lalr.upstream.scm 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096
  1. ;;;
  2. ;;;; An Efficient and Portable LALR(1) Parser Generator for Scheme
  3. ;;;
  4. ;; Copyright 2014 Jan Nieuwenhuizen <janneke@gnu.org>
  5. ;; Copyright 1993, 2010 Dominique Boucher
  6. ;;
  7. ;; This program is free software: you can redistribute it and/or
  8. ;; modify it under the terms of the GNU Lesser General Public License
  9. ;; as published by the Free Software Foundation, either version 3 of
  10. ;; the License, or (at your option) any later version.
  11. ;;
  12. ;; This program is distributed in the hope that it will be useful,
  13. ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. ;; GNU Lesser General Public License for more details.
  16. ;;
  17. ;; You should have received a copy of the GNU General Public License
  18. ;; along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. (define *lalr-scm-version* "2.5.0")
  20. (cond-expand
  21. ;; -- Gambit-C
  22. (gambit
  23. (define-macro (def-macro form . body)
  24. `(define-macro ,form (let () ,@body)))
  25. (def-macro (BITS-PER-WORD) 28)
  26. (def-macro (logical-or x . y) `(bitwise-ior ,x ,@y))
  27. (def-macro (lalr-error msg obj) `(error ,msg ,obj))
  28. (define pprint pretty-print)
  29. (define lalr-keyword? keyword?)
  30. (define (note-source-location lvalue tok) lvalue))
  31. ;; --
  32. (bigloo
  33. (define-macro (def-macro form . body)
  34. `(define-macro ,form (let () ,@body)))
  35. (define pprint (lambda (obj) (write obj) (newline)))
  36. (define lalr-keyword? keyword?)
  37. (def-macro (BITS-PER-WORD) 29)
  38. (def-macro (logical-or x . y) `(bit-or ,x ,@y))
  39. (def-macro (lalr-error msg obj) `(error "lalr-parser" ,msg ,obj))
  40. (define (note-source-location lvalue tok) lvalue))
  41. ;; -- Chicken
  42. (chicken
  43. (define-macro (def-macro form . body)
  44. `(define-macro ,form (let () ,@body)))
  45. (define pprint pretty-print)
  46. (define lalr-keyword? symbol?)
  47. (def-macro (BITS-PER-WORD) 30)
  48. (def-macro (logical-or x . y) `(bitwise-ior ,x ,@y))
  49. (def-macro (lalr-error msg obj) `(error ,msg ,obj))
  50. (define (note-source-location lvalue tok) lvalue))
  51. ;; -- STKlos
  52. (stklos
  53. (require "pp")
  54. (define (pprint form) (pp form :port (current-output-port)))
  55. (define lalr-keyword? keyword?)
  56. (define-macro (BITS-PER-WORD) 30)
  57. (define-macro (logical-or x . y) `(bit-or ,x ,@y))
  58. (define-macro (lalr-error msg obj) `(error 'lalr-parser ,msg ,obj))
  59. (define (note-source-location lvalue tok) lvalue))
  60. ;; -- Guile
  61. (guile
  62. (use-modules (ice-9 pretty-print))
  63. (use-modules (srfi srfi-9))
  64. (define pprint pretty-print)
  65. (define lalr-keyword? symbol?)
  66. (define-macro (BITS-PER-WORD) 30)
  67. (define-macro (logical-or x . y) `(logior ,x ,@y))
  68. (define-macro (lalr-error msg obj) `(error ,msg ,obj))
  69. (define (note-source-location lvalue tok)
  70. (if (and (supports-source-properties? lvalue)
  71. (not (source-property lvalue 'loc))
  72. (lexical-token? tok))
  73. (set-source-property! lvalue 'loc (lexical-token-source tok)))
  74. lvalue))
  75. ;; -- Kawa
  76. (kawa
  77. (require 'pretty-print)
  78. (define (BITS-PER-WORD) 30)
  79. (define logical-or logior)
  80. (define (lalr-keyword? obj) (keyword? obj))
  81. (define (pprint obj) (pretty-print obj))
  82. (define (lalr-error msg obj) (error msg obj))
  83. (define (note-source-location lvalue tok) lvalue))
  84. ;; -- SISC
  85. (sisc
  86. (import logicops)
  87. (import record)
  88. (define pprint pretty-print)
  89. (define lalr-keyword? symbol?)
  90. (define-macro BITS-PER-WORD (lambda () 32))
  91. (define-macro logical-or (lambda (x . y) `(logor ,x ,@y)))
  92. (define-macro (lalr-error msg obj) `(error "~a ~S:" ,msg ,obj))
  93. (define (note-source-location lvalue tok) lvalue))
  94. (else
  95. (error "Unsupported Scheme system")))
  96. (define-record-type lexical-token
  97. (make-lexical-token category source value)
  98. lexical-token?
  99. (category lexical-token-category)
  100. (source lexical-token-source)
  101. (value lexical-token-value))
  102. (define-record-type source-location
  103. (make-source-location input line column offset length)
  104. source-location?
  105. (input source-location-input)
  106. (line source-location-line)
  107. (column source-location-column)
  108. (offset source-location-offset)
  109. (length source-location-length))
  110. ;; - Macros pour la gestion des vecteurs de bits
  111. (define-macro (lalr-parser . arguments)
  112. (define (set-bit v b)
  113. (let ((x (quotient b (BITS-PER-WORD)))
  114. (y (expt 2 (remainder b (BITS-PER-WORD)))))
  115. (vector-set! v x (logical-or (vector-ref v x) y))))
  116. (define (bit-union v1 v2 n)
  117. (do ((i 0 (+ i 1)))
  118. ((= i n))
  119. (vector-set! v1 i (logical-or (vector-ref v1 i)
  120. (vector-ref v2 i)))))
  121. ;; - Macro pour les structures de donnees
  122. (define (new-core) (make-vector 4 0))
  123. (define (set-core-number! c n) (vector-set! c 0 n))
  124. (define (set-core-acc-sym! c s) (vector-set! c 1 s))
  125. (define (set-core-nitems! c n) (vector-set! c 2 n))
  126. (define (set-core-items! c i) (vector-set! c 3 i))
  127. (define (core-number c) (vector-ref c 0))
  128. (define (core-acc-sym c) (vector-ref c 1))
  129. (define (core-nitems c) (vector-ref c 2))
  130. (define (core-items c) (vector-ref c 3))
  131. (define (new-shift) (make-vector 3 0))
  132. (define (set-shift-number! c x) (vector-set! c 0 x))
  133. (define (set-shift-nshifts! c x) (vector-set! c 1 x))
  134. (define (set-shift-shifts! c x) (vector-set! c 2 x))
  135. (define (shift-number s) (vector-ref s 0))
  136. (define (shift-nshifts s) (vector-ref s 1))
  137. (define (shift-shifts s) (vector-ref s 2))
  138. (define (new-red) (make-vector 3 0))
  139. (define (set-red-number! c x) (vector-set! c 0 x))
  140. (define (set-red-nreds! c x) (vector-set! c 1 x))
  141. (define (set-red-rules! c x) (vector-set! c 2 x))
  142. (define (red-number c) (vector-ref c 0))
  143. (define (red-nreds c) (vector-ref c 1))
  144. (define (red-rules c) (vector-ref c 2))
  145. (define (new-set nelem)
  146. (make-vector nelem 0))
  147. (define (vector-map f v)
  148. (let ((vm-n (- (vector-length v) 1)))
  149. (let loop ((vm-low 0) (vm-high vm-n))
  150. (if (= vm-low vm-high)
  151. (vector-set! v vm-low (f (vector-ref v vm-low) vm-low))
  152. (let ((vm-middle (quotient (+ vm-low vm-high) 2)))
  153. (loop vm-low vm-middle)
  154. (loop (+ vm-middle 1) vm-high))))))
  155. ;; - Constantes
  156. (define STATE-TABLE-SIZE 1009)
  157. ;; - Tableaux
  158. (define rrhs #f)
  159. (define rlhs #f)
  160. (define ritem #f)
  161. (define nullable #f)
  162. (define derives #f)
  163. (define fderives #f)
  164. (define firsts #f)
  165. (define kernel-base #f)
  166. (define kernel-end #f)
  167. (define shift-symbol #f)
  168. (define shift-set #f)
  169. (define red-set #f)
  170. (define state-table #f)
  171. (define acces-symbol #f)
  172. (define reduction-table #f)
  173. (define shift-table #f)
  174. (define consistent #f)
  175. (define lookaheads #f)
  176. (define LA #f)
  177. (define LAruleno #f)
  178. (define lookback #f)
  179. (define goto-map #f)
  180. (define from-state #f)
  181. (define to-state #f)
  182. (define includes #f)
  183. (define F #f)
  184. (define action-table #f)
  185. ;; - Variables
  186. (define nitems #f)
  187. (define nrules #f)
  188. (define nvars #f)
  189. (define nterms #f)
  190. (define nsyms #f)
  191. (define nstates #f)
  192. (define first-state #f)
  193. (define last-state #f)
  194. (define final-state #f)
  195. (define first-shift #f)
  196. (define last-shift #f)
  197. (define first-reduction #f)
  198. (define last-reduction #f)
  199. (define nshifts #f)
  200. (define maxrhs #f)
  201. (define ngotos #f)
  202. (define token-set-size #f)
  203. (define driver-name 'lr-driver)
  204. (define (glr-driver?)
  205. (eq? driver-name 'glr-driver))
  206. (define (lr-driver?)
