calc-rules.el 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. ;;; calc-rules.el --- rules for simplifying algebraic expressions in Calc
  2. ;; Copyright (C) 1990-1993, 2001-2017 Free Software Foundation, Inc.
  3. ;; Author: David Gillespie <daveg@synaptics.com>
  4. ;; This file is part of GNU Emacs.
  5. ;; GNU Emacs is free software: you can redistribute it and/or modify
  6. ;; it under the terms of the GNU General Public License as published by
  7. ;; the Free Software Foundation, either version 3 of the License, or
  8. ;; (at your option) any later version.
  9. ;; GNU Emacs is distributed in the hope that it will be useful,
  10. ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. ;; GNU General Public License for more details.
  13. ;; You should have received a copy of the GNU General Public License
  14. ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
  15. ;;; Commentary:
  16. ;;; Code:
  17. ;; This file is autoloaded from calc-ext.el.
  18. (require 'calc-ext)
  19. (require 'calc-macs)
  20. (defun calc-compile-rule-set (name rules)
  21. (prog2
  22. (message "Preparing rule set %s..." name)
  23. (math-read-plain-expr rules t)
  24. (message "Preparing rule set %s...done" name)))
  25. (defun calc-CommuteRules ()
  26. "CommuteRules"
  27. (calc-compile-rule-set
  28. "CommuteRules" "[
  29. iterations(1),
  30. select(plain(a + b)) := select(plain(b + a)),
  31. select(plain(a - b)) := select(plain((-b) + a)),
  32. select(plain((1/a) * b)) := select(b / a),
  33. select(plain(a * b)) := select(b * a),
  34. select((1/a) / b) := select((1/b) / a),
  35. select(a / b) := select((1/b) * a),
  36. select((a^b) ^ c) := select((a^c) ^ b),
  37. select(log(a, b)) := select(1 / log(b, a)),
  38. select(plain(a && b)) := select(b && a),
  39. select(plain(a || b)) := select(b || a),
  40. select(plain(a = b)) := select(b = a),
  41. select(plain(a != b)) := select(b != a),
  42. select(a < b) := select(b > a),
  43. select(a > b) := select(b < a),
  44. select(a <= b) := select(b >= a),
  45. select(a >= b) := select(b <= a) ]"))
  46. (defun calc-JumpRules ()
  47. "JumpRules"
  48. (calc-compile-rule-set
  49. "JumpRules" "[
  50. iterations(1),
  51. plain(select(x) = y) := 0 = select(-x) + y,
  52. plain(a + select(x) = y) := a = select(-x) + y,
  53. plain(a - select(x) = y) := a = select(x) + y,
  54. plain(select(x) + a = y) := a = select(-x) + y,
  55. plain(a * select(x) = y) := a = y / select(x),
  56. plain(a / select(x) = y) := a = select(x) * y,
  57. plain(select(x) / a = y) := 1/a = y / select(x),
  58. plain(a ^ select(2) = y) := a = select(sqrt(y)),
  59. plain(a ^ select(x) = y) := a = y ^ select(1/x),
  60. plain(select(x) ^ a = y) := a = log(y, select(x)),
  61. plain(log(a, select(x)) = y) := a = select(x) ^ y,
  62. plain(log(select(x), a) = y) := a = select(x) ^ (1/y),
  63. plain(y = select(x)) := y - select(x) = 0,
  64. plain(y = a + select(x)) := y - select(x) = a,
  65. plain(y = a - select(x)) := y + select(x) = a,
  66. plain(y = select(x) + a) := y - select(x) = a,
  67. plain(y = a * select(x)) := y / select(x) = a,
  68. plain(y = a / select(x)) := y * select(x) = a,
  69. plain(y = select(x) / a) := y / select(x) = 1/a,
