123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- ;;; Continuation-passing style (CPS) intermediate language (IL)
- ;; Copyright (C) 2013, 2014, 2015, 2017, 2018, 2019 Free Software Foundation, Inc.
- ;;;; This library is free software; you can redistribute it and/or
- ;;;; modify it under the terms of the GNU Lesser General Public
- ;;;; License as published by the Free Software Foundation; either
- ;;;; version 3 of the License, or (at your option) any later version.
- ;;;;
- ;;;; This library is distributed in the hope that it will be useful,
- ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;;;; Lesser General Public License for more details.
- ;;;;
- ;;;; You should have received a copy of the GNU Lesser General Public
- ;;;; License along with this library; if not, write to the Free Software
- ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- ;;; Commentary:
- ;;;
- ;;; Helper facilities for working with CPS.
- ;;;
- ;;; Code:
- (define-module (language cps utils)
- #:use-module (ice-9 match)
- #:use-module (srfi srfi-1)
- #:use-module (language cps)
- #:use-module (language cps intset)
- #:use-module (language cps intmap)
- #:use-module (language cps graphs)
- #:export (;; Fresh names.
- label-counter var-counter
- fresh-label fresh-var
- with-fresh-name-state compute-max-label-and-var
- let-fresh
- ;; Graphs.
- compute-function-body
- compute-reachable-functions
- compute-successors
- compute-predecessors
- compute-idoms
- compute-dom-edges)
- #:re-export (fold1 fold2
- trivial-intset
- intmap-map
- intmap-keys
- invert-bijection invert-partition
- intset->intmap
- worklist-fold
- fixpoint
- ;; Flow analysis.
- invert-graph
- compute-reverse-post-order
- compute-strongly-connected-components
- compute-sorted-strongly-connected-components
- solve-flow-equations))
- (define label-counter (make-parameter #f))
- (define var-counter (make-parameter #f))
- (define (fresh-label)
- (let ((count (or (label-counter)
- (error "fresh-label outside with-fresh-name-state"))))
- (label-counter (1+ count))
- count))
- (define (fresh-var)
- (let ((count (or (var-counter)
- (error "fresh-var outside with-fresh-name-state"))))
- (var-counter (1+ count))
- count))
- (define-syntax-rule (let-fresh (label ...) (var ...) body ...)
- (let* ((label (fresh-label)) ...
- (var (fresh-var)) ...)
- body ...))
- (define-syntax-rule (with-fresh-name-state fun body ...)
- (call-with-values (lambda () (compute-max-label-and-var fun))
- (lambda (max-label max-var)
- (parameterize ((label-counter (1+ max-label))
- (var-counter (1+ max-var)))
- body ...))))
- (define (compute-max-label-and-var conts)
- (values (or (intmap-prev conts) -1)
- (intmap-fold (lambda (k cont max-var)
- (match cont
- (($ $kargs names syms body)
- (apply max max-var syms))
- (($ $kfun src meta (and self (not #f)))
- (max max-var self))
- (_ max-var)))
- conts
- -1)))
- (define (compute-function-body conts kfun)
- (persistent-intset
- (let visit-cont ((label kfun) (labels empty-intset))
- (cond
- ((intset-ref labels label) labels)
- (else
- (let ((labels (intset-add! labels label)))
- (match (intmap-ref conts label)
- (($ $kreceive arity k) (visit-cont k labels))
- (($ $kfun src meta self ktail kclause)
- (let ((labels (visit-cont ktail labels)))
- (if kclause
- (visit-cont kclause labels)
- labels)))
- (($ $ktail) labels)
- (($ $kclause arity kbody kalt)
- (if kalt
- (visit-cont kalt (visit-cont kbody labels))
- (visit-cont kbody labels)))
- (($ $kargs names syms term)
- (match term
- (($ $continue k)
- (visit-cont k labels))
- (($ $branch kf kt)
- (visit-cont kf (visit-cont kt labels)))
- (($ $prompt k kh)
- (visit-cont k (visit-cont kh labels)))
- (($ $throw)
- labels))))))))))
- (define* (compute-reachable-functions conts #:optional (kfun 0))
- "Compute a mapping LABEL->LABEL..., where each key is a reachable
- $kfun and each associated value is the body of the function, as an
- intset."