  207. (eq? driver-name 'lr-driver))
  208. (define (gen-tables! tokens gram )
  209. (initialize-all)
  210. (rewrite-grammar
  211. tokens
  212. gram
  213. (lambda (terms terms/prec vars gram gram/actions)
  214. (set! the-terminals/prec (list->vector terms/prec))
  215. (set! the-terminals (list->vector terms))
  216. (set! the-nonterminals (list->vector vars))
  217. (set! nterms (length terms))
  218. (set! nvars (length vars))
  219. (set! nsyms (+ nterms nvars))
  220. (let ((no-of-rules (length gram/actions))
  221. (no-of-items (let loop ((l gram/actions) (count 0))
  222. (if (null? l)
  223. count
  224. (loop (cdr l) (+ count (length (caar l))))))))
  225. (pack-grammar no-of-rules no-of-items gram)
  226. (set-derives)
  227. (set-nullable)
  228. (generate-states)
  229. (lalr)
  230. (build-tables)
  231. (compact-action-table terms)
  232. gram/actions))))
  233. (define (initialize-all)
  234. (set! rrhs #f)
  235. (set! rlhs #f)
  236. (set! ritem #f)
  237. (set! nullable #f)
  238. (set! derives #f)
  239. (set! fderives #f)
  240. (set! firsts #f)
  241. (set! kernel-base #f)
  242. (set! kernel-end #f)
  243. (set! shift-symbol #f)
  244. (set! shift-set #f)
  245. (set! red-set #f)
  246. (set! state-table (make-vector STATE-TABLE-SIZE '()))
  247. (set! acces-symbol #f)
  248. (set! reduction-table #f)
  249. (set! shift-table #f)
  250. (set! consistent #f)
  251. (set! lookaheads #f)
  252. (set! LA #f)
  253. (set! LAruleno #f)
  254. (set! lookback #f)
  255. (set! goto-map #f)
  256. (set! from-state #f)
  257. (set! to-state #f)
  258. (set! includes #f)
  259. (set! F #f)
  260. (set! action-table #f)
  261. (set! nstates #f)
  262. (set! first-state #f)
  263. (set! last-state #f)
  264. (set! final-state #f)
  265. (set! first-shift #f)
  266. (set! last-shift #f)
  267. (set! first-reduction #f)
  268. (set! last-reduction #f)
  269. (set! nshifts #f)
  270. (set! maxrhs #f)
  271. (set! ngotos #f)
  272. (set! token-set-size #f)
  273. (set! rule-precedences '()))
  274. (define (pack-grammar no-of-rules no-of-items gram)
  275. (set! nrules (+ no-of-rules 1))
  276. (set! nitems no-of-items)
  277. (set! rlhs (make-vector nrules #f))
  278. (set! rrhs (make-vector nrules #f))
  279. (set! ritem (make-vector (+ 1 nitems) #f))
  280. (let loop ((p gram) (item-no 0) (rule-no 1))
  281. (if (not (null? p))
  282. (let ((nt (caar p)))
  283. (let loop2 ((prods (cdar p)) (it-no2 item-no) (rl-no2 rule-no))
  284. (if (null? prods)
  285. (loop (cdr p) it-no2 rl-no2)
  286. (begin
  287. (vector-set! rlhs rl-no2 nt)
  288. (vector-set! rrhs rl-no2 it-no2)
  289. (let loop3 ((rhs (car prods)) (it-no3 it-no2))
  290. (if (null? rhs)
  291. (begin
  292. (vector-set! ritem it-no3 (- rl-no2))
  293. (loop2 (cdr prods) (+ it-no3 1) (+ rl-no2 1)))
  294. (begin
  295. (vector-set! ritem it-no3 (car rhs))
  296. (loop3 (cdr rhs) (+ it-no3 1))))))))))))
  297. (define (set-derives)
  298. (define delts (make-vector (+ nrules 1) 0))
  299. (define dset (make-vector nvars -1))
  300. (let loop ((i 1) (j 0)) ; i = 0
  301. (if (< i nrules)
  302. (let ((lhs (vector-ref rlhs i)))
  303. (if (>= lhs 0)
  304. (begin
  305. (vector-set! delts j (cons i (vector-ref dset lhs)))
  306. (vector-set! dset lhs j)
  307. (loop (+ i 1) (+ j 1)))
  308. (loop (+ i 1) j)))))
  309. (set! derives (make-vector nvars 0))
  310. (let loop ((i 0))
  311. (if (< i nvars)
  312. (let ((q (let loop2 ((j (vector-ref dset i)) (s '()))
  313. (if (< j 0)
  314. s
  315. (let ((x (vector-ref delts j)))
  316. (loop2 (cdr x) (cons (car x) s)))))))
  317. (vector-set! derives i q)
  318. (loop (+ i 1))))))
  319. (define (set-nullable)
  320. (set! nullable (make-vector nvars #f))
  321. (let ((squeue (make-vector nvars #f))
  322. (rcount (make-vector (+ nrules 1) 0))
  323. (rsets (make-vector nvars #f))
  324. (relts (make-vector (+ nitems nvars 1) #f)))
  325. (let loop ((r 0) (s2 0) (p 0))
  326. (let ((*r (vector-ref ritem r)))
  327. (if *r
  328. (if (< *r 0)
  329. (let ((symbol (vector-ref rlhs (- *r))))
  330. (if (and (>= symbol 0)
  331. (not (vector-ref nullable symbol)))
  332. (begin
  333. (vector-set! nullable symbol #t)
  334. (vector-set! squeue s2 symbol)
  335. (loop (+ r 1) (+ s2 1) p))))
  336. (let loop2 ((r1 r) (any-tokens #f))
  337. (let* ((symbol (vector-ref ritem r1)))
  338. (if (> symbol 0)
  339. (loop2 (+ r1 1) (or any-tokens (>= symbol nvars)))
  340. (if (not any-tokens)
  341. (let ((ruleno (- symbol)))
  342. (let loop3 ((r2 r) (p2 p))
  343. (let ((symbol (vector-ref ritem r2)))
  344. (if (> symbol 0)
  345. (begin
  346. (vector-set! rcount ruleno
  347. (+ (vector-ref rcount ruleno) 1))
  348. (vector-set! relts p2
  349. (cons (vector-ref rsets symbol)
  350. ruleno))
  351. (vector-set! rsets symbol p2)
  352. (loop3 (+ r2 1) (+ p2 1)))
  353. (loop (+ r2 1) s2 p2)))))
  354. (loop (+ r1 1) s2 p))))))
  355. (let loop ((s1 0) (s3 s2))
  356. (if (< s1 s3)
  357. (let loop2 ((p (vector-ref rsets (vector-ref squeue s1))) (s4 s3))
  358. (if p
  359. (let* ((x (vector-ref relts p))
  360. (ruleno (cdr x))
  361. (y (- (vector-ref rcount ruleno) 1)))
  362. (vector-set! rcount ruleno y)
  363. (if (= y 0)
  364. (let ((symbol (vector-ref rlhs ruleno)))
  365. (if (and (>= symbol 0)
  366. (not (vector-ref nullable symbol)))
  367. (begin
  368. (vector-set! nullable symbol #t)
  369. (vector-set! squeue s4 symbol)
  370. (loop2 (car x) (+ s4 1)))
  371. (loop2 (car x) s4)))
  372. (loop2 (car x) s4))))
  373. (loop (+ s1 1) s4)))))))))
  374. (define (set-firsts)
  375. (set! firsts (make-vector nvars '()))
  376. ;; -- initialization
  377. (let loop ((i 0))
  378. (if (< i nvars)
  379. (let loop2 ((sp (vector-ref derives i)))
  380. (if (null? sp)
  381. (loop (+ i 1))
  382. (let ((sym (vector-ref ritem (vector-ref rrhs (car sp)))))
  383. (if (< -1 sym nvars)
  384. (vector-set! firsts i (sinsert sym (vector-ref firsts i))))
  385. (loop2 (cdr sp)))))))
  386. ;; -- reflexive and transitive closure
  387. (let loop ((continue #t))
  388. (if continue
  389. (let loop2 ((i 0) (cont #f))
  390. (if (>= i nvars)
  391. (loop cont)
  392. (let* ((x (vector-ref firsts i))
  393. (y (let loop3 ((l x) (z x))
  394. (if (null? l)
  395. z
  396. (loop3 (cdr l)
  397. (sunion (vector-ref firsts (car l)) z))))))
  398. (if (equal? x y)
  399. (loop2 (+ i 1) cont)
  400. (begin
  401. (vector-set! firsts i y)
  402. (loop2 (+ i 1) #t))))))))
  403. (let loop ((i 0))
  404. (if (< i nvars)
  405. (begin
  406. (vector-set! firsts i (sinsert i (vector-ref firsts i)))
  407. (loop (+ i 1))))))
  408. (define (set-fderives)
  409. (set! fderives (make-vector nvars #f))
  410. (set-firsts)
  411. (let loop ((i 0))
  412. (if (< i nvars)
  413. (let ((x (let loop2 ((l (vector-ref firsts i)) (fd '()))
  414. (if (null? l)
  415. fd
  416. (loop2 (cdr l)
  417. (sunion (vector-ref derives (car l)) fd))))))
  418. (vector-set! fderives i x)
  419. (loop (+ i 1))))))
  420. (define (closure core)
  421. ;; Initialization
  422. (define ruleset (make-vector nrules #f))
  423. (let loop ((csp core))
  424. (if (not (null? csp))
  425. (let ((sym (vector-ref ritem (car csp))))
  426. (if (< -1 sym nvars)
  427. (let loop2 ((dsp (vector-ref fderives sym)))
  428. (if (not (null? dsp))
  429. (begin
  430. (vector-set! ruleset (car dsp) #t)
  431. (loop2 (cdr dsp))))))
  432. (loop (cdr csp)))))
  433. (let loop ((ruleno 1) (csp core) (itemsetv '())) ; ruleno = 0
  434. (if (< ruleno nrules)
  435. (if (vector-ref ruleset ruleno)
  436. (let ((itemno (vector-ref rrhs ruleno)))
  437. (let loop2 ((c csp) (itemsetv2 itemsetv))
  438. (if (and (pair? c)
  439. (< (car c) itemno))
  440. (loop2 (cdr c) (cons (car c) itemsetv2))
  441. (loop (+ ruleno 1) c (cons itemno itemsetv2)))))
  442. (loop (+ ruleno 1) csp itemsetv))