  70. plain(y = a ^ select(2)) := select(sqrt(y)) = a,
  71. plain(y = a ^ select(x)) := y ^ select(1/x) = a,
  72. plain(y = select(x) ^ a) := log(y, select(x)) = a,
  73. plain(y = log(a, select(x))) := select(x) ^ y = a,
  74. plain(y = log(select(x), a)) := select(x) ^ (1/y) = a ]"))
  75. (defun calc-DistribRules ()
  76. "DistribRules"
  77. (calc-compile-rule-set
  78. "DistribRules" "[
  79. iterations(1),
  80. x * select(a + b) := x*select(a) + x*b,
  81. x * select(sum(a,b,c,d)) := sum(x*select(a),b,c,d),
  82. x / select(a + b) := 1 / (select(a)/x + b/x),
  83. select(a + b) / x := select(a)/x + b/x,
  84. sum(select(a),b,c,d) / x := sum(select(a)/x,b,c,d),
  85. x ^ select(a + b) := x^select(a) * x^b,
  86. x ^ select(sum(a,b,c,d)) := prod(x^select(a),b,c,d),
  87. x ^ select(a * b) := (x^a)^select(b),
  88. x ^ select(a / b) := (x^a)^select(1/b),
  89. select(a + b) ^ n := select(x)
  90. :: integer(n) :: n >= 2
  91. :: let(x, expandpow(a+b,n))
  92. :: quote(matches(x,y+z)),
  93. select(a + b) ^ x := a*select(a+b)^(x-1) + b*select(a+b)^(x-1),
  94. select(a * b) ^ x := a^x * select(b)^x,
  95. select(prod(a,b,c,d)) ^ x := prod(select(a)^x,b,c,d),
  96. select(a / b) ^ x := select(a)^x / b^x,
  97. select(- a) ^ x := (-1)^x * select(a)^x,
  98. plain(-select(a + b)) := select(-a) - b,
  99. plain(-select(sum(a,b,c,d))) := sum(select(-a),b,c,d),
  100. plain(-select(a * b)) := select(-a) * b,
  101. plain(-select(a / b)) := select(-a) / b,
  102. sqrt(select(a * b)) := sqrt(select(a)) * sqrt(b),
  103. sqrt(select(prod(a,b,c,d))) := prod(sqrt(select(a)),b,c,d),
  104. sqrt(select(a / b)) := sqrt(select(a)) / sqrt(b),
  105. sqrt(select(- a)) := sqrt(-1) sqrt(select(a)),
  106. exp(select(a + b)) := exp(select(a)) / exp(-b) :: negative(b),
  107. exp(select(a + b)) := exp(select(a)) * exp(b),
  108. exp(select(sum(a,b,c,d))) := prod(exp(select(a)),b,c,d),
  109. exp(select(a * b)) := exp(select(a)) ^ b :: constant(b),
  110. exp(select(a * b)) := exp(select(a)) ^ b,
  111. exp(select(a / b)) := exp(select(a)) ^ (1/b),
  112. ln(select(a * b)) := ln(select(a)) + ln(b),
  113. ln(select(prod(a,b,c,d))) := sum(ln(select(a)),b,c,d),
  114. ln(select(a / b)) := ln(select(a)) - ln(b),
  115. ln(select(a ^ b)) := ln(select(a)) * b,
  116. log10(select(a * b)) := log10(select(a)) + log10(b),
  117. log10(select(prod(a,b,c,d))) := sum(log10(select(a)),b,c,d),
  118. log10(select(a / b)) := log10(select(a)) - log10(b),
  119. log10(select(a ^ b)) := log10(select(a)) * b,
  120. log(select(a * b), x) := log(select(a), x) + log(b,x),
  121. log(select(prod(a,b,c,d)),x) := sum(log(select(a),x),b,c,d),
  122. log(select(a / b), x) := log(select(a), x) - log(b,x),
  123. log(select(a ^ b), x) := log(select(a), x) * b,
  124. log(a, select(b)) := ln(a) / select(ln(b)),
  125. sin(select(a + b)) := sin(select(a)) cos(b) + cos(a) sin(b),
  126. sin(select(2 a)) := 2 sin(select(a)) cos(a),
  127. sin(select(n a)) := 2sin((n-1) select(a)) cos(a) - sin((n-2) a)
  128. :: integer(n) :: n > 2,
  129. cos(select(a + b)) := cos(select(a)) cos(b) - sin(a) sin(b),
  130. cos(select(2 a)) := 2 cos(select(a))^2 - 1,
  131. cos(select(n a)) := 2cos((n-1) select(a)) cos(a) - cos((n-2) a)
