12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721 |
- @c -*-texinfo-*-
- @c This is part of the GNU Emacs Lisp Reference Manual.
- @c Copyright (C) 1990-1995, 1998-1999, 2001-2016 Free Software
- @c Foundation, Inc.
- @c See the file elisp.texi for copying conditions.
- @node Sequences Arrays Vectors
- @chapter Sequences, Arrays, and Vectors
- @cindex sequence
- The @dfn{sequence} type is the union of two other Lisp types: lists
- and arrays. In other words, any list is a sequence, and any array is
- a sequence. The common property that all sequences have is that each
- is an ordered collection of elements.
- An @dfn{array} is a fixed-length object with a slot for each of its
- elements. All the elements are accessible in constant time. The four
- types of arrays are strings, vectors, char-tables and bool-vectors.
- A list is a sequence of elements, but it is not a single primitive
- object; it is made of cons cells, one cell per element. Finding the
- @var{n}th element requires looking through @var{n} cons cells, so
- elements farther from the beginning of the list take longer to access.
- But it is possible to add elements to the list, or remove elements.
- The following diagram shows the relationship between these types:
- @example
- @group
- _____________________________________________
- | |
- | Sequence |
- | ______ ________________________________ |
- | | | | | |
- | | List | | Array | |
- | | | | ________ ________ | |
- | |______| | | | | | | |
- | | | Vector | | String | | |
- | | |________| |________| | |
- | | ____________ _____________ | |
- | | | | | | | |
- | | | Char-table | | Bool-vector | | |
- | | |____________| |_____________| | |
- | |________________________________| |
- |_____________________________________________|
- @end group
- @end example
- @menu
- * Sequence Functions:: Functions that accept any kind of sequence.
- * Arrays:: Characteristics of arrays in Emacs Lisp.
- * Array Functions:: Functions specifically for arrays.
- * Vectors:: Special characteristics of Emacs Lisp vectors.
- * Vector Functions:: Functions specifically for vectors.
- * Char-Tables:: How to work with char-tables.
- * Bool-Vectors:: How to work with bool-vectors.
- * Rings:: Managing a fixed-size ring of objects.
- @end menu
- @node Sequence Functions
- @section Sequences
- This section describes functions that accept any kind of sequence.
- @defun sequencep object
- This function returns @code{t} if @var{object} is a list, vector,
- string, bool-vector, or char-table, @code{nil} otherwise.
- @end defun
- @defun length sequence
- @cindex string length
- @cindex list length
- @cindex vector length
- @cindex sequence length
- @cindex char-table length
- @anchor{Definition of length}
- This function returns the number of elements in @var{sequence}. If
- @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
- signaled. Circular lists may cause an infinite loop. For a
- char-table, the value returned is always one more than the maximum
- Emacs character code.
- @xref{Definition of safe-length}, for the related function @code{safe-length}.
- @example
- @group
- (length '(1 2 3))
- @result{} 3
- @end group
- @group
- (length ())
- @result{} 0
- @end group
- @group
- (length "foobar")
- @result{} 6
- @end group
- @group
- (length [1 2 3])
- @result{} 3
- @end group
- @group
- (length (make-bool-vector 5 nil))
- @result{} 5
- @end group
- @end example
- @end defun
- @noindent
- See also @code{string-bytes}, in @ref{Text Representations}.
- If you need to compute the width of a string on display, you should use
- @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
- since @code{length} only counts the number of characters, but does not
- account for the display width of each character.
- @defun elt sequence index
- @anchor{Definition of elt}
- @cindex elements of sequences
- This function returns the element of @var{sequence} indexed by
- @var{index}. Legitimate values of @var{index} are integers ranging
- from 0 up to one less than the length of @var{sequence}. If
- @var{sequence} is a list, out-of-range values behave as for
- @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
- trigger an @code{args-out-of-range} error.
- @example
- @group
- (elt [1 2 3 4] 2)
- @result{} 3
- @end group
- @group
- (elt '(1 2 3 4) 2)
- @result{} 3
- @end group
- @group
- ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
- (string (elt "1234" 2))
- @result{} "3"
- @end group
- @group
- (elt [1 2 3 4] 4)
- @error{} Args out of range: [1 2 3 4], 4
- @end group
- @group
- (elt [1 2 3 4] -1)
- @error{} Args out of range: [1 2 3 4], -1
- @end group
- @end example
- This function generalizes @code{aref} (@pxref{Array Functions}) and
- @code{nth} (@pxref{Definition of nth}).
- @end defun
- @defun copy-sequence sequence
- @cindex copying sequences
- This function returns a copy of @var{sequence}. The copy is the same
- type of object as the original sequence, and it has the same elements
- in the same order.
- Storing a new element into the copy does not affect the original
- @var{sequence}, and vice versa. However, the elements of the new
- sequence are not copies; they are identical (@code{eq}) to the elements
- of the original. Therefore, changes made within these elements, as
- found via the copied sequence, are also visible in the original
- sequence.
- If the sequence is a string with text properties, the property list in
- the copy is itself a copy, not shared with the original's property
- list. However, the actual values of the properties are shared.
- @xref{Text Properties}.
- This function does not work for dotted lists. Trying to copy a
- circular list may cause an infinite loop.
- See also @code{append} in @ref{Building Lists}, @code{concat} in
- @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
- for other ways to copy sequences.
- @example
- @group
- (setq bar '(1 2))
- @result{} (1 2)
- @end group
- @group
- (setq x (vector 'foo bar))
- @result{} [foo (1 2)]
- @end group
- @group
- (setq y (copy-sequence x))
- @result{} [foo (1 2)]
- @end group
- @group
- (eq x y)
- @result{} nil
- @end group
- @group
- (equal x y)
- @result{} t
- @end group
- @group
- (eq (elt x 1) (elt y 1))
- @result{} t
- @end group
- @group
- ;; @r{Replacing an element of one sequence.}
- (aset x 0 'quux)
- x @result{} [quux (1 2)]
- y @result{} [foo (1 2)]
- @end group
- @group
- ;; @r{Modifying the inside of a shared element.}
- (setcar (aref x 1) 69)
- x @result{} [quux (69 2)]
- y @result{} [foo (69 2)]
- @end group
- @end example
- @end defun
- @defun reverse sequence
- @cindex string reverse
- @cindex list reverse
- @cindex vector reverse
- @cindex sequence reverse
- This function creates a new sequence whose elements are the elements
- of @var{sequence}, but in reverse order. The original argument @var{sequence}
- is @emph{not} altered. Note that char-tables cannot be reversed.