  443. (let loop2 ((c csp) (itemsetv2 itemsetv))
  444. (if (pair? c)
  445. (loop2 (cdr c) (cons (car c) itemsetv2))
  446. (reverse itemsetv2))))))
  447. (define (allocate-item-sets)
  448. (set! kernel-base (make-vector nsyms 0))
  449. (set! kernel-end (make-vector nsyms #f)))
  450. (define (allocate-storage)
  451. (allocate-item-sets)
  452. (set! red-set (make-vector (+ nrules 1) 0)))
  453. ; --
  454. (define (initialize-states)
  455. (let ((p (new-core)))
  456. (set-core-number! p 0)
  457. (set-core-acc-sym! p #f)
  458. (set-core-nitems! p 1)
  459. (set-core-items! p '(0))
  460. (set! first-state (list p))
  461. (set! last-state first-state)
  462. (set! nstates 1)))
  463. (define (generate-states)
  464. (allocate-storage)
  465. (set-fderives)
  466. (initialize-states)
  467. (let loop ((this-state first-state))
  468. (if (pair? this-state)
  469. (let* ((x (car this-state))
  470. (is (closure (core-items x))))
  471. (save-reductions x is)
  472. (new-itemsets is)
  473. (append-states)
  474. (if (> nshifts 0)
  475. (save-shifts x))
  476. (loop (cdr this-state))))))
  477. (define (new-itemsets itemset)
  478. ;; - Initialization
  479. (set! shift-symbol '())
  480. (let loop ((i 0))
  481. (if (< i nsyms)
  482. (begin
  483. (vector-set! kernel-end i '())
  484. (loop (+ i 1)))))
  485. (let loop ((isp itemset))
  486. (if (pair? isp)
  487. (let* ((i (car isp))
  488. (sym (vector-ref ritem i)))
  489. (if (>= sym 0)
  490. (begin
  491. (set! shift-symbol (sinsert sym shift-symbol))
  492. (let ((x (vector-ref kernel-end sym)))
  493. (if (null? x)
  494. (begin
  495. (vector-set! kernel-base sym (cons (+ i 1) x))
  496. (vector-set! kernel-end sym (vector-ref kernel-base sym)))
  497. (begin
  498. (set-cdr! x (list (+ i 1)))
  499. (vector-set! kernel-end sym (cdr x)))))))
  500. (loop (cdr isp)))))
  501. (set! nshifts (length shift-symbol)))
  502. (define (get-state sym)
  503. (let* ((isp (vector-ref kernel-base sym))
  504. (n (length isp))
  505. (key (let loop ((isp1 isp) (k 0))
  506. (if (null? isp1)
  507. (modulo k STATE-TABLE-SIZE)
  508. (loop (cdr isp1) (+ k (car isp1))))))
  509. (sp (vector-ref state-table key)))
  510. (if (null? sp)
  511. (let ((x (new-state sym)))
  512. (vector-set! state-table key (list x))
  513. (core-number x))
  514. (let loop ((sp1 sp))
  515. (if (and (= n (core-nitems (car sp1)))
  516. (let loop2 ((i1 isp) (t (core-items (car sp1))))
  517. (if (and (pair? i1)
  518. (= (car i1)
  519. (car t)))
  520. (loop2 (cdr i1) (cdr t))
  521. (null? i1))))
  522. (core-number (car sp1))
  523. (if (null? (cdr sp1))
  524. (let ((x (new-state sym)))
  525. (set-cdr! sp1 (list x))
  526. (core-number x))
  527. (loop (cdr sp1))))))))
  528. (define (new-state sym)
  529. (let* ((isp (vector-ref kernel-base sym))
  530. (n (length isp))
  531. (p (new-core)))
  532. (set-core-number! p nstates)
  533. (set-core-acc-sym! p sym)
  534. (if (= sym nvars) (set! final-state nstates))
  535. (set-core-nitems! p n)
  536. (set-core-items! p isp)
  537. (set-cdr! last-state (list p))
  538. (set! last-state (cdr last-state))
  539. (set! nstates (+ nstates 1))
  540. p))
  541. ; --
  542. (define (append-states)
  543. (set! shift-set
  544. (let loop ((l (reverse shift-symbol)))
  545. (if (null? l)
  546. '()
  547. (cons (get-state (car l)) (loop (cdr l)))))))
  548. ; --
  549. (define (save-shifts core)
  550. (let ((p (new-shift)))
  551. (set-shift-number! p (core-number core))
  552. (set-shift-nshifts! p nshifts)
  553. (set-shift-shifts! p shift-set)
  554. (if last-shift
  555. (begin
  556. (set-cdr! last-shift (list p))
  557. (set! last-shift (cdr last-shift)))
  558. (begin
  559. (set! first-shift (list p))
  560. (set! last-shift first-shift)))))
  561. (define (save-reductions core itemset)
  562. (let ((rs (let loop ((l itemset))
  563. (if (null? l)
  564. '()
  565. (let ((item (vector-ref ritem (car l))))
  566. (if (< item 0)
  567. (cons (- item) (loop (cdr l)))
  568. (loop (cdr l))))))))
  569. (if (pair? rs)
  570. (let ((p (new-red)))
  571. (set-red-number! p (core-number core))
  572. (set-red-nreds! p (length rs))
  573. (set-red-rules! p rs)
  574. (if last-reduction
  575. (begin
  576. (set-cdr! last-reduction (list p))
  577. (set! last-reduction (cdr last-reduction)))
  578. (begin
  579. (set! first-reduction (list p))
  580. (set! last-reduction first-reduction)))))))
  581. ; --
  582. (define (lalr)
  583. (set! token-set-size (+ 1 (quotient nterms (BITS-PER-WORD))))
  584. (set-accessing-symbol)
  585. (set-shift-table)
  586. (set-reduction-table)
  587. (set-max-rhs)
  588. (initialize-LA)
  589. (set-goto-map)
  590. (initialize-F)
  591. (build-relations)
  592. (digraph includes)
  593. (compute-lookaheads))
  594. (define (set-accessing-symbol)
  595. (set! acces-symbol (make-vector nstates #f))
  596. (let loop ((l first-state))
  597. (if (pair? l)
  598. (let ((x (car l)))
  599. (vector-set! acces-symbol (core-number x) (core-acc-sym x))
  600. (loop (cdr l))))))
  601. (define (set-shift-table)
  602. (set! shift-table (make-vector nstates #f))
  603. (let loop ((l first-shift))
  604. (if (pair? l)
  605. (let ((x (car l)))
  606. (vector-set! shift-table (shift-number x) x)
  607. (loop (cdr l))))))
  608. (define (set-reduction-table)
  609. (set! reduction-table (make-vector nstates #f))
  610. (let loop ((l first-reduction))
  611. (if (pair? l)
  612. (let ((x (car l)))
  613. (vector-set! reduction-table (red-number x) x)
  614. (loop (cdr l))))))
  615. (define (set-max-rhs)
  616. (let loop ((p 0) (curmax 0) (length 0))
  617. (let ((x (vector-ref ritem p)))
  618. (if x
  619. (if (>= x 0)
  620. (loop (+ p 1) curmax (+ length 1))
  621. (loop (+ p 1) (max curmax length) 0))
  622. (set! maxrhs curmax)))))
  623. (define (initialize-LA)
  624. (define (last l)
  625. (if (null? (cdr l))
  626. (car l)
  627. (last (cdr l))))
  628. (set! consistent (make-vector nstates #f))
  629. (set! lookaheads (make-vector (+ nstates 1) #f))
  630. (let loop ((count 0) (i 0))
  631. (if (< i nstates)
  632. (begin
  633. (vector-set! lookaheads i count)
  634. (let ((rp (vector-ref reduction-table i))
  635. (sp (vector-ref shift-table i)))
  636. (if (and rp
  637. (or (> (red-nreds rp) 1)
  638. (and sp
  639. (not
  640. (< (vector-ref acces-symbol
  641. (last (shift-shifts sp)))
  642. nvars)))))
  643. (loop (+ count (red-nreds rp)) (+ i 1))
  644. (begin
  645. (vector-set! consistent i #t)
  646. (loop count (+ i 1))))))
  647. (begin
  648. (vector-set! lookaheads nstates count)
  649. (let ((c (max count 1)))
  650. (set! LA (make-vector c #f))
  651. (do ((j 0 (+ j 1))) ((= j c)) (vector-set! LA j (new-set token-set-size)))
  652. (set! LAruleno (make-vector c -1))
  653. (set! lookback (make-vector c #f)))
  654. (let loop ((i 0) (np 0))
  655. (if (< i nstates)
  656. (if (vector-ref consistent i)
  657. (loop (+ i 1) np)
  658. (let ((rp (vector-ref reduction-table i)))
  659. (if rp
  660. (let loop2 ((j (red-rules rp)) (np2 np))
  661. (if (null? j)
  662. (loop (+ i 1) np2)
  663. (begin
  664. (vector-set! LAruleno np2 (car j))
  665. (loop2 (cdr j) (+ np2 1)))))
  666. (loop (+ i 1) np))))))))))
  667. (define (set-goto-map)
  668. (set! goto-map (make-vector (+ nvars 1) 0))
  669. (let ((temp-map (make-vector (+ nvars 1) 0)))
  670. (let loop ((ng 0) (sp first-shift))
  671. (if (pair? sp)
  672. (let loop2 ((i (reverse (shift-shifts (car sp)))) (ng2 ng))
  673. (if (pair? i)
  674. (let ((symbol (vector-ref acces-symbol (car i))))
  675. (if (< symbol nvars)
  676. (begin
  677. (vector-set! goto-map symbol
  678. (+ 1 (vector-ref goto-map symbol)))
  679. (loop2 (cdr i) (+ ng2 1)))
  680. (loop2 (cdr i) ng2)))
  681. (loop ng2 (cdr sp))))
  682. (let loop ((k 0) (i 0))
  683. (if (< i nvars)