  132. :: integer(n) :: n > 2,
  133. tan(select(a + b)) := (tan(select(a)) + tan(b)) /
  134. (1 - tan(a) tan(b)),
  135. tan(select(2 a)) := 2 tan(select(a)) / (1 - tan(a)^2),
  136. tan(select(n a)) := (tan((n-1) select(a)) + tan(a)) /
  137. (1 - tan((n-1) a) tan(a))
  138. :: integer(n) :: n > 2,
  139. cot(select(a + b)) := (cot(select(a)) cot(b) - 1) /
  140. (cot(a) + cot(b)),
  141. sinh(select(a + b)) := sinh(select(a)) cosh(b) + cosh(a) sinh(b),
  142. cosh(select(a + b)) := cosh(select(a)) cosh(b) + sinh(a) sinh(b),
  143. tanh(select(a + b)) := (tanh(select(a)) + tanh(b)) /
  144. (1 + tanh(a) tanh(b)),
  145. coth(select(a + b)) := (coth(select(a)) coth(b) + 1) /
  146. (coth(a) + coth(b)),
  147. x && select(a || b) := (x && select(a)) || (x && b),
  148. select(a || b) && x := (select(a) && x) || (b && x),
  149. ! select(a && b) := (!a) || (!b),
  150. ! select(a || b) := (!a) && (!b) ]"))
  151. (defun calc-MergeRules ()
  152. "MergeRules"
  153. (calc-compile-rule-set
  154. "MergeRules" "[
  155. iterations(1),
  156. (x*opt(a)) + select(x*b) := x * (a + select(b)),
  157. (x*opt(a)) - select(x*b) := x * (a - select(b)),
  158. sum(select(x)*a,b,c,d) := x * sum(select(a),b,c,d),
  159. (a/x) + select(b/x) := (a + select(b)) / x,
  160. (a/x) - select(b/x) := (a - select(b)) / x,
  161. sum(a/select(x),b,c,d) := sum(select(a),b,c,d) / x,
  162. (a/opt(b)) + select(c/d) := ((select(a)*d) + (b*c)) / (b*d),
  163. (a/opt(b)) - select(c/d) := ((select(a)*d) - (b*c)) / (b*d),
  164. (x^opt(a)) * select(x^b) := x ^ (a + select(b)),
  165. (x^opt(a)) / select(x^b) := x ^ (a - select(b)),
  166. select(x^a) / (x^opt(b)) := x ^ (select(a) - b),
  167. prod(select(x)^a,b,c,d) := x ^ sum(select(a),b,c,d),
  168. select(x^a) / (x^opt(b)) := x ^ (select(a) - b),
  169. (a^x) * select(b^x) := select((a * b) ^x),
  170. (a^x) / select(b^x) := select((b / b) ^ x),
  171. select(a^x) / (b^x) := select((a / b) ^ x),
  172. prod(a^select(x),b,c,d) := select(prod(a,b,c,d) ^ x),
  173. (a^x) * select(b^y) := select((a * b^(y-x)) ^x),
  174. (a^x) / select(b^y) := select((b / b^(y-x)) ^ x),
  175. select(a^x) / (b^y) := select((a / b^(y-x)) ^ x),
  176. select(x^a) ^ b := x ^ select(a * b),
  177. (x^a) ^ select(b) := x ^ select(a * b),
  178. select(sqrt(a)) ^ b := select(a ^ (b / 2)),
  179. sqrt(a) ^ select(b) := select(a ^ (b / 2)),
  180. sqrt(select(a) ^ b) := select(a ^ (b / 2)),
  181. sqrt(a ^ select(b)) := select(a ^ (b / 2)),
  182. sqrt(a) * select(sqrt(b)) := select(sqrt(a * b)),
  183. sqrt(a) / select(sqrt(b)) := select(sqrt(a / b)),
  184. select(sqrt(a)) / sqrt(b) := select(sqrt(a / b)),
  185. prod(select(sqrt(a)),b,c,d) := select(sqrt(prod(a,b,c,d))),
  186. exp(a) * select(exp(b)) := select(exp(a + b)),
  187. exp(a) / select(exp(b)) := select(exp(a - b)),
  188. select(exp(a)) / exp(b) := select(exp(a - b)),
  189. prod(select(exp(a)),b,c,d) := select(exp(sum(a,b,c,d))),
  190. select(exp(a)) ^ b := select(exp(a * b)),
  191. exp(a) ^ select(b) := select(exp(a * b)),
  192. ln(a) + select(ln(b)) := select(ln(a * b)),
  193. ln(a) - select(ln(b)) := select(ln(a / b)),
  194. select(ln(a)) - ln(b) := select(ln(a / b)),