- @example
- @group
- (setq x '(1 2 3 4))
- @result{} (1 2 3 4)
- @end group
- @group
- (reverse x)
- @result{} (4 3 2 1)
- x
- @result{} (1 2 3 4)
- @end group
- @group
- (setq x [1 2 3 4])
- @result{} [1 2 3 4]
- @end group
- @group
- (reverse x)
- @result{} [4 3 2 1]
- x
- @result{} [1 2 3 4]
- @end group
- @group
- (setq x "xyzzy")
- @result{} "xyzzy"
- @end group
- @group
- (reverse x)
- @result{} "yzzyx"
- x
- @result{} "xyzzy"
- @end group
- @end example
- @end defun
- @defun nreverse sequence
- @cindex reversing a string
- @cindex reversing a list
- @cindex reversing a vector
- This function reverses the order of the elements of @var{sequence}.
- Unlike @code{reverse} the original @var{sequence} may be modified.
- For example:
- @example
- @group
- (setq x '(a b c))
- @result{} (a b c)
- @end group
- @group
- x
- @result{} (a b c)
- (nreverse x)
- @result{} (c b a)
- @end group
- @group
- ;; @r{The cons cell that was first is now last.}
- x
- @result{} (a)
- @end group
- @end example
- To avoid confusion, we usually store the result of @code{nreverse}
- back in the same variable which held the original list:
- @example
- (setq x (nreverse x))
- @end example
- Here is the @code{nreverse} of our favorite example, @code{(a b c)},
- presented graphically:
- @smallexample
- @group
- @r{Original list head:} @r{Reversed list:}
- ------------- ------------- ------------
- | car | cdr | | car | cdr | | car | cdr |
- | a | nil |<-- | b | o |<-- | c | o |
- | | | | | | | | | | | | |
- ------------- | --------- | - | -------- | -
- | | | |
- ------------- ------------
- @end group
- @end smallexample
- For the vector, it is even simpler because you don't need setq:
- @example
- (setq x [1 2 3 4])
- @result{} [1 2 3 4]
- (nreverse x)
- @result{} [4 3 2 1]
- x
- @result{} [4 3 2 1]
- @end example
- Note that unlike @code{reverse}, this function doesn't work with strings.
- Although you can alter string data by using @code{aset}, it is strongly
- encouraged to treat strings as immutable.
- @end defun
- @defun sort sequence predicate
- @cindex stable sort
- @cindex sorting lists
- @cindex sorting vectors
- This function sorts @var{sequence} stably. Note that this function doesn't work
- for all sequences; it may be used only for lists and vectors. If @var{sequence}
- is a list, it is modified destructively. This functions returns the sorted
- @var{sequence} and compares elements using @var{predicate}. A stable sort is
- one in which elements with equal sort keys maintain their relative order before
- and after the sort. Stability is important when successive sorts are used to
- order elements according to different criteria.
- The argument @var{predicate} must be a function that accepts two
- arguments. It is called with two elements of @var{sequence}. To get an
- increasing order sort, the @var{predicate} should return non-@code{nil} if the
- first element is ``less'' than the second, or @code{nil} if not.
- The comparison function @var{predicate} must give reliable results for
- any given pair of arguments, at least within a single call to
- @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
- less than @var{b}, @var{b} must not be less than @var{a}. It must be
- @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
- is less than @var{c}, then @var{a} must be less than @var{c}. If you
- use a comparison function which does not meet these requirements, the
- result of @code{sort} is unpredictable.
- The destructive aspect of @code{sort} for lists is that it rearranges the
- cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
- sort function would create new cons cells to store the elements in their
- sorted order. If you wish to make a sorted copy without destroying the
- original, copy it first with @code{copy-sequence} and then sort.
- Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
- the cons cell that originally contained the element @code{a} in
- @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
- appears in a different position in the list due to the change of
- @sc{cdr}s. For example:
- @example
- @group
- (setq nums '(1 3 2 6 5 4 0))
- @result{} (1 3 2 6 5 4 0)
- @end group
- @group
- (sort nums '<)
- @result{} (0 1 2 3 4 5 6)
- @end group
- @group
- nums
- @result{} (1 2 3 4 5 6)
- @end group
- @end example
- @noindent
- @strong{Warning}: Note that the list in @code{nums} no longer contains
- 0; this is the same cons cell that it was before, but it is no longer
- the first one in the list. Don't assume a variable that formerly held
- the argument now holds the entire sorted list! Instead, save the result
- of @code{sort} and use that. Most often we store the result back into
- the variable that held the original list:
- @example
- (setq nums (sort nums '<))
- @end example
- For the better understanding of what stable sort is, consider the following
- vector example. After sorting, all items whose @code{car} is 8 are grouped
- at the beginning of @code{vector}, but their relative order is preserved.
- All items whose @code{car} is 9 are grouped at the end of @code{vector},
- but their relative order is also preserved:
- @example
- @group
- (setq
- vector
- (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
- '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
- @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
- (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
- @end group
- @group
- (sort vector (lambda (x y) (< (car x) (car y))))
- @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
- (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
- @end group
- @end example
- @xref{Sorting}, for more functions that perform sorting.
- See @code{documentation} in @ref{Accessing Documentation}, for a
- useful example of @code{sort}.
- @end defun
- @cindex sequence functions in seq
- @cindex seq library
- The @file{seq.el} library provides the following additional sequence
- manipulation macros and functions, prefixed with @code{seq-}. To use
- them, you must first load the @file{seq} library.