  684. (begin
  685. (vector-set! temp-map i k)
  686. (loop (+ k (vector-ref goto-map i)) (+ i 1)))
  687. (begin
  688. (do ((i 0 (+ i 1)))
  689. ((>= i nvars))
  690. (vector-set! goto-map i (vector-ref temp-map i)))
  691. (set! ngotos ng)
  692. (vector-set! goto-map nvars ngotos)
  693. (vector-set! temp-map nvars ngotos)
  694. (set! from-state (make-vector ngotos #f))
  695. (set! to-state (make-vector ngotos #f))
  696. (do ((sp first-shift (cdr sp)))
  697. ((null? sp))
  698. (let* ((x (car sp))
  699. (state1 (shift-number x)))
  700. (do ((i (shift-shifts x) (cdr i)))
  701. ((null? i))
  702. (let* ((state2 (car i))
  703. (symbol (vector-ref acces-symbol state2)))
  704. (if (< symbol nvars)
  705. (let ((k (vector-ref temp-map symbol)))
  706. (vector-set! temp-map symbol (+ k 1))
  707. (vector-set! from-state k state1)
  708. (vector-set! to-state k state2))))))))))))))
  709. (define (map-goto state symbol)
  710. (let loop ((low (vector-ref goto-map symbol))
  711. (high (- (vector-ref goto-map (+ symbol 1)) 1)))
  712. (if (> low high)
  713. (begin
  714. (display (list "Error in map-goto" state symbol)) (newline)
  715. 0)
  716. (let* ((middle (quotient (+ low high) 2))
  717. (s (vector-ref from-state middle)))
  718. (cond
  719. ((= s state)
  720. middle)
  721. ((< s state)
  722. (loop (+ middle 1) high))
  723. (else
  724. (loop low (- middle 1))))))))
  725. (define (initialize-F)
  726. (set! F (make-vector ngotos #f))
  727. (do ((i 0 (+ i 1))) ((= i ngotos)) (vector-set! F i (new-set token-set-size)))
  728. (let ((reads (make-vector ngotos #f)))
  729. (let loop ((i 0) (rowp 0))
  730. (if (< i ngotos)
  731. (let* ((rowf (vector-ref F rowp))
  732. (stateno (vector-ref to-state i))
  733. (sp (vector-ref shift-table stateno)))
  734. (if sp
  735. (let loop2 ((j (shift-shifts sp)) (edges '()))
  736. (if (pair? j)
  737. (let ((symbol (vector-ref acces-symbol (car j))))
  738. (if (< symbol nvars)
  739. (if (vector-ref nullable symbol)
  740. (loop2 (cdr j) (cons (map-goto stateno symbol)
  741. edges))
  742. (loop2 (cdr j) edges))
  743. (begin
  744. (set-bit rowf (- symbol nvars))
  745. (loop2 (cdr j) edges))))
  746. (if (pair? edges)
  747. (vector-set! reads i (reverse edges))))))
  748. (loop (+ i 1) (+ rowp 1)))))
  749. (digraph reads)))
  750. (define (add-lookback-edge stateno ruleno gotono)
  751. (let ((k (vector-ref lookaheads (+ stateno 1))))
  752. (let loop ((found #f) (i (vector-ref lookaheads stateno)))
  753. (if (and (not found) (< i k))
  754. (if (= (vector-ref LAruleno i) ruleno)
  755. (loop #t i)
  756. (loop found (+ i 1)))
  757. (if (not found)
  758. (begin (display "Error in add-lookback-edge : ")
  759. (display (list stateno ruleno gotono)) (newline))
  760. (vector-set! lookback i
  761. (cons gotono (vector-ref lookback i))))))))
  762. (define (transpose r-arg n)
  763. (let ((new-end (make-vector n #f))
  764. (new-R (make-vector n #f)))
  765. (do ((i 0 (+ i 1)))
  766. ((= i n))
  767. (let ((x (list 'bidon)))
  768. (vector-set! new-R i x)
  769. (vector-set! new-end i x)))
  770. (do ((i 0 (+ i 1)))
  771. ((= i n))
  772. (let ((sp (vector-ref r-arg i)))
  773. (if (pair? sp)
  774. (let loop ((sp2 sp))
  775. (if (pair? sp2)
  776. (let* ((x (car sp2))
  777. (y (vector-ref new-end x)))
  778. (set-cdr! y (cons i (cdr y)))
  779. (vector-set! new-end x (cdr y))
  780. (loop (cdr sp2))))))))
  781. (do ((i 0 (+ i 1)))
  782. ((= i n))
  783. (vector-set! new-R i (cdr (vector-ref new-R i))))
  784. new-R))
  785. (define (build-relations)
  786. (define (get-state stateno symbol)
  787. (let loop ((j (shift-shifts (vector-ref shift-table stateno)))
  788. (stno stateno))
  789. (if (null? j)
  790. stno
  791. (let ((st2 (car j)))
  792. (if (= (vector-ref acces-symbol st2) symbol)
  793. st2
  794. (loop (cdr j) st2))))))
  795. (set! includes (make-vector ngotos #f))
  796. (do ((i 0 (+ i 1)))
  797. ((= i ngotos))
  798. (let ((state1 (vector-ref from-state i))
  799. (symbol1 (vector-ref acces-symbol (vector-ref to-state i))))
  800. (let loop ((rulep (vector-ref derives symbol1))
  801. (edges '()))
  802. (if (pair? rulep)
  803. (let ((*rulep (car rulep)))
  804. (let loop2 ((rp (vector-ref rrhs *rulep))
  805. (stateno state1)
  806. (states (list state1)))
  807. (let ((*rp (vector-ref ritem rp)))
  808. (if (> *rp 0)
  809. (let ((st (get-state stateno *rp)))
  810. (loop2 (+ rp 1) st (cons st states)))
  811. (begin
  812. (if (not (vector-ref consistent stateno))
  813. (add-lookback-edge stateno *rulep i))
  814. (let loop2 ((done #f)
  815. (stp (cdr states))
  816. (rp2 (- rp 1))
  817. (edgp edges))
  818. (if (not done)
  819. (let ((*rp (vector-ref ritem rp2)))
  820. (if (< -1 *rp nvars)
  821. (loop2 (not (vector-ref nullable *rp))
  822. (cdr stp)
  823. (- rp2 1)
  824. (cons (map-goto (car stp) *rp) edgp))
  825. (loop2 #t stp rp2 edgp)))
  826. (loop (cdr rulep) edgp))))))))
  827. (vector-set! includes i edges)))))
  828. (set! includes (transpose includes ngotos)))
  829. (define (compute-lookaheads)
  830. (let ((n (vector-ref lookaheads nstates)))
  831. (let loop ((i 0))
  832. (if (< i n)
  833. (let loop2 ((sp (vector-ref lookback i)))
  834. (if (pair? sp)
  835. (let ((LA-i (vector-ref LA i))
  836. (F-j (vector-ref F (car sp))))
  837. (bit-union LA-i F-j token-set-size)
  838. (loop2 (cdr sp)))
  839. (loop (+ i 1))))))))
  840. (define (digraph relation)
  841. (define infinity (+ ngotos 2))
  842. (define INDEX (make-vector (+ ngotos 1) 0))
  843. (define VERTICES (make-vector (+ ngotos 1) 0))
  844. (define top 0)
  845. (define R relation)
  846. (define (traverse i)
  847. (set! top (+ 1 top))
  848. (vector-set! VERTICES top i)
  849. (let ((height top))
  850. (vector-set! INDEX i height)
  851. (let ((rp (vector-ref R i)))
  852. (if (pair? rp)
  853. (let loop ((rp2 rp))
  854. (if (pair? rp2)
  855. (let ((j (car rp2)))
  856. (if (= 0 (vector-ref INDEX j))
  857. (traverse j))
  858. (if (> (vector-ref INDEX i)
  859. (vector-ref INDEX j))
  860. (vector-set! INDEX i (vector-ref INDEX j)))
  861. (let ((F-i (vector-ref F i))
  862. (F-j (vector-ref F j)))
  863. (bit-union F-i F-j token-set-size))
  864. (loop (cdr rp2))))))
  865. (if (= (vector-ref INDEX i) height)
  866. (let loop ()
  867. (let ((j (vector-ref VERTICES top)))
  868. (set! top (- top 1))
  869. (vector-set! INDEX j infinity)
  870. (if (not (= i j))
  871. (begin
  872. (bit-union (vector-ref F i)
  873. (vector-ref F j)
  874. token-set-size)
  875. (loop)))))))))
  876. (let loop ((i 0))
  877. (if (< i ngotos)
  878. (begin
  879. (if (and (= 0 (vector-ref INDEX i))
  880. (pair? (vector-ref R i)))
  881. (traverse i))
  882. (loop (+ i 1))))))
  883. ;; ----------------------------------------------------------------------
  884. ;; operator precedence management
  885. ;; ----------------------------------------------------------------------
  886. ;; a vector of precedence descriptors where each element
  887. ;; is of the form (terminal type precedence)
  888. (define the-terminals/prec #f) ; terminal symbols with precedence
  889. ; the precedence is an integer >= 0
  890. (define (get-symbol-precedence sym)
  891. (caddr (vector-ref the-terminals/prec sym)))
  892. ; the operator type is either 'none, 'left, 'right, or 'nonassoc
  893. (define (get-symbol-assoc sym)
  894. (cadr (vector-ref the-terminals/prec sym)))
  895. (define rule-precedences '())
  896. (define (add-rule-precedence! rule sym)
  897. (set! rule-precedences
  898. (cons (cons rule sym) rule-precedences)))
  899. (define (get-rule-precedence ruleno)
  900. (cond
  901. ((assq ruleno rule-precedences)
  902. => (lambda (p)
  903. (get-symbol-precedence (cdr p))))
  904. (else
  905. ;; process the rule symbols from left to right