  195. sum(select(ln(a)),b,c,d) := select(ln(prod(a,b,c,d))),
  196. b * select(ln(a)) := select(ln(a ^ b)),
  197. select(b) * ln(a) := select(ln(a ^ b)),
  198. select(ln(a)) / ln(b) := select(log(a, b)),
  199. ln(a) / select(ln(b)) := select(log(a, b)),
  200. select(ln(a)) / b := select(ln(a ^ (1/b))),
  201. ln(a) / select(b) := select(ln(a ^ (1/b))),
  202. log10(a) + select(log10(b)) := select(log10(a * b)),
  203. log10(a) - select(log10(b)) := select(log10(a / b)),
  204. select(log10(a)) - log10(b) := select(log10(a / b)),
  205. sum(select(log10(a)),b,c,d) := select(log10(prod(a,b,c,d))),
  206. b * select(log10(a)) := select(log10(a ^ b)),
  207. select(b) * log10(a) := select(log10(a ^ b)),
  208. select(log10(a)) / log10(b) := select(log(a, b)),
  209. log10(a) / select(log10(b)) := select(log(a, b)),
  210. select(log10(a)) / b := select(log10(a ^ (1/b))),
  211. log10(a) / select(b) := select(log10(a ^ (1/b))),
  212. log(a,x) + select(log(b,x)) := select(log(a * b,x)),
  213. log(a,x) - select(log(b,x)) := select(log(a / b,x)),
  214. select(log(a,x)) - log(b,x) := select(log(a / b,x)),
  215. sum(select(log(a,x)),b,c,d) := select(log(prod(a,b,c,d),x)),
  216. b * select(log(a,x)) := select(log(a ^ b,x)),
  217. select(b) * log(a,x) := select(log(a ^ b,x)),
  218. select(log(a,x)) / log(b,x) := select(log(a, b)),
  219. log(a,x) / select(log(b,x)) := select(log(a, b)),
  220. select(log(a,x)) / b := select(log(a ^ (1/b),x)),
  221. log(a,x) / select(b) := select(log(a ^ (1/b),x)),
  222. select(x && a) || (x && opt(b)) := x && (select(a) || b) ]"))
  223. (defun calc-NegateRules ()
  224. "NegateRules"
  225. (calc-compile-rule-set
  226. "NegateRules" "[
  227. iterations(1),
  228. a + select(x) := a - select(-x),
  229. a - select(x) := a + select(-x),
  230. sum(select(x),b,c,d) := -sum(select(-x),b,c,d),
  231. a * select(x) := -a * select(-x),
  232. a / select(x) := -a / select(-x),
  233. select(x) / a := -select(-x) / a,
  234. prod(select(x),b,c,d) := (-1)^(d-c+1) * prod(select(-x),b,c,d),
  235. select(x) ^ n := select(-x) ^ a :: integer(n) :: n%2 = 0,
  236. select(x) ^ n := -(select(-x) ^ a) :: integer(n) :: n%2 = 1,
  237. select(x) ^ a := (-select(-x)) ^ a,
  238. a ^ select(x) := (1 / a)^select(-x),
  239. abs(select(x)) := abs(select(-x)),
  240. i sqrt(select(x)) := -sqrt(select(-x)),
  241. sqrt(select(x)) := i sqrt(select(-x)),
  242. re(select(x)) := -re(select(-x)),
  243. im(select(x)) := -im(select(-x)),
  244. conj(select(x)) := -conj(select(-x)),
  245. trunc(select(x)) := -trunc(select(-x)),
  246. round(select(x)) := -round(select(-x)),
  247. floor(select(x)) := -ceil(select(-x)),
  248. ceil(select(x)) := -floor(select(-x)),
  249. ftrunc(select(x)) := -ftrunc(select(-x)),
  250. fround(select(x)) := -fround(select(-x)),
  251. ffloor(select(x)) := -fceil(select(-x)),
  252. fceil(select(x)) := -ffloor(select(-x)),
  253. exp(select(x)) := 1 / exp(select(-x)),
  254. sin(select(x)) := -sin(select(-x)),
  255. cos(select(x)) := cos(select(-x)),
  256. tan(select(x)) := -tan(select(-x)),
  257. sec(select(x)) := sec(select(-x)),
  258. csc(select(x)) := -csc(select(-x)),
  259. cot(select(x)) := -cot(select(-x)),
