123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- *DECK ZBESY
- SUBROUTINE ZBESY (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR,
- + CWRKI, IERR)
- C***BEGIN PROLOGUE ZBESY
- C***PURPOSE Compute a sequence of the Bessel functions Y(a,z) for
- C complex argument z and real nonnegative orders a=b,b+1,
- C b+2,... where b>0. A scaling option is available to
- C help avoid overflow.
- C***LIBRARY SLATEC
- C***CATEGORY C10A4
- C***TYPE COMPLEX (CBESY-C, ZBESY-C)
- C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
- C BESSEL FUNCTIONS OF SECOND KIND, WEBER'S FUNCTION,
- C Y BESSEL FUNCTIONS
- C***AUTHOR Amos, D. E., (SNL)
- C***DESCRIPTION
- C
- C ***A DOUBLE PRECISION ROUTINE***
- C On KODE=1, ZBESY computes an N member sequence of complex
- C Bessel functions CY(L)=Y(FNU+L-1,Z) for real nonnegative
- C orders FNU+L-1, L=1,...,N and complex Z in the cut plane
- C -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESY returns
- C the scaled functions
- C
- C CY(L) = exp(-abs(Y))*Y(FNU+L-1,Z), L=1,...,N, Y=Im(Z)
- C
- C which remove the exponential growth in both the upper and
- C lower half planes as Z goes to infinity. Definitions and
- C notation are found in the NBS Handbook of Mathematical
- C Functions (Ref. 1).
- C
- C Input
- C ZR - DOUBLE PRECISION real part of nonzero argument Z
- C ZI - DOUBLE PRECISION imag part of nonzero argument Z
- C FNU - DOUBLE PRECISION initial order, FNU>=0
- C KODE - A parameter to indicate the scaling option
- C KODE=1 returns
- C CY(L)=Y(FNU+L-1,Z), L=1,...,N
- C =2 returns
- C CY(L)=Y(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
- C where Y=Im(Z)
- C N - Number of terms in the sequence, N>=1
- C CWRKR - DOUBLE PRECISION work vector of dimension N
- C CWRKI - DOUBLE PRECISION work vector of dimension N
- C
- C Output
- C CYR - DOUBLE PRECISION real part of result vector
- C CYI - DOUBLE PRECISION imag part of result vector
- C NZ - Number of underflows set to zero
- C NZ=0 Normal return
- C NZ>0 CY(L)=0 for NZ values of L, usually on
- C KODE=2 (the underflows may not be in an
- C uninterrupted sequence)
- C IERR - Error flag
- C IERR=0 Normal return - COMPUTATION COMPLETED
- C IERR=1 Input error - NO COMPUTATION
- C IERR=2 Overflow - NO COMPUTATION
- C (abs(Z) too small and/or FNU+N-1
- C too large)
- C IERR=3 Precision warning - COMPUTATION COMPLETED
- C (Result has half precision or less
- C because abs(Z) or FNU+N-1 is large)
- C IERR=4 Precision error - NO COMPUTATION
- C (Result has no precision because
- C abs(Z) or FNU+N-1 is too large)
- C IERR=5 Algorithmic error - NO COMPUTATION
- C (Termination condition not met)
- C
- C *Long Description:
- C
- C The computation is carried out by the formula
- C
- C Y(a,z) = (H(1,a,z) - H(2,a,z))/(2*i)
- C
- C where the Hankel functions are computed as described in CBESH.
- C
- C For negative orders, the formula
- C
- C Y(-a,z) = Y(a,z)*cos(a*pi) + J(a,z)*sin(a*pi)
- C
- C can be used. However, for large orders close to half odd
- C integers the function changes radically. When a is a large
- C positive half odd integer, the magnitude of Y(-a,z)=J(a,z)*
- C sin(a*pi) is a large negative power of ten. But when a is
- C not a half odd integer, Y(a,z) dominates in magnitude with a
- C large positive power of ten and the most that the second term
- C can be reduced is by unit roundoff from the coefficient.
- C Thus, wide changes can occur within unit roundoff of a large
- C half odd integer. Here, large means a>abs(z).
- C
- C In most complex variable computation, one must evaluate ele-
- C mentary functions. When the magnitude of Z or FNU+N-1 is
- C large, losses of significance by argument reduction occur.
- C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
- C losses exceeding half precision are likely and an error flag
- C IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
- C precision unit roundoff limited to 18 digits precision. Also,
- C if either is larger than U2=0.5/UR, then all significance is
- C lost and IERR=4. In order to use the INT function, arguments
- C must be further restricted not to exceed the largest machine
- C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
- C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
- C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
- C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
- C makes U2 limiting in single precision and U3 limiting in
- C double precision. This means that one can expect to retain,
- C in the worst cases on IEEE machines, no digits in single pre-
- C cision and only 6 digits in double precision. Similar con-
- C siderations hold for other machines.
- C
- C The approximate relative error in the magnitude of a complex
- C Bessel function can be expressed as P*10**S where P=MAX(UNIT
- C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
- C sents the increase in error due to argument reduction in the
- C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
- C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
- C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
- C have only absolute accuracy. This is most likely to occur
- C when one component (in magnitude) is larger than the other by
- C several orders of magnitude. If one component is 10**K larger
- C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
- C 0) significant digits; or, stated another way, when K exceeds
- C the exponent of P, no significant digits remain in the smaller
- C component. However, the phase angle retains absolute accuracy
- C because, in complex arithmetic with precision P, the smaller
- C component will not (as a rule) decrease below P times the
- C magnitude of the larger component. In these extreme cases,
- C the principal phase angle is on the order of +P, -P, PI/2-P,
- C or -PI/2+P.