  906. (let loop ((i (vector-ref rrhs ruleno))
  907. (prec 0))
  908. (let ((item (vector-ref ritem i)))
  909. ;; end of rule
  910. (if (< item 0)
  911. prec
  912. (let ((i1 (+ i 1)))
  913. (if (>= item nvars)
  914. ;; it's a terminal symbol
  915. (loop i1 (get-symbol-precedence (- item nvars)))
  916. (loop i1 prec)))))))))
  917. ;; ----------------------------------------------------------------------
  918. ;; Build the various tables
  919. ;; ----------------------------------------------------------------------
  920. (define expected-conflicts 0)
  921. (define (build-tables)
  922. (define (resolve-conflict sym rule)
  923. (let ((sym-prec (get-symbol-precedence sym))
  924. (sym-assoc (get-symbol-assoc sym))
  925. (rule-prec (get-rule-precedence rule)))
  926. (cond
  927. ((> sym-prec rule-prec) 'shift)
  928. ((< sym-prec rule-prec) 'reduce)
  929. ((eq? sym-assoc 'left) 'reduce)
  930. ((eq? sym-assoc 'right) 'shift)
  931. (else 'none))))
  932. (define conflict-messages '())
  933. (define (add-conflict-message . l)
  934. (set! conflict-messages (cons l conflict-messages)))
  935. (define (log-conflicts)
  936. (if (> (length conflict-messages) expected-conflicts)
  937. (for-each
  938. (lambda (message)
  939. (for-each display message)
  940. (newline))
  941. conflict-messages)))
  942. ;; --- Add an action to the action table
  943. (define (add-action state symbol new-action)
  944. (let* ((state-actions (vector-ref action-table state))
  945. (actions (assv symbol state-actions)))
  946. (if (pair? actions)
  947. (let ((current-action (cadr actions)))
  948. (if (not (= new-action current-action))
  949. ;; -- there is a conflict
  950. (begin
  951. (if (and (<= current-action 0) (<= new-action 0))
  952. ;; --- reduce/reduce conflict
  953. (begin
  954. (add-conflict-message
  955. "%% Reduce/Reduce conflict (reduce " (- new-action) ", reduce " (- current-action)
  956. ") on '" (get-symbol (+ symbol nvars)) "' in state " state)
  957. (if (glr-driver?)
  958. (set-cdr! (cdr actions) (cons new-action (cddr actions)))
  959. (set-car! (cdr actions) (max current-action new-action))))
  960. ;; --- shift/reduce conflict
  961. ;; can we resolve the conflict using precedences?
  962. (case (resolve-conflict symbol (- current-action))
  963. ;; -- shift
  964. ((shift) (if (glr-driver?)
  965. (set-cdr! (cdr actions) (cons new-action (cddr actions)))
  966. (set-car! (cdr actions) new-action)))
  967. ;; -- reduce
  968. ((reduce) #f) ; well, nothing to do...
  969. ;; -- signal a conflict!
  970. (else (add-conflict-message
  971. "%% Shift/Reduce conflict (shift " new-action ", reduce " (- current-action)
  972. ") on '" (get-symbol (+ symbol nvars)) "' in state " state)
  973. (if (glr-driver?)
  974. (set-cdr! (cdr actions) (cons new-action (cddr actions)))
  975. (set-car! (cdr actions) new-action))))))))
  976. (vector-set! action-table state (cons (list symbol new-action) state-actions)))
  977. ))
  978. (define (add-action-for-all-terminals state action)
  979. (do ((i 1 (+ i 1)))
  980. ((= i nterms))
  981. (add-action state i action)))
  982. (set! action-table (make-vector nstates '()))
  983. (do ((i 0 (+ i 1))) ; i = state
  984. ((= i nstates))
  985. (let ((red (vector-ref reduction-table i)))
  986. (if (and red (>= (red-nreds red) 1))
  987. (if (and (= (red-nreds red) 1) (vector-ref consistent i))
  988. (if (glr-driver?)
  989. (add-action-for-all-terminals i (- (car (red-rules red))))
  990. (add-action i 'default (- (car (red-rules red)))))
  991. (let ((k (vector-ref lookaheads (+ i 1))))
  992. (let loop ((j (vector-ref lookaheads i)))
  993. (if (< j k)
  994. (let ((rule (- (vector-ref LAruleno j)))
  995. (lav (vector-ref LA j)))
  996. (let loop2 ((token 0) (x (vector-ref lav 0)) (y 1) (z 0))
  997. (if (< token nterms)
  998. (begin
  999. (let ((in-la-set? (modulo x 2)))
  1000. (if (= in-la-set? 1)
  1001. (add-action i token rule)))
  1002. (if (= y (BITS-PER-WORD))
  1003. (loop2 (+ token 1)
  1004. (vector-ref lav (+ z 1))
  1005. 1
  1006. (+ z 1))
  1007. (loop2 (+ token 1) (quotient x 2) (+ y 1) z)))))
  1008. (loop (+ j 1)))))))))
  1009. (let ((shiftp (vector-ref shift-table i)))
  1010. (if shiftp
  1011. (let loop ((k (shift-shifts shiftp)))
  1012. (if (pair? k)
  1013. (let* ((state (car k))
  1014. (symbol (vector-ref acces-symbol state)))
  1015. (if (>= symbol nvars)
  1016. (add-action i (- symbol nvars) state))
  1017. (loop (cdr k))))))))
  1018. (add-action final-state 0 'accept)
  1019. (log-conflicts))
  1020. (define (compact-action-table terms)
  1021. (define (most-common-action acts)
  1022. (let ((accums '()))
  1023. (let loop ((l acts))
  1024. (if (pair? l)
  1025. (let* ((x (cadar l))
  1026. (y (assv x accums)))
  1027. (if (and (number? x) (< x 0))
  1028. (if y
  1029. (set-cdr! y (+ 1 (cdr y)))
  1030. (set! accums (cons `(,x . 1) accums))))
  1031. (loop (cdr l)))))
  1032. (let loop ((l accums) (max 0) (sym #f))
  1033. (if (null? l)
  1034. sym
  1035. (let ((x (car l)))
  1036. (if (> (cdr x) max)
  1037. (loop (cdr l) (cdr x) (car x))
  1038. (loop (cdr l) max sym)))))))
  1039. (define (translate-terms acts)
  1040. (map (lambda (act)
  1041. (cons (list-ref terms (car act))
  1042. (cdr act)))
  1043. acts))
  1044. (do ((i 0 (+ i 1)))
  1045. ((= i nstates))
  1046. (let ((acts (vector-ref action-table i)))
  1047. (if (vector? (vector-ref reduction-table i))
  1048. (let ((act (most-common-action acts)))
  1049. (vector-set! action-table i
  1050. (cons `(*default* ,(if act act '*error*))
  1051. (translate-terms
  1052. (lalr-filter (lambda (x)
  1053. (not (and (= (length x) 2)
  1054. (eq? (cadr x) act))))
  1055. acts)))))
  1056. (vector-set! action-table i
  1057. (cons `(*default* *error*)
  1058. (translate-terms acts)))))))
  1059. ;; --
  1060. (define (rewrite-grammar tokens grammar k)
  1061. (define eoi '*eoi*)
  1062. (define (check-terminal term terms)
  1063. (cond
  1064. ((not (valid-terminal? term))
  1065. (lalr-error "invalid terminal: " term))
  1066. ((member term terms)
  1067. (lalr-error "duplicate definition of terminal: " term))))
  1068. (define (prec->type prec)
  1069. (cdr (assq prec '((left: . left)
  1070. (right: . right)
  1071. (nonassoc: . nonassoc)))))
  1072. (cond
  1073. ;; --- a few error conditions
  1074. ((not (list? tokens))
  1075. (lalr-error "Invalid token list: " tokens))
  1076. ((not (pair? grammar))
  1077. (lalr-error "Grammar definition must have a non-empty list of productions" '()))
  1078. (else
  1079. ;; --- check the terminals
  1080. (let loop1 ((lst tokens)
  1081. (rev-terms '())
  1082. (rev-terms/prec '())
  1083. (prec-level 0))
  1084. (if (pair? lst)
  1085. (let ((term (car lst)))
  1086. (cond
  1087. ((pair? term)
  1088. (if (and (memq (car term) '(left: right: nonassoc:))
  1089. (not (null? (cdr term))))
  1090. (let ((prec (+ prec-level 1))
  1091. (optype (prec->type (car term))))
  1092. (let loop-toks ((l (cdr term))
  1093. (rev-terms rev-terms)
  1094. (rev-terms/prec rev-terms/prec))
  1095. (if (null? l)
  1096. (loop1 (cdr lst) rev-terms rev-terms/prec prec)
  1097. (let ((term (car l)))
  1098. (check-terminal term rev-terms)
  1099. (loop-toks
  1100. (cdr l)
  1101. (cons term rev-terms)
  1102. (cons (list term optype prec) rev-terms/prec))))))
  1103. (lalr-error "invalid operator precedence specification: " term)))
  1104. (else
  1105. (check-terminal term rev-terms)
  1106. (loop1 (cdr lst)
  1107. (cons term rev-terms)
  1108. (cons (list term 'none 0) rev-terms/prec)
  1109. prec-level))))
  1110. ;; --- check the grammar rules
  1111. (let loop2 ((lst grammar) (rev-nonterm-defs '()))
  1112. (if (pair? lst)
  1113. (let ((def (car lst)))
  1114. (if (not (pair? def))
  1115. (lalr-error "Nonterminal definition must be a non-empty list" '())