- All functions defined in this library are free of side-effects;
- i.e., they do not modify any sequence (list, vector, or string) that
- you pass as an argument. Unless otherwise stated, the result is a
- sequence of the same type as the input. For those functions that take
- a predicate, this should be a function of one argument.
- The @file{seq.el} library can be extended to work with additional
- types of sequential data-structures. For that purpose, all functions
- are defined using @code{cl-defgeneric}. @xref{Generic Functions}, for
- more details about using @code{cl-defgeneric} for adding extensions.
- @defun seq-elt sequence index
- This function returns the element of @var{sequence} at the specified
- @var{index}, which is an integer whose valid value range is zero to
- one less than the length of @var{sequence}. For out-of-range values
- on built-in sequence types, @code{seq-elt} behaves like @code{elt}.
- For the details, see @ref{Definition of elt}.
- @example
- @group
- (seq-elt [1 2 3 4] 2)
- @result{} 3
- @end group
- @end example
- @code{seq-elt} returns places settable using @code{setf}
- (@pxref{Setting Generalized Variables}).
- @example
- @group
- (setq vec [1 2 3 4])
- (setf (seq-elt vec 2) 5)
- vec
- @result{} [1 2 5 4]
- @end group
- @end example
- @end defun
- @defun seq-length sequence
- This function returns the number of elements in @var{sequence}. For
- built-in sequence types, @code{seq-length} behaves like @code{length}.
- @xref{Definition of length}.
- @end defun
- @defun seqp sequence
- This function returns non-@code{nil} if @var{sequence} is a sequence
- (a list or array), or any additional type of sequence defined via
- @file{seq.el} generic functions.
- @example
- @group
- (seqp [1 2])
- @result{} t
- @end group
- @group
- (seqp 2)
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-drop sequence n
- This function returns all but the first @var{n} (an integer)
- elements of @var{sequence}. If @var{n} is negative or zero,
- the result is @var{sequence}.
- @example
- @group
- (seq-drop [1 2 3 4 5 6] 3)
- @result{} [4 5 6]
- @end group
- @group
- (seq-drop "hello world" -4)
- @result{} "hello world"
- @end group
- @end example
- @end defun
- @defun seq-take sequence n
- This function returns the first @var{n} (an integer) elements of
- @var{sequence}. If @var{n} is negative or zero, the result
- is @code{nil}.
- @example
- @group
- (seq-take '(1 2 3 4) 3)
- @result{} (1 2 3)
- @end group
- @group
- (seq-take [1 2 3 4] 0)
- @result{} []
- @end group
- @end example
- @end defun
- @defun seq-take-while predicate sequence
- This function returns the members of @var{sequence} in order,
- stopping before the first one for which @var{predicate} returns @code{nil}.
- @example
- @group
- (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
- @result{} (1 2 3)
- @end group
- @group
- (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
- @result{} []
- @end group
- @end example
- @end defun
- @defun seq-drop-while predicate sequence
- This function returns the members of @var{sequence} in order,
- starting from the first one for which @var{predicate} returns @code{nil}.
- @example
- @group
- (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
- @result{} (-1 -2)
- @end group
- @group
- (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
- @result{} [1 4 6]
- @end group
- @end example
- @end defun
- @defun seq-do function sequence
- This function applies @var{function} to each element of
- @var{sequence} in turn (presumably for side effects), and returns
- @var{sequence}.
- @end defun
- @defun seq-map function sequence
- This function returns the result of applying @var{function} to each
- element of @var{sequence}. The returned value is a list.
- @example
- @group
- (seq-map #'1+ '(2 4 6))
- @result{} (3 5 7)
- @end group
- @group
- (seq-map #'symbol-name [foo bar])
- @result{} ("foo" "bar")
- @end group
- @end example
- @end defun
- @defun seq-map-indexed function sequence
- This function returns the result of applying @var{function} to each
- element of @var{sequence} and its index within @var{seq}. The
- returned value is a list.
- @example
- @group
- (seq-map-indexed (lambda (elt idx)
- (list idx elt))
- '(a b c))
- @result{} ((0 a) (b 1) (c 2))
- @end group
- @end example
- @end defun
- @defun seq-mapn function &rest sequences
- This function returns the result of applying @var{function} to each
- element of @var{sequences}. The arity (@pxref{What Is a Function,
- sub-arity}) of @var{function} must match the number of sequences.
- Mapping stops at the end of the shortest sequence, and the returned
- value is a list.
- @example
- @group
- (seq-mapn #'+ '(2 4 6) '(20 40 60))
- @result{} (22 44 66)
- @end group
- @group
- (seq-mapn #'concat '("moskito" "bite") ["bee" "sting"])
- @result{} ("moskitobee" "bitesting")
- @end group
- @end example
- @end defun
- @defun seq-filter predicate sequence
- @cindex filtering sequences
- This function returns a list of all the elements in @var{sequence}
- for which @var{predicate} returns non-@code{nil}.
- @example
- @group
- (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
- @result{} (1 3 5)
- @end group
- @group
- (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-remove predicate sequence
- @cindex removing from sequences
- This function returns a list of all the elements in @var{sequence}
- for which @var{predicate} returns @code{nil}.
- @example
- @group
- (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
- @result{} (-1 -3)
- @end group
- @group
- (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-reduce function sequence initial-value
- @cindex reducing sequences
- This function returns the result of calling @var{function} with
- @var{initial-value} and the first element of @var{sequence}, then calling
- @var{function} with that result and the second element of @var{sequence},
- then with that result and the third element of @var{sequence}, etc.
- @var{function} should be a function of two arguments. If
- @var{sequence} is empty, this returns @var{initial-value} without
- calling @var{function}.
