point arguments, and returns a floating-point number if any
- argument is floating point.
- Emacs Lisp arithmetic functions do not check for integer overflow.
- Thus @code{(1+ 536870911)} may evaluate to
- @minus{}536870912, depending on your hardware.
- @defun 1+ number-or-marker
- This function returns @var{number-or-marker} plus 1.
- For example,
- @example
- (setq foo 4)
- @result{} 4
- (1+ foo)
- @result{} 5
- @end example
- This function is not analogous to the C operator @code{++}---it does not
- increment a variable. It just computes a sum. Thus, if we continue,
- @example
- foo
- @result{} 4
- @end example
- If you want to increment the variable, you must use @code{setq},
- like this:
- @example
- (setq foo (1+ foo))
- @result{} 5
- @end example
- @end defun
- @defun 1- number-or-marker
- This function returns @var{number-or-marker} minus 1.
- @end defun
- @defun + &rest numbers-or-markers
- This function adds its arguments together. When given no arguments,
- @code{+} returns 0.
- @example
- (+)
- @result{} 0
- (+ 1)
- @result{} 1
- (+ 1 2 3 4)
- @result{} 10
- @end example
- @end defun
- @defun - &optional number-or-marker &rest more-numbers-or-markers
- The @code{-} function serves two purposes: negation and subtraction.
- When @code{-} has a single argument, the value is the negative of the
- argument. When there are multiple arguments, @code{-} subtracts each of
- the @var{more-numbers-or-markers} from @var{number-or-marker},
- cumulatively. If there are no arguments, the result is 0.
- @example
- (- 10 1 2 3 4)
- @result{} 0
- (- 10)
- @result{} -10
- (-)
- @result{} 0
- @end example
- @end defun
- @defun * &rest numbers-or-markers
- This function multiplies its arguments together, and returns the
- product. When given no arguments, @code{*} returns 1.
- @example
- (*)
- @result{} 1
- (* 1)
- @result{} 1
- (* 1 2 3 4)
- @result{} 24
- @end example
- @end defun
- @defun / dividend divisor &rest divisors
- This function divides @var{dividend} by @var{divisor} and returns the
- quotient. If there are additional arguments @var{divisors}, then it
- divides @var{dividend} by each divisor in turn. Each argument may be a
- number or a marker.
- If all the arguments are integers, the result is an integer, obtained
- by rounding the quotient towards zero after each division.
- @example
- @group
- (/ 6 2)
- @result{} 3
- @end group
- @group
- (/ 5 2)
- @result{} 2
- @end group
- @group
- (/ 5.0 2)
- @result{} 2.5
- @end group
- @group
- (/ 5 2.0)
- @result{} 2.5
- @end group
- @group
- (/ 5.0 2.0)
- @result{} 2.5
- @end group
- @group
- (/ 25 3 2)
- @result{} 4
- @end group
- @group
- (/ -17 6)
- @result{} -2
- @end group
- @end example
- @cindex @code{arith-error} in division
- If you divide an integer by the integer 0, Emacs signals an
- @code{arith-error} error (@pxref{Errors}). Floating-point division of
- a nonzero number by zero yields either positive or negative infinity
- (@pxref{Float Basics}).
- @end defun
- @defun % dividend divisor
- @cindex remainder
- This function returns the integer remainder after division of @var{dividend}
- by @var{divisor}. The arguments must be integers or markers.
- For any two integers @var{dividend} and @var{divisor},
- @example
- @group
- (+ (% @var{dividend} @var{divisor})
- (* (/ @var{dividend} @var{divisor}) @var{divisor}))
- @end group
- @end example
- @noindent
- always equals @var{dividend} if @var{divisor} is nonzero.
- @example
- (% 9 4)
- @result{} 1
- (% -9 4)
- @result{} -1
- (% 9 -4)
- @result{} 1
- (% -9 -4)
- @result{} -1
- @end example
- @end defun
- @defun mod dividend divisor
- @cindex modulus
- This function returns the value of @var{dividend} modulo @var{divisor};
- in other words, the remainder after division of @var{dividend}
- by @var{divisor}, but with the same sign as @var{divisor}.