  1116. (let ((nonterm (car def)))
  1117. (cond ((not (valid-nonterminal? nonterm))
  1118. (lalr-error "Invalid nonterminal:" nonterm))
  1119. ((or (member nonterm rev-terms)
  1120. (assoc nonterm rev-nonterm-defs))
  1121. (lalr-error "Nonterminal previously defined:" nonterm))
  1122. (else
  1123. (loop2 (cdr lst)
  1124. (cons def rev-nonterm-defs)))))))
  1125. (let* ((terms (cons eoi (cons 'error (reverse rev-terms))))
  1126. (terms/prec (cons '(eoi none 0) (cons '(error none 0) (reverse rev-terms/prec))))
  1127. (nonterm-defs (reverse rev-nonterm-defs))
  1128. (nonterms (cons '*start* (map car nonterm-defs))))
  1129. (if (= (length nonterms) 1)
  1130. (lalr-error "Grammar must contain at least one nonterminal" '())
  1131. (let loop-defs ((defs (cons `(*start* (,(cadr nonterms) ,eoi) : $1)
  1132. nonterm-defs))
  1133. (ruleno 0)
  1134. (comp-defs '()))
  1135. (if (pair? defs)
  1136. (let* ((nonterm-def (car defs))
  1137. (compiled-def (rewrite-nonterm-def
  1138. nonterm-def
  1139. ruleno
  1140. terms nonterms)))
  1141. (loop-defs (cdr defs)
  1142. (+ ruleno (length compiled-def))
  1143. (cons compiled-def comp-defs)))
  1144. (let ((compiled-nonterm-defs (reverse comp-defs)))
  1145. (k terms
  1146. terms/prec
  1147. nonterms
  1148. (map (lambda (x) (cons (caaar x) (map cdar x)))
  1149. compiled-nonterm-defs)
  1150. (apply append compiled-nonterm-defs))))))))))))))
  1151. (define (rewrite-nonterm-def nonterm-def ruleno terms nonterms)
  1152. (define No-NT (length nonterms))
  1153. (define (encode x)
  1154. (let ((PosInNT (pos-in-list x nonterms)))
  1155. (if PosInNT
  1156. PosInNT
  1157. (let ((PosInT (pos-in-list x terms)))
  1158. (if PosInT
  1159. (+ No-NT PosInT)
  1160. (lalr-error "undefined symbol : " x))))))
  1161. (define (process-prec-directive rhs ruleno)
  1162. (let loop ((l rhs))
  1163. (if (null? l)
  1164. '()
  1165. (let ((first (car l))
  1166. (rest (cdr l)))
  1167. (cond
  1168. ((or (member first terms) (member first nonterms))
  1169. (cons first (loop rest)))
  1170. ((and (pair? first)
  1171. (eq? (car first) 'prec:))
  1172. (if (and (pair? (cdr first))
  1173. (null? (cddr first))
  1174. (member (cadr first) terms))
  1175. (if (null? rest)
  1176. (begin
  1177. (add-rule-precedence! ruleno (pos-in-list (cadr first) terms))
  1178. (loop rest))
  1179. (lalr-error "prec: directive should be at end of rule: " rhs))
  1180. (lalr-error "Invalid prec: directive: " first)))
  1181. (else
  1182. (lalr-error "Invalid terminal or nonterminal: " first)))))))
  1183. (define (check-error-production rhs)
  1184. (let loop ((rhs rhs))
  1185. (if (pair? rhs)
  1186. (begin
  1187. (if (and (eq? (car rhs) 'error)
  1188. (or (null? (cdr rhs))
  1189. (not (member (cadr rhs) terms))
  1190. (not (null? (cddr rhs)))))
  1191. (lalr-error "Invalid 'error' production. A single terminal symbol must follow the 'error' token.:" rhs))
  1192. (loop (cdr rhs))))))
  1193. (if (not (pair? (cdr nonterm-def)))
  1194. (lalr-error "At least one production needed for nonterminal:" (car nonterm-def))
  1195. (let ((name (symbol->string (car nonterm-def))))
  1196. (let loop1 ((lst (cdr nonterm-def))
  1197. (i 1)
  1198. (rev-productions-and-actions '()))
  1199. (if (not (pair? lst))
  1200. (reverse rev-productions-and-actions)
  1201. (let* ((rhs (process-prec-directive (car lst) (+ ruleno i -1)))
  1202. (rest (cdr lst))
  1203. (prod (map encode (cons (car nonterm-def) rhs))))
  1204. ;; -- check for undefined tokens
  1205. (for-each (lambda (x)
  1206. (if (not (or (member x terms) (member x nonterms)))
  1207. (lalr-error "Invalid terminal or nonterminal:" x)))
  1208. rhs)
  1209. ;; -- check 'error' productions
  1210. (check-error-production rhs)
  1211. (if (and (pair? rest)
  1212. (eq? (car rest) ':)
  1213. (pair? (cdr rest)))
  1214. (loop1 (cddr rest)
  1215. (+ i 1)
  1216. (cons (cons prod (cadr rest))
  1217. rev-productions-and-actions))
  1218. (let* ((rhs-length (length rhs))
  1219. (action
  1220. (cons 'vector
  1221. (cons (list 'quote (string->symbol
  1222. (string-append
  1223. name
  1224. "-"
  1225. (number->string i))))
  1226. (let loop-j ((j 1))
  1227. (if (> j rhs-length)
  1228. '()
  1229. (cons (string->symbol
  1230. (string-append
  1231. "$"
  1232. (number->string j)))
  1233. (loop-j (+ j 1)))))))))
  1234. (loop1 rest
  1235. (+ i 1)
  1236. (cons (cons prod action)
  1237. rev-productions-and-actions))))))))))
  1238. (define (valid-nonterminal? x)
  1239. (symbol? x))
  1240. (define (valid-terminal? x)
  1241. (symbol? x)) ; DB
  1242. ;; ----------------------------------------------------------------------
  1243. ;; Miscellaneous
  1244. ;; ----------------------------------------------------------------------
  1245. (define (pos-in-list x lst)
  1246. (let loop ((lst lst) (i 0))
  1247. (cond ((not (pair? lst)) #f)
  1248. ((equal? (car lst) x) i)
  1249. (else (loop (cdr lst) (+ i 1))))))
  1250. (define (sunion lst1 lst2) ; union of sorted lists
  1251. (let loop ((L1 lst1)
  1252. (L2 lst2))
  1253. (cond ((null? L1) L2)
  1254. ((null? L2) L1)
  1255. (else
  1256. (let ((x (car L1)) (y (car L2)))
  1257. (cond
  1258. ((> x y)
  1259. (cons y (loop L1 (cdr L2))))
  1260. ((< x y)
  1261. (cons x (loop (cdr L1) L2)))
  1262. (else
  1263. (loop (cdr L1) L2))
  1264. ))))))
  1265. (define (sinsert elem lst)
  1266. (let loop ((l1 lst))
  1267. (if (null? l1)
  1268. (cons elem l1)
  1269. (let ((x (car l1)))
  1270. (cond ((< elem x)
  1271. (cons elem l1))
  1272. ((> elem x)
  1273. (cons x (loop (cdr l1))))
  1274. (else
  1275. l1))))))
  1276. (define (lalr-filter p lst)
  1277. (let loop ((l lst))
  1278. (if (null? l)
  1279. '()
  1280. (let ((x (car l)) (y (cdr l)))
  1281. (if (p x)
  1282. (cons x (loop y))
  1283. (loop y))))))
  1284. ;; ----------------------------------------------------------------------
  1285. ;; Debugging tools ...
  1286. ;; ----------------------------------------------------------------------
  1287. (define the-terminals #f) ; names of terminal symbols
  1288. (define the-nonterminals #f) ; non-terminals
  1289. (define (print-item item-no)
  1290. (let loop ((i item-no))
  1291. (let ((v (vector-ref ritem i)))
  1292. (if (>= v 0)
  1293. (loop (+ i 1))
  1294. (let* ((rlno (- v))
  1295. (nt (vector-ref rlhs rlno)))
  1296. (display (vector-ref the-nonterminals nt)) (display " --> ")
  1297. (let loop ((i (vector-ref rrhs rlno)))
  1298. (let ((v (vector-ref ritem i)))
  1299. (if (= i item-no)
  1300. (display ". "))
  1301. (if (>= v 0)
  1302. (begin
  1303. (display (get-symbol v))
  1304. (display " ")
  1305. (loop (+ i 1)))
  1306. (begin
  1307. (display " (rule ")
  1308. (display (- v))
  1309. (display ")")
  1310. (newline))))))))))
  1311. (define (get-symbol n)
  1312. (if (>= n nvars)
  1313. (vector-ref the-terminals (- n nvars))
  1314. (vector-ref the-nonterminals n)))
  1315. (define (print-states)
  1316. (define (print-action act)
  1317. (cond
  1318. ((eq? act '*error*)
  1319. (display " : Error"))
  1320. ((eq? act 'accept)
  1321. (display " : Accept input"))
  1322. ((< act 0)
  1323. (display " : reduce using rule ")
  1324. (display (- act)))
  1325. (else
  1326. (display " : shift and goto state ")
  1327. (display act)))
  1328. (newline)
  1329. #t)
  1330. (define (print-actions acts)
  1331. (let loop ((l acts))
  1332. (if (null? l)
  1333. #t
  1334. (let ((sym (caar l))
  1335. (act (cadar l)))
  1336. (display " ")
  1337. (cond
  1338. ((eq? sym 'default)
  1339. (display "default action"))
  1340. (else
  1341. (if (number? sym)
  1342. (display (get-symbol (+ sym nvars)))
  1343. (display sym))))
  1344. (print-action act)
  1345. (loop (cdr l))))))
  1346. (if (not action-table)
  1347. (begin
  1348. (display "No generated parser available!")