- @example
- @group
- (seq-reduce #'+ [1 2 3 4] 0)
- @result{} 10
- @end group
- @group
- (seq-reduce #'+ '(1 2 3 4) 5)
- @result{} 15
- @end group
- @group
- (seq-reduce #'+ '() 3)
- @result{} 3
- @end group
- @end example
- @end defun
- @defun seq-some predicate sequence
- This function returns the first non-@code{nil} value returned by
- applying @var{predicate} to each element of @var{sequence} in turn.
- @example
- @group
- (seq-some #'numberp ["abc" 1 nil])
- @result{} t
- @end group
- @group
- (seq-some #'numberp ["abc" "def"])
- @result{} nil
- @end group
- @group
- (seq-some #'null ["abc" 1 nil])
- @result{} t
- @end group
- @group
- (seq-some #'1+ [2 4 6])
- @result{} 3
- @end group
- @end example
- @end defun
- @defun seq-find predicate sequence &optional default
- This function returns the first element in @var{sequence} for which
- @var{predicate} returns non-@code{nil}. If no element matches
- @var{predicate}, the function returns @var{default}.
- Note that this function has an ambiguity if the found element is
- identical to @var{default}, as in that case it cannot be known whether
- an element was found or not.
- @example
- @group
- (seq-find #'numberp ["abc" 1 nil])
- @result{} 1
- @end group
- @group
- (seq-find #'numberp ["abc" "def"])
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-every-p predicate sequence
- This function returns non-@code{nil} if applying @var{predicate}
- to every element of @var{sequence} returns non-@code{nil}.
- @example
- @group
- (seq-every-p #'numberp [2 4 6])
- @result{} t
- @end group
- @group
- (seq-some #'numberp [2 4 "6"])
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-empty-p sequence
- This function returns non-@code{nil} if @var{sequence} is empty.
- @example
- @group
- (seq-empty-p "not empty")
- @result{} nil
- @end group
- @group
- (seq-empty-p "")
- @result{} t
- @end group
- @end example
- @end defun
- @defun seq-count predicate sequence
- This function returns the number of elements in @var{sequence} for which
- @var{predicate} returns non-@code{nil}.
- @example
- (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
- @result{} 2
- @end example
- @end defun
- @cindex sorting sequences
- @defun seq-sort function sequence
- This function returns a copy of @var{sequence} that is sorted
- according to @var{function}, a function of two arguments that returns
- non-@code{nil} if the first argument should sort before the second.
- @end defun
- @defun seq-sort-by function predicate sequence
- This function is similar to @code{seq-sort}, but the elements of
- @var{sequence} are transformed by applying @var{function} on them
- before being sorted. @var{function} is a function of one argument.
- @example
- (seq-sort-by #'seq-length #'> ["a" "ab" "abc"])
- @result{} ["abc" "ab" "a"]
- @end example
- @end defun
- @defun seq-contains sequence elt &optional function
- This function returns the first element in @var{sequence} that is equal to
- @var{elt}. If the optional argument @var{function} is non-@code{nil},
- it is a function of two arguments to use instead of the default @code{equal}.
- @example
- @group
- (seq-contains '(symbol1 symbol2) 'symbol1)
- @result{} symbol1
- @end group
- @group
- (seq-contains '(symbol1 symbol2) 'symbol3)
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-position sequence elt &optional function
- This function returns the index of the first element in
- @var{sequence} that is equal to @var{elt}. If the optional argument
- @var{function} is non-@code{nil}, it is a function of two arguments to
- use instead of the default @code{equal}.
- @example
- @group
- (seq-position '(a b c) 'b)
- @result{} 1
- @end group
- @group
- (seq-position '(a b c) 'd)
- @result{} nil
- @end group
- @end example
- @end defun
- @defun seq-uniq sequence &optional function
- This function returns a list of the elements of @var{sequence} with
- duplicates removed. If the optional argument @var{function} is non-@code{nil},
- it is a function of two arguments to use instead of the default @code{equal}.
- @example
- @group
- (seq-uniq '(1 2 2 1 3))
- @result{} (1 2 3)
- @end group
- @group
- (seq-uniq '(1 2 2.0 1.0) #'=)
- @result{} [3 4]
- @end group
- @end example
- @end defun
- @defun seq-subseq sequence start &optional end
- This function returns a subset of @var{sequence} from @var{start}
- to @var{end}, both integers (@var{end} defaults to the last element).
- If @var{start} or @var{end} is negative, it counts from the end of
- @var{sequence}.
- @example
- @group
- (seq-subseq '(1 2 3 4 5) 1)
- @result{} (2 3 4 5)
- @end group
- @group
- (seq-subseq '[1 2 3 4 5] 1 3)
- @result{} [2 3]
- @end group
- @group
- (seq-subseq '[1 2 3 4 5] -3 -1)
- @result{} [3 4]
- @end group
- @end example
- @end defun
- @defun seq-concatenate type &rest sequences
- This function returns a sequence of type @var{type} made of the
- concatenation of @var{sequences}. @var{type} may be: @code{vector},
- @code{list} or @code{string}.
- @example
- @group
- (seq-concatenate 'list '(1 2) '(3 4) [5 6])
- @result{} (1 2 3 5 6)
- @end group
- @group
- (seq-concatenate 'string "Hello " "world")
- @result{} "Hello world"
- @end group
- @end example
- @end defun
- @defun seq-mapcat function sequence &optional type
- This function returns the result of applying @code{seq-concatenate}
- to the result of applying @var{function} to each element of
- @var{sequence}. The result is a sequence of type @var{type}, or a
- list if @var{type} is @code{nil}.
- @example
- @group
- (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
- @result{} (1 2 3 4 5 6)
- @end group
- @end example
- @end defun
- @defun seq-partition sequence n
- This function returns a list of the elements of @var{sequence}
- grouped into sub-sequences of length @var{n}. The last sequence may
- contain less elements than @var{n}. @var{n} must be an integer. If
- @var{n} is a negative integer or 0, the return value is @code{nil}.