- The arguments must be numbers or markers.
- Unlike @code{%}, @code{mod} permits floating-point arguments; it
- rounds the quotient downward (towards minus infinity) to an integer,
- and uses that quotient to compute the remainder.
- If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
- error if both arguments are integers, and returns a NaN otherwise.
- @example
- @group
- (mod 9 4)
- @result{} 1
- @end group
- @group
- (mod -9 4)
- @result{} 3
- @end group
- @group
- (mod 9 -4)
- @result{} -3
- @end group
- @group
- (mod -9 -4)
- @result{} -1
- @end group
- @group
- (mod 5.5 2.5)
- @result{} .5
- @end group
- @end example
- For any two numbers @var{dividend} and @var{divisor},
- @example
- @group
- (+ (mod @var{dividend} @var{divisor})
- (* (floor @var{dividend} @var{divisor}) @var{divisor}))
- @end group
- @end example
- @noindent
- always equals @var{dividend}, subject to rounding error if either
- argument is floating point and to an @code{arith-error} if @var{dividend} is an
- integer and @var{divisor} is 0. For @code{floor}, see @ref{Numeric
- Conversions}.
- @end defun
- @node Rounding Operations
- @section Rounding Operations
- @cindex rounding without conversion
- The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
- @code{ftruncate} take a floating-point argument and return a floating-point
- result whose value is a nearby integer. @code{ffloor} returns the
- nearest integer below; @code{fceiling}, the nearest integer above;
- @code{ftruncate}, the nearest integer in the direction towards zero;
- @code{fround}, the nearest integer.
- @defun ffloor float
- This function rounds @var{float} to the next lower integral value, and
- returns that value as a floating-point number.
- @end defun
- @defun fceiling float
- This function rounds @var{float} to the next higher integral value, and
- returns that value as a floating-point number.
- @end defun
- @defun ftruncate float
- This function rounds @var{float} towards zero to an integral value, and
- returns that value as a floating-point number.
- @end defun
- @defun fround float
- This function rounds @var{float} to the nearest integral value,
- and returns that value as a floating-point number.
- Rounding a value equidistant between two integers returns the even integer.
- @end defun
- @node Bitwise Operations
- @section Bitwise Operations on Integers
- @cindex bitwise arithmetic
- @cindex logical arithmetic
- In a computer, an integer is represented as a binary number, a
- sequence of @dfn{bits} (digits which are either zero or one). A bitwise
- operation acts on the individual bits of such a sequence. For example,
- @dfn{shifting} moves the whole sequence left or right one or more places,
- reproducing the same pattern ``moved over''.
- The bitwise operations in Emacs Lisp apply only to integers.
- @defun lsh integer1 count
- @cindex logical shift
- @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
- bits in @var{integer1} to the left @var{count} places, or to the right
- if @var{count} is negative, bringing zeros into the vacated bits. If
- @var{count} is negative, @code{lsh} shifts zeros into the leftmost
- (most-significant) bit, producing a positive result even if
- @var{integer1} is negative. Contrast this with @code{ash}, below.
- Here are two examples of @code{lsh}, shifting a pattern of bits one
- place to the left. We show only the low-order eight bits of the binary
- pattern; the rest are all zero.
- @example
- @group
- (lsh 5 1)
- @result{} 10
- ;; @r{Decimal 5 becomes decimal 10.}
- 00000101 @result{} 00001010
- (lsh 7 1)
- @result{} 14
- ;; @r{Decimal 7 becomes decimal 14.}
- 00000111 @result{} 00001110
- @end group
- @end example
- @noindent
- As the examples illustrate, shifting the pattern of bits one place to
- the left produces a number that is twice the value of the previous
- number.