  1349. (newline)
  1350. #f)
  1351. (begin
  1352. (display "State table") (newline)
  1353. (display "-----------") (newline) (newline)
  1354. (let loop ((l first-state))
  1355. (if (null? l)
  1356. #t
  1357. (let* ((core (car l))
  1358. (i (core-number core))
  1359. (items (core-items core))
  1360. (actions (vector-ref action-table i)))
  1361. (display "state ") (display i) (newline)
  1362. (newline)
  1363. (for-each (lambda (x) (display " ") (print-item x))
  1364. items)
  1365. (newline)
  1366. (print-actions actions)
  1367. (newline)
  1368. (loop (cdr l))))))))
  1369. ;; ----------------------------------------------------------------------
  1370. (define build-goto-table
  1371. (lambda ()
  1372. `(vector
  1373. ,@(map
  1374. (lambda (shifts)
  1375. (list 'quote
  1376. (if shifts
  1377. (let loop ((l (shift-shifts shifts)))
  1378. (if (null? l)
  1379. '()
  1380. (let* ((state (car l))
  1381. (symbol (vector-ref acces-symbol state)))
  1382. (if (< symbol nvars)
  1383. (cons `(,symbol . ,state)
  1384. (loop (cdr l)))
  1385. (loop (cdr l))))))
  1386. '())))
  1387. (vector->list shift-table)))))
  1388. (define build-reduction-table
  1389. (lambda (gram/actions)
  1390. `(vector
  1391. '()
  1392. ,@(map
  1393. (lambda (p)
  1394. (let ((act (cdr p)))
  1395. `(lambda ,(if (eq? driver-name 'lr-driver)
  1396. '(___stack ___sp ___goto-table ___push yypushback)
  1397. '(___sp ___goto-table ___push))
  1398. ,(let* ((nt (caar p)) (rhs (cdar p)) (n (length rhs)))
  1399. `(let* (,@(if act
  1400. (let loop ((i 1) (l rhs))
  1401. (if (pair? l)
  1402. (let ((rest (cdr l))
  1403. (ns (number->string (+ (- n i) 1))))
  1404. (cons
  1405. `(tok ,(if (eq? driver-name 'lr-driver)
  1406. `(vector-ref ___stack (- ___sp ,(- (* i 2) 1)))
  1407. `(list-ref ___sp ,(+ (* (- i 1) 2) 1))))
  1408. (cons
  1409. `(,(string->symbol (string-append "$" ns))
  1410. (if (lexical-token? tok) (lexical-token-value tok) tok))
  1411. (cons
  1412. `(,(string->symbol (string-append "@" ns))
  1413. (if (lexical-token? tok) (lexical-token-source tok) tok))
  1414. (loop (+ i 1) rest)))))
  1415. '()))
  1416. '()))
  1417. ,(if (= nt 0)
  1418. '$1
  1419. `(___push ,n ,nt ,(cdr p) ,@(if (eq? driver-name 'lr-driver) '() '(___sp))
  1420. ,(if (eq? driver-name 'lr-driver)
  1421. `(vector-ref ___stack (- ___sp ,(length rhs)))
  1422. `(list-ref ___sp ,(length rhs))))))))))
  1423. gram/actions))))
  1424. ;; Options
  1425. (define *valid-options*
  1426. (list
  1427. (cons 'out-table:
  1428. (lambda (option)
  1429. (and (list? option)
  1430. (= (length option) 2)
  1431. (string? (cadr option)))))
  1432. (cons 'output:
  1433. (lambda (option)
  1434. (and (list? option)
  1435. (= (length option) 3)
  1436. (symbol? (cadr option))
  1437. (string? (caddr option)))))
  1438. (cons 'expect:
  1439. (lambda (option)
  1440. (and (list? option)
  1441. (= (length option) 2)
  1442. (integer? (cadr option))
  1443. (>= (cadr option) 0))))
  1444. (cons 'driver:
  1445. (lambda (option)
  1446. (and (list? option)
  1447. (= (length option) 2)
  1448. (symbol? (cadr option))
  1449. (memq (cadr option) '(lr glr)))))))
  1450. (define (validate-options options)
  1451. (for-each
  1452. (lambda (option)
  1453. (let ((p (assoc (car option) *valid-options*)))
  1454. (if (or (not p)
  1455. (not ((cdr p) option)))
  1456. (lalr-error "Invalid option:" option))))
  1457. options))
  1458. (define (output-parser! options code)
  1459. (let ((option (assq 'output: options)))
  1460. (if option
  1461. (let ((parser-name (cadr option))
  1462. (file-name (caddr option)))
  1463. (with-output-to-file file-name
  1464. (lambda ()
  1465. (pprint `(define ,parser-name ,code))
  1466. (newline)))))))
  1467. (define (output-table! options)
  1468. (let ((option (assq 'out-table: options)))
  1469. (if option
  1470. (let ((file-name (cadr option)))
  1471. (with-output-to-file file-name print-states)))))
  1472. (define (set-expected-conflicts! options)
  1473. (let ((option (assq 'expect: options)))
  1474. (set! expected-conflicts (if option (cadr option) 0))))
  1475. (define (set-driver-name! options)
  1476. (let ((option (assq 'driver: options)))
  1477. (if option
  1478. (let ((driver-type (cadr option)))
  1479. (set! driver-name (if (eq? driver-type 'glr) 'glr-driver 'lr-driver))))))
  1480. ;; -- arguments
  1481. (define (extract-arguments lst proc)
  1482. (let loop ((options '())
  1483. (tokens '())
  1484. (rules '())
  1485. (lst lst))
  1486. (if (pair? lst)
  1487. (let ((p (car lst)))
  1488. (cond
  1489. ((and (pair? p)
  1490. (lalr-keyword? (car p))
  1491. (assq (car p) *valid-options*))
  1492. (loop (cons p options) tokens rules (cdr lst)))
  1493. (else
  1494. (proc options p (cdr lst)))))
  1495. (lalr-error "Malformed lalr-parser form" lst))))
  1496. (define (build-driver options tokens rules)
  1497. (validate-options options)
  1498. (set-expected-conflicts! options)
  1499. (set-driver-name! options)
  1500. (let* ((gram/actions (gen-tables! tokens rules))
  1501. (code `(,driver-name ',action-table ,(build-goto-table) ,(build-reduction-table gram/actions))))
  1502. (output-table! options)
  1503. (output-parser! options code)
  1504. code))
  1505. (extract-arguments arguments build-driver))
  1506. ;;;
  1507. ;;;; --
  1508. ;;;; Implementation of the lr-driver
  1509. ;;;
  1510. (cond-expand
  1511. (gambit
  1512. (declare
  1513. (standard-bindings)
  1514. (fixnum)
  1515. (block)
  1516. (not safe)))
  1517. (chicken
  1518. (declare
  1519. (uses extras)
  1520. (usual-integrations)
  1521. (fixnum)
  1522. (not safe)))
  1523. (else))
  1524. ;;;
  1525. ;;;; Source location utilities
  1526. ;;;
  1527. ;; This function assumes that src-location-1 and src-location-2 are source-locations
  1528. ;; Returns #f if they are not locations for the same input
  1529. (define (combine-locations src-location-1 src-location-2)
  1530. (let ((offset-1 (source-location-offset src-location-1))
  1531. (offset-2 (source-location-offset src-location-2))
  1532. (length-1 (source-location-length src-location-1))
  1533. (length-2 (source-location-length src-location-2)))
  1534. (cond ((not (equal? (source-location-input src-location-1)
  1535. (source-location-input src-location-2)))
  1536. #f)
  1537. ((or (not (number? offset-1)) (not (number? offset-2))
  1538. (not (number? length-1)) (not (number? length-2))
  1539. (< offset-1 0) (< offset-2 0)
  1540. (< length-1 0) (< length-2 0))
  1541. (make-source-location (source-location-input src-location-1)
  1542. (source-location-line src-location-1)
  1543. (source-location-column src-location-1)
  1544. -1 -1))
  1545. ((<= offset-1 offset-2)
  1546. (make-source-location (source-location-input src-location-1)
  1547. (source-location-line src-location-1)
  1548. (source-location-column src-location-1)
  1549. offset-1
  1550. (- (+ offset-2 length-2) offset-1)))
  1551. (else
  1552. (make-source-location (source-location-input src-location-1)
  1553. (source-location-line src-location-1)
  1554. (source-location-column src-location-1)
  1555. offset-2
  1556. (- (+ offset-1 length-1) offset-2))))))
  1557. ;;;
  1558. ;;;; LR-driver
  1559. ;;;
  1560. (define *max-stack-size* 500)
  1561. (define (lr-driver action-table goto-table reduction-table)
  1562. (define ___atable action-table)
  1563. (define ___gtable goto-table)
  1564. (define ___rtable reduction-table)
  1565. (define ___lexerp #f)
  1566. (define ___errorp #f)
  1567. (define ___stack #f)
  1568. (define ___sp 0)
  1569. (define ___curr-input #f)
  1570. (define ___reuse-input #f)
  1571. (define ___input #f)
  1572. (define (___consume)
  1573. (set! ___input (if ___reuse-input ___curr-input (___lexerp)))
  1574. (set! ___reuse-input #f)
  1575. (set! ___curr-input ___input))