- @example
- @group
- (seq-partition '(0 1 2 3 4 5 6 7) 3)
- @result{} ((0 1 2) (3 4 5) (6 7))
- @end group
- @end example
- @end defun
- @defun seq-intersection sequence1 sequence2 &optional function
- This function returns a list of the elements that appear both in
- @var{sequence1} and @var{sequence2}. If the optional argument
- @var{function} is non-@code{nil}, it is a function of two arguments to
- use to compare elements instead of the default @code{equal}.
- @example
- @group
- (seq-intersection [2 3 4 5] [1 3 5 6 7])
- @result{} (3 5)
- @end group
- @end example
- @end defun
- @defun seq-difference sequence1 sequence2 &optional function
- This function returns a list of the elements that appear in
- @var{sequence1} but not in @var{sequence2}. If the optional argument
- @var{function} is non-@code{nil}, it is a function of two arguments to
- use to compare elements instead of the default @code{equal}.
- @example
- @group
- (seq-difference '(2 3 4 5) [1 3 5 6 7])
- @result{} (2 4)
- @end group
- @end example
- @end defun
- @defun seq-group-by function sequence
- This function separates the elements of @var{sequence} into an alist
- whose keys are the result of applying @var{function} to each element
- of @var{sequence}. Keys are compared using @code{equal}.
- @example
- @group
- (seq-group-by #'integerp '(1 2.1 3 2 3.2))
- @result{} ((t 1 3 2) (nil 2.1 3.2))
- @end group
- @group
- (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
- @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
- @end group
- @end example
- @end defun
- @defun seq-into sequence type
- This function converts the sequence @var{sequence} into a sequence
- of type @var{type}. @var{type} can be one of the following symbols:
- @code{vector}, @code{string} or @code{list}.
- @example
- @group
- (seq-into [1 2 3] 'list)
- @result{} (1 2 3)
- @end group
- @group
- (seq-into nil 'vector)
- @result{} []
- @end group
- @group
- (seq-into "hello" 'vector)
- @result{} [104 101 108 108 111]
- @end group
- @end example
- @end defun
- @defun seq-min sequence
- This function returns the smallest element of @var{sequence}. The
- elements of @var{sequence} must be numbers or markers
- (@pxref{Markers}).
- @example
- @group
- (seq-min [3 1 2])
- @result{} 1
- @end group
- @group
- (seq-min "Hello")
- @result{} 72
- @end group
- @end example
- @end defun
- @defun seq-max sequence
- This function returns the largest element of @var{sequence}. The
- elements of @var{sequence} must be numbers or markers.
- @example
- @group
- (seq-max [1 3 2])
- @result{} 3
- @end group
- @group
- (seq-max "Hello")
- @result{} 111
- @end group
- @end example
- @end defun
- @defmac seq-doseq (var sequence) body@dots{}
- @cindex sequence iteration
- This macro is like @code{dolist} (@pxref{Iteration, dolist}), except
- that @var{sequence} can be a list, vector or string. This is
- primarily useful for side-effects.
- @end defmac
- @defmac seq-let arguments sequence body@dots{}
- @cindex sequence destructuring
- This macro binds the variables defined in @var{arguments} to the
- elements of @var{sequence}. @var{arguments} can themselves include
- sequences, allowing for nested destructuring.
- The @var{arguments} sequence can also include the @code{&rest} marker
- followed by a variable name to be bound to the rest of
- @code{sequence}.
- @example
- @group
- (seq-let [first second] [1 2 3 4]
- (list first second))
- @result{} (1 2)
- @end group
- @group
- (seq-let (_ a _ b) '(1 2 3 4)
- (list a b))
- @result{} (2 4)
- @end group
- @group
- (seq-let [a [b [c]]] [1 [2 [3]]]
- (list a b c))
- @result{} (1 2 3)
- @end group
- @group
- (seq-let [a b &rest others] [1 2 3 4]
- others)
- @end group
- @result{} [3 4]
- @end example
- @end defmac
- @node Arrays
- @section Arrays
- @cindex array
- An @dfn{array} object has slots that hold a number of other Lisp
- objects, called the elements of the array. Any element of an array
- may be accessed in constant time. In contrast, the time to access an
- element of a list is proportional to the position of that element in
- the list.
- Emacs defines four types of array, all one-dimensional:
- @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
- Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
- @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
- can hold elements of any type, but strings can only hold characters,
- and bool-vectors can only hold @code{t} and @code{nil}.
- All four kinds of array share these characteristics:
- @itemize @bullet
- @item
- The first element of an array has index zero, the second element has
- index 1, and so on. This is called @dfn{zero-origin} indexing. For
- example, an array of four elements has indices 0, 1, 2, @w{and 3}.
- @item
- The length of the array is fixed once you create it; you cannot
- change the length of an existing array.
- @item
- For purposes of evaluation, the array is a constant---i.e.,
- it evaluates to itself.
- @item
- The elements of an array may be referenced or changed with the functions
- @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
- @end itemize
- When you create an array, other than a char-table, you must specify
- its length. You cannot specify the length of a char-table, because that
- is determined by the range of character codes.
- In principle, if you want an array of text characters, you could use
- either a string or a vector. In practice, we always choose strings for
- such applications, for four reasons:
- @itemize @bullet
- @item
- They occupy one-fourth the space of a vector of the same elements.
- @item
- Strings are printed in a way that shows the contents more clearly
- as text.
- @item
- Strings can hold text properties. @xref{Text Properties}.
- @item
- Many of the specialized editing and I/O facilities of Emacs accept only
- strings. For example, you cannot insert a vector of characters into a
- buffer the way you can insert a string. @xref{Strings and Characters}.
- @end itemize
- By contrast, for an array of keyboard input characters (such as a key
- sequence), a vector may be necessary, because many keyboard input
- characters are outside the range that will fit in a string. @xref{Key
- Sequence Input}.
- @node Array Functions
- @section Functions that Operate on Arrays
- In this section, we describe the functions that accept all types of
- arrays.
- @defun arrayp object
- This function returns @code{t} if @var{object} is an array (i.e., a
- vector, a string, a bool-vector or a char-table).
