123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- *DECK DBESY
- SUBROUTINE DBESY (X, FNU, N, Y)
- C***BEGIN PROLOGUE DBESY
- C***PURPOSE Implement forward recursion on the three term recursion
- C relation for a sequence of non-negative order Bessel
- C functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
- C X and non-negative orders FNU.
- C***LIBRARY SLATEC
- C***CATEGORY C10A3
- C***TYPE DOUBLE PRECISION (BESY-S, DBESY-D)
- C***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION
- C***AUTHOR Amos, D. E., (SNLA)
- C***DESCRIPTION
- C
- C Abstract **** a double precision routine ****
- C DBESY implements forward recursion on the three term
- C recursion relation for a sequence of non-negative order Bessel
- C functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
- C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
- C FNU+1 are obtained from DBSYNU which computes by a power
- C series for X .LE. 2, the K Bessel function of an imaginary
- C argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
- C X .GT. 20.
- C
- C If FNU .GE. NULIM, the uniform asymptotic expansion is coded
- C in DASYJY for orders FNU and FNU+1 to start the recursion.
- C NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An
- C overflow test is made on the leading term of the asymptotic
- C expansion before any extensive computation is done.
- C
- C The maximum number of significant digits obtainable
- C is the smaller of 14 and the number of digits carried in
- C double precision arithmetic.
- C
- C Description of Arguments
- C
- C Input
- C X - X .GT. 0.0D0
- C FNU - order of the initial Y function, FNU .GE. 0.0D0
- C N - number of members in the sequence, N .GE. 1
- C
- C Output
- C Y - a vector whose first N components contain values
- C for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.
- C
- C Error Conditions
- C Improper input arguments - a fatal error
- C Overflow - a fatal error
- C
- C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
- C or Large Orders, NPL Mathematical Tables 6, Her
- C Majesty's Stationery Office, London, 1962.
- C N. M. Temme, On the numerical evaluation of the modified
- C Bessel function of the third kind, Journal of
- C Computational Physics 19, (1975), pp. 324-337.
- C N. M. Temme, On the numerical evaluation of the ordinary
- C Bessel function of the second kind, Journal of
- C Computational Physics 21, (1976), pp. 343-350.
- C***ROUTINES CALLED D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
- C I1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800501 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890911 Removed unnecessary intrinsics. (WRB)
- C 890911 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DBESY
- C
- EXTERNAL DYAIRY
- INTEGER I, IFLW, J, N, NB, ND, NN, NUD, NULIM
- INTEGER I1MACH
- DOUBLE PRECISION AZN,CN,DNU,ELIM,FLGJY,FN,FNU,RAN,S,S1,S2,TM,TRX,
- 1 W,WK,W2N,X,XLIM,XXN,Y
- DOUBLE PRECISION DBESY0, DBESY1, D1MACH
- DIMENSION W(2), NULIM(2), Y(*), WK(7)
- SAVE NULIM
- DATA NULIM(1),NULIM(2) / 70 , 100 /
- C***FIRST EXECUTABLE STATEMENT DBESY
- NN = -I1MACH(15)
- ELIM = 2.303D0*(NN*D1MACH(5)-3.0D0)
- XLIM = D1MACH(1)*1.0D+3
- IF (FNU.LT.0.0D0) GO TO 140
- IF (X.LE.0.0D0) GO TO 150
- IF (X.LT.XLIM) GO TO 170
- IF (N.LT.1) GO TO 160
- C
- C ND IS A DUMMY VARIABLE FOR N
- C
- ND = N
- NUD = INT(FNU)
- DNU = FNU - NUD
- NN = MIN(2,ND)
- FN = FNU + N - 1
- IF (FN.LT.2.0D0) GO TO 100
- C
- C OVERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
- C FOR THE LAST ORDER, FNU+N-1.GE.NULIM
- C
- XXN = X/FN
- W2N = 1.0D0-XXN*XXN
- IF(W2N.LE.0.0D0) GO TO 10
- RAN = SQRT(W2N)
- AZN = LOG((1.0D0+RAN)/XXN) - RAN
- CN = FN*AZN
- IF(CN.GT.ELIM) GO TO 170
- 10 CONTINUE
- IF (NUD.LT.NULIM(NN)) GO TO 20
- C
- C ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM
- C
- FLGJY = -1.0D0
- CALL DASYJY(DYAIRY,X,FNU,FLGJY,NN,Y,WK,IFLW)
- IF(IFLW.NE.0) GO TO 170
- IF (NN.EQ.1) RETURN
- TRX = 2.0D0/X
- TM = (FNU+FNU+2.0D0)/X
- GO TO 80
- C
- 20 CONTINUE
- IF (DNU.NE.0.0D0) GO TO 30
- S1 = DBESY0(X)
- IF (NUD.EQ.0 .AND. ND.EQ.1) GO TO 70
- S2 = DBESY1(X)
- GO TO 40
- 30 CONTINUE
- NB = 2
- IF (NUD.EQ.0 .AND. ND.EQ.1) NB = 1
- CALL DBSYNU(X, DNU, NB, W)
- S1 = W(1)
- IF (NB.EQ.1) GO TO 70
- S2 = W(2)
- 40 CONTINUE
- TRX = 2.0D0/X
- TM = (DNU+DNU+2.0D0)/X
- C FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
- IF (ND.EQ.1) NUD = NUD - 1
- IF (NUD.GT.0) GO TO 50
- IF (ND.GT.1) GO TO 70
- S1 = S2
- GO TO 70
- 50 CONTINUE
- DO 60 I=1,NUD
- S = S2
- S2 = TM*S2 - S1
- S1 = S
- TM = TM + TRX
- 60 CONTINUE
- IF (ND.EQ.1) S1 = S2
- 70 CONTINUE
- Y(1) = S1
- IF (ND.EQ.1) RETURN
- Y(2) = S2
- 80 CONTINUE
- IF (ND.EQ.2) RETURN
- C FORWARD RECUR FROM FNU+2 TO FNU+N-1
- DO 90 I=3,ND
- Y(I) = TM*Y(I-1) - Y(I-2)
- TM = TM + TRX
- 90 CONTINUE
- RETURN
- C
- 100 CONTINUE
- C OVERFLOW TEST
- IF (FN.LE.1.0D0) GO TO 110
- IF (-FN*(LOG(X)-0.693D0).GT.ELIM) GO TO 170
- 110 CONTINUE
- IF (DNU.EQ.0.0D0) GO TO 120
- CALL DBSYNU(X, FNU, ND, Y)
- RETURN
- 120 CONTINUE
- J = NUD
- IF (J.EQ.1) GO TO 130
- J = J + 1
- Y(J) = DBESY0(X)
- IF (ND.EQ.1) RETURN
- J = J + 1
- 130 CONTINUE
- Y(J) = DBESY1(X)
- IF (ND.EQ.1) RETURN
- TRX = 2.0D0/X
- TM = TRX
- GO TO 80
- C
- C
- C
- 140 CONTINUE
- CALL XERMSG ('SLATEC', 'DBESY', 'ORDER, FNU, LESS THAN ZERO', 2,
- + 1)
- RETURN
- 150 CONTINUE
- CALL XERMSG ('SLATEC', 'DBESY', 'X LESS THAN OR EQUAL TO ZERO',
- + 2, 1)
- RETURN
- 160 CONTINUE
- CALL XERMSG ('SLATEC', 'DBESY', 'N LESS THAN ONE', 2, 1)
- RETURN
- 170 CONTINUE
- CALL XERMSG ('SLATEC', 'DBESY',
- + 'OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL', 6, 1)
- RETURN
- END
|