- (define (intset-cons i set) (intset-add set i))
- (define (visit-fun kfun body to-visit)
- (intset-fold
- (lambda (label to-visit)
- (define (return kfun*) (fold intset-cons to-visit kfun*))
- (define (return1 kfun) (intset-add to-visit kfun))
- (define (return0) to-visit)
- (match (intmap-ref conts label)
- (($ $kargs _ _ ($ $continue _ _ exp))
- (match exp
- (($ $fun label) (return1 label))
- (($ $rec _ _ (($ $fun labels) ...)) (return labels))
- (($ $const-fun label) (return1 label))
- (($ $code label) (return1 label))
- (($ $callk label) (return1 label))
- (_ (return0))))
- (_ (return0))))
- body
- to-visit))
- (let lp ((to-visit (intset kfun)) (visited empty-intmap))
- (let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
- (if (eq? to-visit empty-intset)
- visited
- (call-with-values
- (lambda ()
- (intset-fold
- (lambda (kfun to-visit visited)
- (let ((body (compute-function-body conts kfun)))
- (values (visit-fun kfun body to-visit)
- (intmap-add visited kfun body))))
- to-visit
- empty-intset
- visited))
- lp)))))
- (define* (compute-successors conts #:optional (kfun (intmap-next conts)))
- (define (visit label succs)
- (let visit ((label kfun) (succs empty-intmap))
- (define (propagate0)
- (intmap-add! succs label empty-intset))
- (define (propagate1 succ)
- (visit succ (intmap-add! succs label (intset succ))))
- (define (propagate2 succ0 succ1)
- (let ((succs (intmap-add! succs label (intset succ0 succ1))))
- (visit succ1 (visit succ0 succs))))
- (if (intmap-ref succs label (lambda (_) #f))
- succs
- (match (intmap-ref conts label)
- (($ $kargs names vars term)
- (match term
- (($ $continue k) (propagate1 k))
- (($ $branch kf kt) (propagate2 kf kt))
- (($ $prompt k kh) (propagate2 k kh))
- (($ $throw) (propagate0))))
- (($ $kreceive arity k)
- (propagate1 k))
- (($ $kfun src meta self tail clause)
- (if clause
- (propagate2 clause tail)
- (propagate1 tail)))
- (($ $kclause arity kbody kalt)
- (if kalt
- (propagate2 kbody kalt)
- (propagate1 kbody)))
- (($ $ktail) (propagate0))))))
- (persistent-intmap (visit kfun empty-intmap)))
- (define* (compute-predecessors conts kfun #:key
- (labels (compute-function-body conts kfun)))
- (define (meet cdr car)
- (cons car cdr))
- (define (add-preds label preds)
- (define (add-pred k preds)
- (intmap-add! preds k label meet))
- (match (intmap-ref conts label)
- (($ $kreceive arity k)
- (add-pred k preds))
- (($ $kfun src meta self ktail kclause)
- (add-pred ktail (if kclause (add-pred kclause preds) preds)))
- (($ $ktail)
- preds)
- (($ $kclause arity kbody kalt)
- (add-pred kbody (if kalt (add-pred kalt preds) preds)))
- (($ $kargs names syms term)
- (match term
- (($ $continue k) (add-pred k preds))
- (($ $branch kf kt) (add-pred kf (add-pred kt preds)))
- (($ $prompt k kh) (add-pred k (add-pred kh preds)))
- (($ $throw) preds)))))
- (persistent-intmap
- (intset-fold add-preds labels
- (intset->intmap (lambda (label) '()) labels))))
- ;; Precondition: For each function in CONTS, the continuation names are
- ;; topologically sorted.
- (define (compute-idoms conts kfun)
- ;; This is the iterative O(n^2) fixpoint algorithm, originally from
- ;; Allen and Cocke ("Graph-theoretic constructs for program flow
- ;; analysis", 1972). See the discussion in Cooper, Harvey, and
- ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
- (let ((preds-map (compute-predecessors conts kfun)))
- (define (compute-idom idoms preds)
- (define (idom-ref label)
- (intmap-ref idoms label (lambda (_) #f)))
- (match preds
- (() -1)
- ((pred) pred) ; Shortcut.
- ((pred . preds)
- (define (common-idom d0 d1)
- ;; We exploit the fact that a reverse post-order is a
- ;; topological sort, and so the idom of a node is always
- ;; numerically less than the node itself.
- (let lp ((d0 d0) (d1 d1))
- (cond
- ;; d0 or d1 can be false on the first iteration.
- ((not d0) d1)
- ((not d1) d0)
- ((= d0 d1) d0)
- ((< d0 d1) (lp d0 (idom-ref d1)))
- (else (lp (idom-ref d0) d1)))))
- (fold1 common-idom preds pred))))
- (define (adjoin-idom label preds idoms)
- (let ((idom (compute-idom idoms preds)))
- ;; Don't use intmap-add! here.
- (intmap-add idoms label idom (lambda (old new) new))))
- (fixpoint (lambda (idoms)
- (intmap-fold adjoin-idom preds-map idoms))
- empty-intmap)))
- ;; Precondition: For each function in CONTS, the continuation names are
- ;; topologically sorted.
- (define (compute-idoms conts kfun)
- ;; This is the iterative O(n^2) fixpoint algorithm, originally from
- ;; Allen and Cocke ("Graph-theoretic constructs for program flow
- ;; analysis", 1972). See the discussion in Cooper, Harvey, and
- ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
- (let ((preds-map (compute-predecessors conts kfun)))
- (define (compute-idom idoms preds)
- (define (idom-ref label)
- (intmap-ref idoms label (lambda (_) #f)))
- (match preds
- (() -1)
- ((pred) pred) ; Shortcut.
- ((pred . preds)
- (define (common-idom d0 d1)
- ;; We exploit the fact that a reverse post-order is a
- ;; topological sort, and so the idom of a node is always
- ;; numerically less than the node itself.
- (let lp ((d0 d0) (d1 d1))
- (cond
- ;; d0 or d1 can be false on the first iteration.
- ((not d0) d1)
- ((not d1) d0)
- ((= d0 d1) d0)
- ((< d0 d1) (lp d0 (idom-ref d1)))
- (else (lp (idom-ref d0) d1)))))
- (fold1 common-idom preds pred))))
- (define (adjoin-idom label preds idoms)
- (let ((idom (compute-idom idoms preds)))
- ;; Don't use intmap-add! here.
- (intmap-add idoms label idom (lambda (old new) new))))
- (fixpoint (lambda (idoms)
- (intmap-fold adjoin-idom preds-map idoms))
- empty-intmap)))
- ;; Compute a vector containing, for each node, a list of the nodes that
- ;; it immediately dominates. These are the "D" edges in the DJ tree.
- (define (compute-dom-edges idoms)
- (define (snoc cdr car) (cons car cdr))
- (persistent-intmap
- (intmap-fold (lambda (label idom doms)
- (let ((doms (intmap-add! doms label '())))
- (cond
- ((< idom 0) doms) ;; No edge to entry.
- (else (intmap-add! doms idom label snoc)))))
- idoms
- empty-intmap)))
|