- @example
- @group
- (arrayp [a])
- @result{} t
- (arrayp "asdf")
- @result{} t
- (arrayp (syntax-table)) ;; @r{A char-table.}
- @result{} t
- @end group
- @end example
- @end defun
- @defun aref array index
- @cindex array elements
- This function returns the @var{index}th element of @var{array}. The
- first element is at index zero.
- @example
- @group
- (setq primes [2 3 5 7 11 13])
- @result{} [2 3 5 7 11 13]
- (aref primes 4)
- @result{} 11
- @end group
- @group
- (aref "abcdefg" 1)
- @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
- @end group
- @end example
- See also the function @code{elt}, in @ref{Sequence Functions}.
- @end defun
- @defun aset array index object
- This function sets the @var{index}th element of @var{array} to be
- @var{object}. It returns @var{object}.
- @example
- @group
- (setq w [foo bar baz])
- @result{} [foo bar baz]
- (aset w 0 'fu)
- @result{} fu
- w
- @result{} [fu bar baz]
- @end group
- @group
- (setq x "asdfasfd")
- @result{} "asdfasfd"
- (aset x 3 ?Z)
- @result{} 90
- x
- @result{} "asdZasfd"
- @end group
- @end example
- If @var{array} is a string and @var{object} is not a character, a
- @code{wrong-type-argument} error results. The function converts a
- unibyte string to multibyte if necessary to insert a character.
- @end defun
- @defun fillarray array object
- This function fills the array @var{array} with @var{object}, so that
- each element of @var{array} is @var{object}. It returns @var{array}.
- @example
- @group
- (setq a [a b c d e f g])
- @result{} [a b c d e f g]
- (fillarray a 0)
- @result{} [0 0 0 0 0 0 0]
- a
- @result{} [0 0 0 0 0 0 0]
- @end group
- @group
- (setq s "When in the course")
- @result{} "When in the course"
- (fillarray s ?-)
- @result{} "------------------"
- @end group
- @end example
- If @var{array} is a string and @var{object} is not a character, a
- @code{wrong-type-argument} error results.
- @end defun
- The general sequence functions @code{copy-sequence} and @code{length}
- are often useful for objects known to be arrays. @xref{Sequence Functions}.
- @node Vectors
- @section Vectors
- @cindex vector (type)
- A @dfn{vector} is a general-purpose array whose elements can be any
- Lisp objects. (By contrast, the elements of a string can only be
- characters. @xref{Strings and Characters}.) Vectors are used in
- Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
- symbol-lookup tables (@pxref{Creating Symbols}), as part of the
- representation of a byte-compiled function (@pxref{Byte Compilation}),
- and more.
- Like other arrays, vectors use zero-origin indexing: the first
- element has index 0.
- Vectors are printed with square brackets surrounding the elements.
- Thus, a vector whose elements are the symbols @code{a}, @code{b} and
- @code{a} is printed as @code{[a b a]}. You can write vectors in the
- same way in Lisp input.
- A vector, like a string or a number, is considered a constant for
- evaluation: the result of evaluating it is the same vector. This does
- not evaluate or even examine the elements of the vector.
- @xref{Self-Evaluating Forms}.
- Here are examples illustrating these principles:
- @example
- @group
- (setq avector [1 two '(three) "four" [five]])
- @result{} [1 two (quote (three)) "four" [five]]
- (eval avector)
- @result{} [1 two (quote (three)) "four" [five]]
- (eq avector (eval avector))
- @result{} t
- @end group
- @end example
- @node Vector Functions
- @section Functions for Vectors
- Here are some functions that relate to vectors:
- @defun vectorp object
- This function returns @code{t} if @var{object} is a vector.
- @example
- @group
- (vectorp [a])
- @result{} t
- (vectorp "asdf")
- @result{} nil
- @end group
- @end example
- @end defun
- @defun vector &rest objects
- This function creates and returns a vector whose elements are the
- arguments, @var{objects}.
- @example
- @group
- (vector 'foo 23 [bar baz] "rats")
- @result{} [foo 23 [bar baz] "rats"]
- (vector)
- @result{} []
- @end group
- @end example
- @end defun
- @defun make-vector length object
- This function returns a new vector consisting of @var{length} elements,
- each initialized to @var{object}.
- @example
- @group
- (setq sleepy (make-vector 9 'Z))
- @result{} [Z Z Z Z Z Z Z Z Z]
- @end group
- @end example
- @end defun
- @defun vconcat &rest sequences
- @cindex copying vectors
- This function returns a new vector containing all the elements of
- @var{sequences}. The arguments @var{sequences} may be true lists,
- vectors, strings or bool-vectors. If no @var{sequences} are given,
- the empty vector is returned.
- The value is either the empty vector, or is a newly constructed
- nonempty vector that is not @code{eq} to any existing vector.
- @example
- @group
- (setq a (vconcat '(A B C) '(D E F)))
- @result{} [A B C D E F]
- (eq a (vconcat a))
- @result{} nil
- @end group
- @group
- (vconcat)
- @result{} []
- (vconcat [A B C] "aa" '(foo (6 7)))
- @result{} [A B C 97 97 foo (6 7)]
- @end group
- @end example
- The @code{vconcat} function also allows byte-code function objects as
- arguments. This is a special feature to make it easy to access the entire
- contents of a byte-code function object. @xref{Byte-Code Objects}.
- For other concatenation functions, see @code{mapconcat} in @ref{Mapping
- Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
- in @ref{Building Lists}.
- @end defun
- The @code{append} function also provides a way to convert a vector into a
- list with the same elements:
- @example
- @group
- (setq avector [1 two (quote (three)) "four" [five]])
- @result{} [1 two (quote (three)) "four" [five]]
- (append avector nil)
- @result{} (1 two (quote (three)) "four" [five])
- @end group
- @end example
- @node Char-Tables
- @section Char-Tables
- @cindex char-tables
- @cindex extra slots of char-table
- A char-table is much like a vector, except that it is indexed by
- character codes. Any valid character code, without modifiers, can be
- used as an index in a char-table. You can access a char-table's
- elements with @code{aref} and @code{aset}, as with any array. In
- addition, a char-table can have @dfn{extra slots} to hold additional
- data not associated with particular character codes. Like vectors,
- char-tables are constants when evaluated, and can hold elements of any
- type.