- Shifting a pattern of bits two places to the left produces results
- like this (with 8-bit binary numbers):
- @example
- @group
- (lsh 3 2)
- @result{} 12
- ;; @r{Decimal 3 becomes decimal 12.}
- 00000011 @result{} 00001100
- @end group
- @end example
- On the other hand, shifting one place to the right looks like this:
- @example
- @group
- (lsh 6 -1)
- @result{} 3
- ;; @r{Decimal 6 becomes decimal 3.}
- 00000110 @result{} 00000011
- @end group
- @group
- (lsh 5 -1)
- @result{} 2
- ;; @r{Decimal 5 becomes decimal 2.}
- 00000101 @result{} 00000010
- @end group
- @end example
- @noindent
- As the example illustrates, shifting one place to the right divides the
- value of a positive integer by two, rounding downward.
- The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
- not check for overflow, so shifting left can discard significant bits
- and change the sign of the number. For example, left shifting
- 536,870,911 produces @minus{}2 in the 30-bit implementation:
- @example
- (lsh 536870911 1) ; @r{left shift}
- @result{} -2
- @end example
- In binary, the argument looks like this:
- @example
- @group
- ;; @r{Decimal 536,870,911}
- 0111...111111 (30 bits total)
- @end group
- @end example
- @noindent
- which becomes the following when left shifted:
- @example
- @group
- ;; @r{Decimal @minus{}2}
- 1111...111110 (30 bits total)
- @end group
- @end example
- @end defun
- @defun ash integer1 count
- @cindex arithmetic shift
- @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
- to the left @var{count} places, or to the right if @var{count}
- is negative.
- @code{ash} gives the same results as @code{lsh} except when
- @var{integer1} and @var{count} are both negative. In that case,
- @code{ash} puts ones in the empty bit positions on the left, while
- @code{lsh} puts zeros in those bit positions.
- Thus, with @code{ash}, shifting the pattern of bits one place to the right
- looks like this:
- @example
- @group
- (ash -6 -1) @result{} -3
- ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
- 1111...111010 (30 bits total)
- @result{}
- 1111...111101 (30 bits total)
- @end group
- @end example
- In contrast, shifting the pattern of bits one place to the right with
- @code{lsh} looks like this:
- @example
- @group
- (lsh -6 -1) @result{} 536870909
- ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
- 1111...111010 (30 bits total)
- @result{}
- 0111...111101 (30 bits total)
- @end group
- @end example
- Here are other examples:
- @c !!! Check if lined up in smallbook format! XDVI shows problem
- @c with smallbook but not with regular book! --rjc 16mar92
- @smallexample
- @group
- ; @r{ 30-bit binary values}
- (lsh 5 2) ; 5 = @r{0000...000101}
- @result{} 20 ; = @r{0000...010100}
- @end group
- @group
- (ash 5 2)
- @result{} 20
- (lsh -5 2) ; -5 = @r{1111...111011}
- @result{} -20 ; = @r{1111...101100}
- (ash -5 2)
- @result{} -20
- @end group
- @group
- (lsh 5 -2) ; 5 = @r{0000...000101}
- @result{} 1 ; = @r{0000...000001}
- @end group
- @group
- (ash 5 -2)
- @result{} 1
- @end group
- @group
- (lsh -5 -2) ; -5 = @r{1111...111011}
- @result{} 268435454
- ; = @r{0011...111110}
- @end group
- @group
- (ash -5 -2) ; -5 = @r{1111...111011}
- @result{} -2 ; = @r{1111...111110}
- @end group
- @end smallexample
- @end defun
- @defun logand &rest ints-or-markers
- This function returns the ``logical and'' of the arguments: the
- @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
- set in all the arguments. (``Set'' means that the value of the bit is 1
- rather than 0.)
- For example, using 4-bit binary numbers, the ``logical and'' of 13 and
- 12 is 12: 1101 combined with 1100 produces 1100.