  260. arcsin(select(x)) := -arcsin(select(-x)),
  261. arccos(select(x)) := 4 arctan(1) - arccos(select(-x)),
  262. arctan(select(x)) := -arctan(select(-x)),
  263. sinh(select(x)) := -sinh(select(-x)),
  264. cosh(select(x)) := cosh(select(-x)),
  265. tanh(select(x)) := -tanh(select(-x)),
  266. sech(select(x)) := sech(select(-x)),
  267. csch(select(x)) := -csch(select(-x)),
  268. coth(select(x)) := -coth(select(-x)),
  269. arcsinh(select(x)) := -arcsinh(select(-x)),
  270. arctanh(select(x)) := -arctanh(select(-x)),
  271. select(x) = a := select(-x) = -a,
  272. select(x) != a := select(-x) != -a,
  273. select(x) < a := select(-x) > -a,
  274. select(x) > a := select(-x) < -a,
  275. select(x) <= a := select(-x) >= -a,
  276. select(x) >= a := select(-x) <= -a,
  277. a < select(x) := -a > select(-x),
  278. a > select(x) := -a < select(-x),
  279. a <= select(x) := -a >= select(-x),
  280. a >= select(x) := -a <= select(-x),
  281. select(x) := -select(-x) ]"))
  282. (defun calc-InvertRules ()
  283. "InvertRules"
  284. (calc-compile-rule-set
  285. "InvertRules" "[
  286. iterations(1),
  287. a * select(x) := a / select(1/x),
  288. a / select(x) := a * select(1/x),
  289. select(x) / a := 1 / (select(1/x) a),
  290. prod(select(x),b,c,d) := 1 / prod(select(1/x),b,c,d),
  291. abs(select(x)) := 1 / abs(select(1/x)),
  292. sqrt(select(x)) := 1 / sqrt(select(1/x)),
  293. ln(select(x)) := -ln(select(1/x)),
  294. log10(select(x)) := -log10(select(1/x)),
  295. log(select(x), a) := -log(select(1/x), a),
  296. log(a, select(x)) := -log(a, select(1/x)),
  297. arctan(select(x)) := simplify(2 arctan(1))-arctan(select(1/x)),
  298. select(x) = a := select(1/x) = 1/a,
  299. select(x) != a := select(1/x) != 1/a,
  300. select(x) < a := select(1/x) > 1/a,
  301. select(x) > a := select(1/x) < 1/a,
  302. select(x) <= a := select(1/x) >= 1/a,
  303. select(x) >= a := select(1/x) <= 1/a,
  304. a < select(x) := 1/a > select(1/x),
  305. a > select(x) := 1/a < select(1/x),
  306. a <= select(x) := 1/a >= select(1/x),
  307. a >= select(x) := 1/a <= select(1/x),
  308. select(x) := 1 / select(1/x) ]"))
  309. (defun calc-FactorRules ()
  310. "FactorRules"
  311. (calc-compile-rule-set
  312. "FactorRules" "[
  313. thecoefs(x, [z, a+b, c]) := thefactors(x, [d x + d a/c, (c/d) x + (b/d)])
  314. :: z = a b/c :: let(d := pgcd(pcont(c), pcont(b))),
  315. thecoefs(x, [z, a, c]) := thefactors(x, [(r x + a/(2 r))^2])
  316. :: z = (a/2)^2/c :: let(r := esimplify(sqrt(c)))
  317. :: !matches(r, sqrt(rr)),
  318. thecoefs(x, [z, 0, c]) := thefactors(x, [rc x + rz, rc x - rz])
  319. :: negative(z)
  320. :: let(rz := esimplify(sqrt(-z))) :: !matches(rz, sqrt(rzz))
  321. :: let(rc := esimplify(sqrt(c))) :: !matches(rc, sqrt(rcc)),
  322. thecoefs(x, [z, 0, c]) := thefactors(x, [rz + rc x, rz - rc x])
  323. :: negative(c)
  324. :: let(rz := esimplify(sqrt(z))) :: !matches(rz, sqrt(rzz))
  325. :: let(rc := esimplify(sqrt(-c))) :: !matches(rc, sqrt(rcc))
  326. ]"))
  327. ;;(setq var-FactorRules 'calc-FactorRules)
  328. (defun calc-IntegAfterRules ()
  329. "IntegAfterRules"
  330. (calc-compile-rule-set
  331. "IntegAfterRules" "[
  332. opt(a) ln(x) + opt(b) ln(y) := 2 a esimplify(arctanh(x-1))