- @cindex subtype of char-table
- Each char-table has a @dfn{subtype}, a symbol, which serves two
- purposes:
- @itemize @bullet
- @item
- The subtype provides an easy way to tell what the char-table is for.
- For instance, display tables are char-tables with @code{display-table}
- as the subtype, and syntax tables are char-tables with
- @code{syntax-table} as the subtype. The subtype can be queried using
- the function @code{char-table-subtype}, described below.
- @item
- The subtype controls the number of @dfn{extra slots} in the
- char-table. This number is specified by the subtype's
- @code{char-table-extra-slots} symbol property (@pxref{Symbol
- Properties}), whose value should be an integer between 0 and 10. If
- the subtype has no such symbol property, the char-table has no extra
- slots.
- @end itemize
- @cindex parent of char-table
- A char-table can have a @dfn{parent}, which is another char-table. If
- it does, then whenever the char-table specifies @code{nil} for a
- particular character @var{c}, it inherits the value specified in the
- parent. In other words, @code{(aref @var{char-table} @var{c})} returns
- the value from the parent of @var{char-table} if @var{char-table} itself
- specifies @code{nil}.
- @cindex default value of char-table
- A char-table can also have a @dfn{default value}. If so, then
- @code{(aref @var{char-table} @var{c})} returns the default value
- whenever the char-table does not specify any other non-@code{nil} value.
- @defun make-char-table subtype &optional init
- Return a newly-created char-table, with subtype @var{subtype} (a
- symbol). Each element is initialized to @var{init}, which defaults to
- @code{nil}. You cannot alter the subtype of a char-table after the
- char-table is created.
- There is no argument to specify the length of the char-table, because
- all char-tables have room for any valid character code as an index.
- If @var{subtype} has the @code{char-table-extra-slots} symbol
- property, that specifies the number of extra slots in the char-table.
- This should be an integer between 0 and 10; otherwise,
- @code{make-char-table} raises an error. If @var{subtype} has no
- @code{char-table-extra-slots} symbol property (@pxref{Property
- Lists}), the char-table has no extra slots.
- @end defun
- @defun char-table-p object
- This function returns @code{t} if @var{object} is a char-table, and
- @code{nil} otherwise.
- @end defun
- @defun char-table-subtype char-table
- This function returns the subtype symbol of @var{char-table}.
- @end defun
- There is no special function to access default values in a char-table.
- To do that, use @code{char-table-range} (see below).
- @defun char-table-parent char-table
- This function returns the parent of @var{char-table}. The parent is
- always either @code{nil} or another char-table.
- @end defun
- @defun set-char-table-parent char-table new-parent
- This function sets the parent of @var{char-table} to @var{new-parent}.
- @end defun
- @defun char-table-extra-slot char-table n
- This function returns the contents of extra slot @var{n} (zero based)
- of @var{char-table}. The number of extra slots in a char-table is
- determined by its subtype.
- @end defun
- @defun set-char-table-extra-slot char-table n value
- This function stores @var{value} in extra slot @var{n} (zero based) of
- @var{char-table}.
- @end defun
- A char-table can specify an element value for a single character code;
- it can also specify a value for an entire character set.
- @defun char-table-range char-table range
- This returns the value specified in @var{char-table} for a range of
- characters @var{range}. Here are the possibilities for @var{range}:
- @table @asis
- @item @code{nil}
- Refers to the default value.
- @item @var{char}
- Refers to the element for character @var{char}
- (supposing @var{char} is a valid character code).
- @item @code{(@var{from} . @var{to})}
- A cons cell refers to all the characters in the inclusive range
- @samp{[@var{from}..@var{to}]}.
- @end table
- @end defun
- @defun set-char-table-range char-table range value
- This function sets the value in @var{char-table} for a range of
- characters @var{range}. Here are the possibilities for @var{range}:
- @table @asis
- @item @code{nil}
- Refers to the default value.
- @item @code{t}
- Refers to the whole range of character codes.
- @item @var{char}
- Refers to the element for character @var{char}
- (supposing @var{char} is a valid character code).
- @item @code{(@var{from} . @var{to})}
- A cons cell refers to all the characters in the inclusive range
- @samp{[@var{from}..@var{to}]}.
- @end table
- @end defun
- @defun map-char-table function char-table
- This function calls its argument @var{function} for each element of
- @var{char-table} that has a non-@code{nil} value. The call to
- @var{function} is with two arguments, a key and a value. The key
- is a possible @var{range} argument for @code{char-table-range}---either
- a valid character or a cons cell @code{(@var{from} . @var{to})},
- specifying a range of characters that share the same value. The value is
- what @code{(char-table-range @var{char-table} @var{key})} returns.
- Overall, the key-value pairs passed to @var{function} describe all the
- values stored in @var{char-table}.
- The return value is always @code{nil}; to make calls to
- @code{map-char-table} useful, @var{function} should have side effects.
- For example, here is how to examine the elements of the syntax table:
- @example
- (let (accumulator)
- (map-char-table
- #'(lambda (key value)
- (setq accumulator
- (cons (list
- (if (consp key)
- (list (car key) (cdr key))
- key)
- value)
- accumulator)))
- (syntax-table))
- accumulator)
- @result{}
- (((2597602 4194303) (2)) ((2597523 2597601) (3))
- ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
- ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
- @end example
- @end defun
- @node Bool-Vectors
- @section Bool-vectors
- @cindex Bool-vectors
- A bool-vector is much like a vector, except that it stores only the
- values @code{t} and @code{nil}. If you try to store any non-@code{nil}
- value into an element of the bool-vector, the effect is to store
- @code{t} there. As with all arrays, bool-vector indices start from 0,
- and the length cannot be changed once the bool-vector is created.