  1576. (define (___pushback)
  1577. (set! ___reuse-input #t))
  1578. (define (___initstack)
  1579. (set! ___stack (make-vector *max-stack-size* 0))
  1580. (set! ___sp 0))
  1581. (define (___growstack)
  1582. (let ((new-stack (make-vector (* 2 (vector-length ___stack)) 0)))
  1583. (let loop ((i (- (vector-length ___stack) 1)))
  1584. (if (>= i 0)
  1585. (begin
  1586. (vector-set! new-stack i (vector-ref ___stack i))
  1587. (loop (- i 1)))))
  1588. (set! ___stack new-stack)))
  1589. (define (___checkstack)
  1590. (if (>= ___sp (vector-length ___stack))
  1591. (___growstack)))
  1592. (define (___push delta new-category lvalue tok)
  1593. (set! ___sp (- ___sp (* delta 2)))
  1594. (let* ((state (vector-ref ___stack ___sp))
  1595. (new-state (cdr (assoc new-category (vector-ref ___gtable state)))))
  1596. (set! ___sp (+ ___sp 2))
  1597. (___checkstack)
  1598. (vector-set! ___stack ___sp new-state)
  1599. (vector-set! ___stack (- ___sp 1) (note-source-location lvalue tok))))
  1600. (define (___reduce st)
  1601. ((vector-ref ___rtable st) ___stack ___sp ___gtable ___push ___pushback))
  1602. (define (___shift token attribute)
  1603. (set! ___sp (+ ___sp 2))
  1604. (___checkstack)
  1605. (vector-set! ___stack (- ___sp 1) attribute)
  1606. (vector-set! ___stack ___sp token))
  1607. (define (___action x l)
  1608. (let ((y (assoc x l)))
  1609. (if y (cadr y) (cadar l))))
  1610. (define (___recover tok)
  1611. (let find-state ((sp ___sp))
  1612. (if (< sp 0)
  1613. (set! ___sp sp)
  1614. (let* ((state (vector-ref ___stack sp))
  1615. (act (assoc 'error (vector-ref ___atable state))))
  1616. (if act
  1617. (begin
  1618. (set! ___sp sp)
  1619. (___sync (cadr act) tok))
  1620. (find-state (- sp 2)))))))
  1621. (define (___sync state tok)
  1622. (let ((sync-set (map car (cdr (vector-ref ___atable state)))))
  1623. (set! ___sp (+ ___sp 4))
  1624. (___checkstack)
  1625. (vector-set! ___stack (- ___sp 3) #f)
  1626. (vector-set! ___stack (- ___sp 2) state)
  1627. (let skip ()
  1628. (let ((i (___category ___input)))
  1629. (if (eq? i '*eoi*)
  1630. (set! ___sp -1)
  1631. (if (memq i sync-set)
  1632. (let ((act (assoc i (vector-ref ___atable state))))
  1633. (vector-set! ___stack (- ___sp 1) #f)
  1634. (vector-set! ___stack ___sp (cadr act)))
  1635. (begin
  1636. (___consume)
  1637. (skip))))))))
  1638. (define (___category tok)
  1639. (if (lexical-token? tok)
  1640. (lexical-token-category tok)
  1641. tok))
  1642. (define (___run)
  1643. (let loop ()
  1644. (if ___input
  1645. (let* ((state (vector-ref ___stack ___sp))
  1646. (i (___category ___input))
  1647. (act (___action i (vector-ref ___atable state))))
  1648. (cond ((not (symbol? i))
  1649. (___errorp "Syntax error: invalid token: " ___input)
  1650. #f)
  1651. ;; Input succesfully parsed
  1652. ((eq? act 'accept)
  1653. (vector-ref ___stack 1))
  1654. ;; Syntax error in input
  1655. ((eq? act '*error*)
  1656. (if (eq? i '*eoi*)
  1657. (begin
  1658. (___errorp "Syntax error: unexpected end of input")
  1659. #f)
  1660. (begin
  1661. (___errorp "Syntax error: unexpected token : " ___input)
  1662. (___recover i)
  1663. (if (>= ___sp 0)
  1664. (set! ___input #f)
  1665. (begin
  1666. (set! ___sp 0)
  1667. (set! ___input '*eoi*)))
  1668. (loop))))
  1669. ;; Shift current token on top of the stack
  1670. ((>= act 0)
  1671. (___shift act ___input)
  1672. (set! ___input (if (eq? i '*eoi*) '*eoi* #f))
  1673. (loop))
  1674. ;; Reduce by rule (- act)
  1675. (else
  1676. (___reduce (- act))
  1677. (loop))))
  1678. ;; no lookahead, so check if there is a default action
  1679. ;; that does not require the lookahead
  1680. (let* ((state (vector-ref ___stack ___sp))
  1681. (acts (vector-ref ___atable state))
  1682. (defact (if (pair? acts) (cadar acts) #f)))
  1683. (if (and (= 1 (length acts)) (< defact 0))
  1684. (___reduce (- defact))
  1685. (___consume))
  1686. (loop)))))
  1687. (lambda (lexerp errorp)
  1688. (set! ___errorp errorp)
  1689. (set! ___lexerp lexerp)
  1690. (___initstack)
  1691. (___run)))
  1692. ;;;
  1693. ;;;; Simple-minded GLR-driver
  1694. ;;;
  1695. (define (glr-driver action-table goto-table reduction-table)
  1696. (define ___atable action-table)
  1697. (define ___gtable goto-table)
  1698. (define ___rtable reduction-table)
  1699. (define ___lexerp #f)
  1700. (define ___errorp #f)
  1701. ;; -- Input handling
  1702. (define *input* #f)
  1703. (define (initialize-lexer lexer)
  1704. (set! ___lexerp lexer)
  1705. (set! *input* #f))
  1706. (define (consume)
  1707. (set! *input* (___lexerp)))
  1708. (define (token-category tok)
  1709. (if (lexical-token? tok)
  1710. (lexical-token-category tok)
  1711. tok))
  1712. (define (token-attribute tok)
  1713. (if (lexical-token? tok)
  1714. (lexical-token-value tok)
  1715. tok))
  1716. ;; -- Processes (stacks) handling
  1717. (define *processes* '())
  1718. (define (initialize-processes)
  1719. (set! *processes* '()))
  1720. (define (add-process process)
  1721. (set! *processes* (cons process *processes*)))
  1722. (define (get-processes)
  1723. (reverse *processes*))
  1724. (define (for-all-processes proc)
  1725. (let ((processes (get-processes)))
  1726. (initialize-processes)
  1727. (for-each proc processes)))
  1728. ;; -- parses
  1729. (define *parses* '())
  1730. (define (get-parses)
  1731. *parses*)
  1732. (define (initialize-parses)
  1733. (set! *parses* '()))
  1734. (define (add-parse parse)
  1735. (set! *parses* (cons parse *parses*)))
  1736. (define (push delta new-category lvalue stack tok)
  1737. (let* ((stack (drop stack (* delta 2)))
  1738. (state (car stack))
  1739. (new-state (cdr (assv new-category (vector-ref ___gtable state)))))
  1740. (cons new-state (cons (note-source-location lvalue tok) stack))))
  1741. (define (reduce state stack)
  1742. ((vector-ref ___rtable state) stack ___gtable push))
  1743. (define (shift state symbol stack)
  1744. (cons state (cons symbol stack)))
  1745. (define (get-actions token action-list)
  1746. (let ((pair (assoc token action-list)))
  1747. (if pair
  1748. (cdr pair)
  1749. (cdar action-list)))) ;; get the default action
  1750. (define (run)
  1751. (let loop-tokens ()
  1752. (consume)
  1753. (let ((symbol (token-category *input*)))
  1754. (for-all-processes
  1755. (lambda (process)
  1756. (let loop ((stacks (list process)) (active-stacks '()))
  1757. (cond ((pair? stacks)
  1758. (let* ((stack (car stacks))
  1759. (state (car stack)))
  1760. (let actions-loop ((actions (get-actions symbol (vector-ref ___atable state)))
  1761. (active-stacks active-stacks))
  1762. (if (pair? actions)
  1763. (let ((action (car actions))
  1764. (other-actions (cdr actions)))
  1765. (cond ((eq? action '*error*)
  1766. (actions-loop other-actions active-stacks))
  1767. ((eq? action 'accept)
  1768. (add-parse (car (take-right stack 2)))
  1769. (actions-loop other-actions active-stacks))
  1770. ((>= action 0)
  1771. (let ((new-stack (shift action *input* stack)))
  1772. (add-process new-stack))
  1773. (actions-loop other-actions active-stacks))
  1774. (else
  1775. (let ((new-stack (reduce (- action) stack)))
  1776. (actions-loop other-actions (cons new-stack active-stacks))))))
  1777. (loop (cdr stacks) active-stacks)))))
  1778. ((pair? active-stacks)
  1779. (loop (reverse active-stacks) '())))))))
  1780. (if (pair? (get-processes))
  1781. (loop-tokens))))
  1782. (lambda (lexerp errorp)
  1783. (set! ___errorp errorp)
  1784. (initialize-lexer lexerp)
  1785. (initialize-processes)
  1786. (initialize-parses)
  1787. (add-process '(0))
  1788. (run)
  1789. (get-parses)))
  1790. (define (drop l n)
  1791. (cond ((and (> n 0) (pair? l))
  1792. (drop (cdr l) (- n 1)))
  1793. (else
  1794. l)))
  1795. (define (take-right l n)
  1796. (drop l (- (length l) n)))