- C
- C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
- C matical Functions, National Bureau of Standards
- C Applied Mathematics Series 55, U. S. Department
- C of Commerce, Tenth Printing (1972) or later.
- C 2. D. E. Amos, Computation of Bessel Functions of
- C Complex Argument, Report SAND83-0086, Sandia National
- C Laboratories, Albuquerque, NM, May 1983.
- C 3. D. E. Amos, Computation of Bessel Functions of
- C Complex Argument and Large Order, Report SAND83-0643,
- C Sandia National Laboratories, Albuquerque, NM, May
- C 1983.
- C 4. D. E. Amos, A Subroutine Package for Bessel Functions
- C of a Complex Argument and Nonnegative Order, Report
- C SAND85-1018, Sandia National Laboratory, Albuquerque,
- C NM, May 1985.
- C 5. D. E. Amos, A portable package for Bessel functions
- C of a complex argument and nonnegative order, ACM
- C Transactions on Mathematical Software, 12 (September
- C 1986), pp. 265-273.
- C
- C***ROUTINES CALLED D1MACH, I1MACH, ZBESH
- C***REVISION HISTORY (YYMMDD)
- C 830501 DATE WRITTEN
- C 890801 REVISION DATE from Version 3.2
- C 910415 Prologue converted to Version 4.0 format. (BAB)
- C 920128 Category corrected. (WRB)
- C 920811 Prologue revised. (DWL)
- C***END PROLOGUE ZBESY
- C
- C COMPLEX CWRK,CY,C1,C2,EX,HCI,Z,ZU,ZV
- DOUBLE PRECISION CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2R,
- * ELIM, EXI, EXR, EY, FNU, HCII, STI, STR, TAY, ZI, ZR,
- * D1MACH, ASCLE, RTOL, ATOL, AA, BB, TOL, R1M5
- INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2, I1MACH
- DIMENSION CYR(N), CYI(N), CWRKR(N), CWRKI(N)
- C***FIRST EXECUTABLE STATEMENT ZBESY
- IERR = 0
- NZ=0
- IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
- IF (FNU.LT.0.0D0) IERR=1
- IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
- IF (N.LT.1) IERR=1
- IF (IERR.NE.0) RETURN
- HCII = 0.5D0
- CALL ZBESH(ZR, ZI, FNU, KODE, 1, N, CYR, CYI, NZ1, IERR)
- IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
- CALL ZBESH(ZR, ZI, FNU, KODE, 2, N, CWRKR, CWRKI, NZ2, IERR)
- IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
- NZ = MIN(NZ1,NZ2)
- IF (KODE.EQ.2) GO TO 60
- DO 50 I=1,N
- STR = CWRKR(I) - CYR(I)
- STI = CWRKI(I) - CYI(I)
- CYR(I) = -STI*HCII
- CYI(I) = STR*HCII
- 50 CONTINUE
- RETURN
- 60 CONTINUE
- TOL = MAX(D1MACH(4),1.0D-18)
- K1 = I1MACH(15)
- K2 = I1MACH(16)
- K = MIN(ABS(K1),ABS(K2))
- R1M5 = D1MACH(5)
- C-----------------------------------------------------------------------
- C ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT
- C-----------------------------------------------------------------------
- ELIM = 2.303D0*(K*R1M5-3.0D0)
- EXR = COS(ZR)
- EXI = SIN(ZR)
- EY = 0.0D0
- TAY = ABS(ZI+ZI)
- IF (TAY.LT.ELIM) EY = EXP(-TAY)
- IF (ZI.LT.0.0D0) GO TO 90
- C1R = EXR*EY
- C1I = EXI*EY
- C2R = EXR
- C2I = -EXI
- 70 CONTINUE
- NZ = 0
- RTOL = 1.0D0/TOL
- ASCLE = D1MACH(1)*RTOL*1.0D+3
- DO 80 I=1,N
- C STR = C1R*CYR(I) - C1I*CYI(I)
- C STI = C1R*CYI(I) + C1I*CYR(I)
- C STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I)
- C STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I)
- C CYR(I) = -STI*HCII
- C CYI(I) = STR*HCII
- AA = CWRKR(I)
- BB = CWRKI(I)
- ATOL = 1.0D0
- IF (MAX(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 75
- AA = AA*RTOL
- BB = BB*RTOL
- ATOL = TOL
- 75 CONTINUE
- STR = (AA*C2R - BB*C2I)*ATOL
- STI = (AA*C2I + BB*C2R)*ATOL
- AA = CYR(I)
- BB = CYI(I)
- ATOL = 1.0D0
- IF (MAX(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 85
- AA = AA*RTOL
- BB = BB*RTOL
- ATOL = TOL
- 85 CONTINUE
- STR = STR - (AA*C1R - BB*C1I)*ATOL
- STI = STI - (AA*C1I + BB*C1R)*ATOL
- CYR(I) = -STI*HCII
- CYI(I) = STR*HCII
- IF (STR.EQ.0.0D0 .AND. STI.EQ.0.0D0 .AND. EY.EQ.0.0D0) NZ = NZ
- * + 1
- 80 CONTINUE
- RETURN
- 90 CONTINUE
- C1R = EXR
- C1I = EXI
- C2R = EXR*EY
- C2I = -EXI*EY
- GO TO 70
- 170 CONTINUE
- NZ = 0
- RETURN
- END
|