- Bool-vectors are constants when evaluated.
- Several functions work specifically with bool-vectors; aside
- from that, you manipulate them with same functions used for other kinds
- of arrays.
- @defun make-bool-vector length initial
- Return a new bool-vector of @var{length} elements,
- each one initialized to @var{initial}.
- @end defun
- @defun bool-vector &rest objects
- This function creates and returns a bool-vector whose elements are the
- arguments, @var{objects}.
- @end defun
- @defun bool-vector-p object
- This returns @code{t} if @var{object} is a bool-vector,
- and @code{nil} otherwise.
- @end defun
- There are also some bool-vector set operation functions, described below:
- @defun bool-vector-exclusive-or a b &optional c
- Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
- If optional argument @var{c} is given, the result of this operation is
- stored into @var{c}. All arguments should be bool vectors of the same length.
- @end defun
- @defun bool-vector-union a b &optional c
- Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
- optional argument @var{c} is given, the result of this operation is
- stored into @var{c}. All arguments should be bool vectors of the same length.
- @end defun
- @defun bool-vector-intersection a b &optional c
- Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
- optional argument @var{c} is given, the result of this operation is
- stored into @var{c}. All arguments should be bool vectors of the same length.
- @end defun
- @defun bool-vector-set-difference a b &optional c
- Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
- optional argument @var{c} is given, the result of this operation is
- stored into @var{c}. All arguments should be bool vectors of the same length.
- @end defun
- @defun bool-vector-not a &optional b
- Return @dfn{set complement} of bool vector @var{a}. If optional
- argument @var{b} is given, the result of this operation is stored into
- @var{b}. All arguments should be bool vectors of the same length.
- @end defun
- @defun bool-vector-subsetp a b
- Return @code{t} if every @code{t} value in @var{a} is also t in
- @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
- same length.
- @end defun
- @defun bool-vector-count-consecutive a b i
- Return the number of consecutive elements in @var{a} equal @var{b}
- starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
- or @code{nil}, and @var{i} is an index into @code{a}.
- @end defun
- @defun bool-vector-count-population a
- Return the number of elements that are @code{t} in bool vector @var{a}.
- @end defun
- The printed form represents up to 8 boolean values as a single
- character:
- @example
- @group
- (bool-vector t nil t nil)
- @result{} #&4"^E"
- (bool-vector)
- @result{} #&0""
- @end group
- @end example
- You can use @code{vconcat} to print a bool-vector like other vectors:
- @example
- @group
- (vconcat (bool-vector nil t nil t))
- @result{} [nil t nil t]
- @end group
- @end example
- Here is another example of creating, examining, and updating a
- bool-vector:
- @example
- (setq bv (make-bool-vector 5 t))
- @result{} #&5"^_"
- (aref bv 1)
- @result{} t
- (aset bv 3 nil)
- @result{} nil
- bv
- @result{} #&5"^W"
- @end example
- @noindent
- These results make sense because the binary codes for control-_ and
- control-W are 11111 and 10111, respectively.
- @node Rings
- @section Managing a Fixed-Size Ring of Objects
- @cindex ring data structure
- A @dfn{ring} is a fixed-size data structure that supports insertion,
- deletion, rotation, and modulo-indexed reference and traversal. An
- efficient ring data structure is implemented by the @code{ring}
- package. It provides the functions listed in this section.
- Note that several rings in Emacs, like the kill ring and the
- mark ring, are actually implemented as simple lists, @emph{not} using
- the @code{ring} package; thus the following functions won't work on
- them.
- @defun make-ring size
- This returns a new ring capable of holding @var{size} objects.
- @var{size} should be an integer.
- @end defun
- @defun ring-p object
- This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
- @end defun
- @defun ring-size ring
- This returns the maximum capacity of the @var{ring}.
- @end defun
- @defun ring-length ring
- This returns the number of objects that @var{ring} currently contains.
- The value will never exceed that returned by @code{ring-size}.
- @end defun
- @defun ring-elements ring
- This returns a list of the objects in @var{ring}, in order, newest first.
- @end defun
- @defun ring-copy ring
- This returns a new ring which is a copy of @var{ring}.
- The new ring contains the same (@code{eq}) objects as @var{ring}.
- @end defun
- @defun ring-empty-p ring
- This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
- @end defun
- The newest element in the ring always has index 0. Higher indices
- correspond to older elements. Indices are computed modulo the ring
- length. Index @minus{}1 corresponds to the oldest element, @minus{}2
- to the next-oldest, and so forth.
- @defun ring-ref ring index
- This returns the object in @var{ring} found at index @var{index}.
- @var{index} may be negative or greater than the ring length. If
- @var{ring} is empty, @code{ring-ref} signals an error.
- @end defun
- @defun ring-insert ring object
- This inserts @var{object} into @var{ring}, making it the newest
- element, and returns @var{object}.
- If the ring is full, insertion removes the oldest element to
- make room for the new element.
- @end defun
- @defun ring-remove ring &optional index
- Remove an object from @var{ring}, and return that object. The
- argument @var{index} specifies which item to remove; if it is
- @code{nil}, that means to remove the oldest item. If @var{ring} is
- empty, @code{ring-remove} signals an error.
- @end defun
- @defun ring-insert-at-beginning ring object
- This inserts @var{object} into @var{ring}, treating it as the oldest
- element. The return value is not significant.
- If the ring is full, this function removes the newest element to make
- room for the inserted element.
- @end defun
- @cindex fifo data structure
- If you are careful not to exceed the ring size, you can
- use the ring as a first-in-first-out queue. For example:
- @lisp
- (let ((fifo (make-ring 5)))
- (mapc (lambda (obj) (ring-insert fifo obj))
- '(0 one "two"))
- (list (ring-remove fifo) t
- (ring-remove fifo) t
- (ring-remove fifo)))
- @result{} (0 t one t "two")
- @end lisp
|