- In both the binary numbers, the leftmost two bits are set (i.e., they
- are 1's), so the leftmost two bits of the returned value are set.
- However, for the rightmost two bits, each is zero in at least one of
- the arguments, so the rightmost two bits of the returned value are 0's.
- @noindent
- Therefore,
- @example
- @group
- (logand 13 12)
- @result{} 12
- @end group
- @end example
- If @code{logand} is not passed any argument, it returns a value of
- @minus{}1. This number is an identity element for @code{logand}
- because its binary representation consists entirely of ones. If
- @code{logand} is passed just one argument, it returns that argument.
- @smallexample
- @group
- ; @r{ 30-bit binary values}
- (logand 14 13) ; 14 = @r{0000...001110}
- ; 13 = @r{0000...001101}
- @result{} 12 ; 12 = @r{0000...001100}
- @end group
- @group
- (logand 14 13 4) ; 14 = @r{0000...001110}
- ; 13 = @r{0000...001101}
- ; 4 = @r{0000...000100}
- @result{} 4 ; 4 = @r{0000...000100}
- @end group
- @group
- (logand)
- @result{} -1 ; -1 = @r{1111...111111}
- @end group
- @end smallexample
- @end defun
- @defun logior &rest ints-or-markers
- This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
- is set in the result if, and only if, the @var{n}th bit is set in at least
- one of the arguments. If there are no arguments, the result is zero,
- which is an identity element for this operation. If @code{logior} is
- passed just one argument, it returns that argument.
- @smallexample
- @group
- ; @r{ 30-bit binary values}
- (logior 12 5) ; 12 = @r{0000...001100}
- ; 5 = @r{0000...000101}
- @result{} 13 ; 13 = @r{0000...001101}
- @end group
- @group
- (logior 12 5 7) ; 12 = @r{0000...001100}
- ; 5 = @r{0000...000101}
- ; 7 = @r{0000...000111}
- @result{} 15 ; 15 = @r{0000...001111}
- @end group
- @end smallexample
- @end defun
- @defun logxor &rest ints-or-markers
- This function returns the ``exclusive or'' of its arguments: the
- @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
- set in an odd number of the arguments. If there are no arguments, the
- result is 0, which is an identity element for this operation. If
- @code{logxor} is passed just one argument, it returns that argument.
- @smallexample
- @group
- ; @r{ 30-bit binary values}
- (logxor 12 5) ; 12 = @r{0000...001100}
- ; 5 = @r{0000...000101}
- @result{} 9 ; 9 = @r{0000...001001}
- @end group
- @group
- (logxor 12 5 7) ; 12 = @r{0000...001100}
- ; 5 = @r{0000...000101}
- ; 7 = @r{0000...000111}
- @result{} 14 ; 14 = @r{0000...001110}
- @end group
- @end smallexample
- @end defun
- @defun lognot integer
- This function returns the logical complement of its argument: the @var{n}th
- bit is one in the result if, and only if, the @var{n}th bit is zero in
- @var{integer}, and vice-versa.
- @example
- (lognot 5)
- @result{} -6
- ;; 5 = @r{0000...000101} (30 bits total)
- ;; @r{becomes}
- ;; -6 = @r{1111...111010} (30 bits total)
- @end example
- @end defun
- @node Math Functions
- @section Standard Mathematical Functions
- @cindex transcendental functions
- @cindex mathematical functions
- @cindex floating-point functions
- These mathematical functions allow integers as well as floating-point
- numbers as arguments.
- @defun sin arg
- @defunx cos arg
- @defunx tan arg
- These are the basic trigonometric functions, with argument @var{arg}
- measured in radians.
- @end defun
- @defun asin arg
- The value of @code{(asin @var{arg})} is a number between
- @ifnottex
- @minus{}pi/2
- @end ifnottex
- @tex
- @math{-\pi/2}
- @end tex
- and
- @ifnottex
- pi/2
- @end ifnottex
- @tex
- @math{\pi/2}
- @end tex
- (inclusive) whose sine is @var{arg}. If @var{arg} is out of range
- (outside [@minus{}1, 1]), @code{asin} returns a NaN.