  333. :: a + b = 0 :: nrat(x + y) = 2 || nrat(x - y) = 2,
  334. a * (b + c) := a b + a c :: constant(a)
  335. ]"))
  336. ;;(setq var-IntegAfterRules 'calc-IntegAfterRules)
  337. (defun calc-FitRules ()
  338. "FitRules"
  339. (calc-compile-rule-set
  340. "FitRules" "[
  341. schedule(1,2,3,4),
  342. iterations(inf),
  343. phase(1),
  344. e^x := exp(x),
  345. x^y := exp(y ln(x)) :: !istrue(constant(y)),
  346. x/y := x fitinv(y),
  347. fitinv(x y) := fitinv(x) fitinv(y),
  348. exp(a) exp(b) := exp(a + b),
  349. a exp(b) := exp(ln(a) + b) :: !hasfitvars(a),
  350. fitinv(exp(a)) := exp(-a),
  351. ln(a b) := ln(a) + ln(b),
  352. ln(fitinv(a)) := -ln(a),
  353. log10(a b) := log10(a) + log10(b),
  354. log10(fitinv(a)) := -log10(a),
  355. log(a,b) := ln(a)/ln(b),
  356. ln(exp(a)) := a,
  357. a*(b+c) := a*b + a*c,
  358. (a+b)^n := x :: integer(n) :: n >= 2
  359. :: let(x, expandpow(a+b,n))
  360. :: quote(matches(x,y+z)),
  361. phase(1,2),
  362. fitmodel(y = x) := fitmodel(0, y - x),
  363. fitmodel(y, x+c) := fitmodel(y-c, x) :: !hasfitparams(c),
  364. fitmodel(y, x c) := fitmodel(y/c, x) :: !hasfitparams(c),
  365. fitmodel(y, x/(c opt(d))) := fitmodel(y c, x/d) :: !hasfitparams(c),
  366. fitmodel(y, apply(f,[x])) := fitmodel(yy, x)
  367. :: hasfitparams(x)
  368. :: let(FTemp() = yy,
  369. solve(apply(f,[FTemp()]) = y,
  370. FTemp())),
  371. fitmodel(y, apply(f,[x,c])) := fitmodel(yy, x)
  372. :: !hasfitparams(c)
  373. :: let(FTemp() = yy,
  374. solve(apply(f,[FTemp(),c]) = y,
  375. FTemp())),
  376. fitmodel(y, apply(f,[c,x])) := fitmodel(yy, x)
  377. :: !hasfitparams(c)
  378. :: let(FTemp() = yy,
  379. solve(apply(f,[c,FTemp()]) = y,
  380. FTemp())),
  381. phase(2,3),
  382. fitmodel(y, x) := fitsystem(y, [], [], fitpart(1,1,x)),
  383. fitpart(a,b,plain(x + y)) := fitpart(a,b,x) + fitpart(a,b,y),
  384. fitpart(a,b,plain(x - y)) := fitpart(a,b,x) + fitpart(-a,b,y),
  385. fitpart(a,b,plain(-x)) := fitpart(-a,b,x),
  386. fitpart(a,b,x opt(c)) := fitpart(a,x b,c) :: !hasfitvars(x),
  387. fitpart(a,x opt(b),c) := fitpart(x a,b,c) :: !hasfitparams(x),
  388. fitpart(a,x y + x opt(z),c) := fitpart(a,x*(y+z),c),
  389. fitpart(a,b,c) := fitpart2(a,b,c),
  390. phase(3),
  391. fitpart2(a1,b1,x) + fitpart2(a2,b2,x) := fitpart(1, a1 b1 + a2 b2, x),
  392. fitpart2(a1,x,c1) + fitpart2(a2,x,c2) := fitpart2(1, x, a1 c1 + a2 c2),
  393. phase(4),
  394. fitinv(x) := 1 / x,
  395. exp(x + ln(y)) := y exp(x),
  396. exp(x ln(y)) := y^x,
  397. ln(x) + ln(y) := ln(x y),
  398. ln(x) - ln(y) := ln(x/y),
  399. x*y + x*z := x*(y+z),
  400. fitsystem(y, xv, pv, fitpart2(a,fitparam(b),c) + opt(d))
  401. := fitsystem(y, rcons(xv, a c),
  402. rcons(pv, fitdummy(b) = fitparam(b)), d)
  403. :: b = vlen(pv)+1,
  404. fitsystem(y, xv, pv, fitpart2(a,b,c) + opt(d))
  405. := fitsystem(y, rcons(xv, a c),
  406. rcons(pv, fitdummy(vlen(pv)+1) = b), d),
  407. fitsystem(y, xv, pv, 0) := fitsystem(y, xv, cons(fvh,fvt))
  408. :: !hasfitparams(xv)
  409. :: let(cons(fvh,fvt),
  410. solve(pv, table(fitparam(j), j, 1,
  411. hasfitparams(pv)))),
  412. fitparam(n) = x := x ]"))
  413. (provide 'calc-rules)
  414. ;;; calc-rules.el ends here