- @end defun
- @defun acos arg
- The value of @code{(acos @var{arg})} is a number between 0 and
- @ifnottex
- pi
- @end ifnottex
- @tex
- @math{\pi}
- @end tex
- (inclusive) whose cosine is @var{arg}. If @var{arg} is out of range
- (outside [@minus{}1, 1]), @code{acos} returns a NaN.
- @end defun
- @defun atan y &optional x
- The value of @code{(atan @var{y})} is a number between
- @ifnottex
- @minus{}pi/2
- @end ifnottex
- @tex
- @math{-\pi/2}
- @end tex
- and
- @ifnottex
- pi/2
- @end ifnottex
- @tex
- @math{\pi/2}
- @end tex
- (exclusive) whose tangent is @var{y}. If the optional second
- argument @var{x} is given, the value of @code{(atan y x)} is the
- angle in radians between the vector @code{[@var{x}, @var{y}]} and the
- @code{X} axis.
- @end defun
- @defun exp arg
- This is the exponential function; it returns @math{e} to the power
- @var{arg}.
- @end defun
- @defun log arg &optional base
- This function returns the logarithm of @var{arg}, with base
- @var{base}. If you don't specify @var{base}, the natural base
- @math{e} is used. If @var{arg} or @var{base} is negative, @code{log}
- returns a NaN.
- @end defun
- @defun expt x y
- This function returns @var{x} raised to power @var{y}. If both
- arguments are integers and @var{y} is positive, the result is an
- integer; in this case, overflow causes truncation, so watch out.
- If @var{x} is a finite negative number and @var{y} is a finite
- non-integer, @code{expt} returns a NaN.
- @end defun
- @defun sqrt arg
- This returns the square root of @var{arg}. If @var{arg} is finite
- and less than zero, @code{sqrt} returns a NaN.
- @end defun
- In addition, Emacs defines the following common mathematical
- constants:
- @defvar float-e
- The mathematical constant @math{e} (2.71828@dots{}).
- @end defvar
- @defvar float-pi
- The mathematical constant @math{pi} (3.14159@dots{}).
- @end defvar
- @node Random Numbers
- @section Random Numbers
- @cindex random numbers
- A deterministic computer program cannot generate true random
- numbers. For most purposes, @dfn{pseudo-random numbers} suffice. A
- series of pseudo-random numbers is generated in a deterministic
- fashion. The numbers are not truly random, but they have certain
- properties that mimic a random series. For example, all possible
- values occur equally often in a pseudo-random series.
- Pseudo-random numbers are generated from a ``seed''. Starting from
- any given seed, the @code{random} function always generates the same
- sequence of numbers. By default, Emacs initializes the random seed at
- startup, in such a way that the sequence of values of @code{random}
- (with overwhelming likelihood) differs in each Emacs run.
- Sometimes you want the random number sequence to be repeatable. For
- example, when debugging a program whose behavior depends on the random
- number sequence, it is helpful to get the same behavior in each
- program run. To make the sequence repeat, execute @code{(random "")}.
- This sets the seed to a constant value for your particular Emacs
- executable (though it may differ for other Emacs builds). You can use
- other strings to choose various seed values.
- @defun random &optional limit
- This function returns a pseudo-random integer. Repeated calls return a
- series of pseudo-random integers.
- If @var{limit} is a positive integer, the value is chosen to be
- nonnegative and less than @var{limit}. Otherwise, the value might be
- any integer representable in Lisp, i.e., an integer between
- @code{most-negative-fixnum} and @code{most-positive-fixnum}
- (@pxref{Integer Basics}).
- If @var{limit} is @code{t}, it means to choose a new seed as if Emacs
- were restarting.
- If @var{limit} is a string, it means to choose a new seed based on the
- string's contents.
- @end defun
|