123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /* zbesy.f -- translated by f2c (version 20100827).
- This file no longer depends on f2c.
- */
- #include "slatec-internal.hpp"
- /* Table of constant values */
- static integer const c__1 = 1;
- static integer const c__2 = 2;
- static integer const c__4 = 4;
- static integer const c__15 = 15;
- static integer const c__16 = 16;
- static integer const c__5 = 5;
- int zbesy_(double *zr, double *zi, double const *fnu,
- integer const *kode, integer const *n, double *cyr, double *cyi, integer *
- nz, double *cwrkr, double *cwrki, integer *ierr)
- {
- /* System generated locals */
- integer i__1, i__2;
- double d__1, d__2;
- /* Local variables */
- integer i__, k, k1, k2;
- double aa, bb, ey, c1i, c2i, c1r, c2r;
- integer nz1, nz2;
- double exi, r1m5, exr, sti, tay, tol, str, hcii, elim, atol, rtol, ascle;
- /* ***BEGIN PROLOGUE ZBESY */
- /* ***PURPOSE Compute a sequence of the Bessel functions Y(a,z) for */
- /* complex argument z and real nonnegative orders a=b,b+1, */
- /* b+2,... where b>0. A scaling option is available to */
- /* help avoid overflow. */
- /* ***LIBRARY SLATEC */
- /* ***CATEGORY C10A4 */
- /* ***TYPE COMPLEX (CBESY-C, ZBESY-C) */
- /* ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, */
- /* BESSEL FUNCTIONS OF SECOND KIND, WEBER'S FUNCTION, */
- /* Y BESSEL FUNCTIONS */
- /* ***AUTHOR Amos, D. E., (SNL) */
- /* ***DESCRIPTION */
- /* ***A DOUBLE PRECISION ROUTINE*** */
- /* On KODE=1, ZBESY computes an N member sequence of complex */
- /* Bessel functions CY(L)=Y(FNU+L-1,Z) for real nonnegative */
- /* orders FNU+L-1, L=1,...,N and complex Z in the cut plane */
- /* -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESY returns */
- /* the scaled functions */
- /* CY(L) = exp(-abs(Y))*Y(FNU+L-1,Z), L=1,...,N, Y=Im(Z) */
- /* which remove the exponential growth in both the upper and */
- /* lower half planes as Z goes to infinity. Definitions and */
- /* notation are found in the NBS Handbook of Mathematical */
- /* Functions (Ref. 1). */
- /* Input */
- /* ZR - DOUBLE PRECISION REAL part of nonzero argument Z */
- /* ZI - DOUBLE PRECISION imag part of nonzero argument Z */
- /* FNU - DOUBLE PRECISION initial order, FNU>=0 */
- /* KODE - A parameter to indicate the scaling option */
- /* KODE=1 returns */
- /* CY(L)=Y(FNU+L-1,Z), L=1,...,N */
- /* =2 returns */
- /* CY(L)=Y(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N */
- /* where Y=Im(Z) */
- /* N - Number of terms in the sequence, N>=1 */
- /* CWRKR - DOUBLE PRECISION work vector of dimension N */
- /* CWRKI - DOUBLE PRECISION work vector of dimension N */
- /* Output */
- /* CYR - DOUBLE PRECISION REAL part of result vector */
- /* CYI - DOUBLE PRECISION imag part of result vector */
- /* NZ - Number of underflows set to zero */
- /* NZ=0 Normal return */
- /* NZ>0 CY(L)=0 for NZ values of L, usually on */
- /* KODE=2 (the underflows may not be in an */
- /* uninterrupted sequence) */
- /* IERR - Error flag */
- /* IERR=0 Normal return - COMPUTATION COMPLETED */
- /* IERR=1 Input error - NO COMPUTATION */
- /* IERR=2 Overflow - NO COMPUTATION */
- /* (abs(Z) too small and/or FNU+N-1 */
- /* too large) */
- /* IERR=3 Precision warning - COMPUTATION COMPLETED */
- /* (Result has half precision or less */
- /* because abs(Z) or FNU+N-1 is large) */
- /* IERR=4 Precision error - NO COMPUTATION */
- /* (Result has no precision because */
- /* abs(Z) or FNU+N-1 is too large) */
- /* IERR=5 Algorithmic error - NO COMPUTATION */
- /* (Termination condition not met) */
- /* *Long Description: */
- /* The computation is carried out by the formula */
- /* Y(a,z) = (H(1,a,z) - H(2,a,z))/(2*i) */
- /* where the Hankel functions are computed as described in CBESH. */
- /* For negative orders, the formula */
- /* Y(-a,z) = Y(a,z)*cos(a*pi) + J(a,z)*sin(a*pi) */
- /* can be used. However, for large orders close to half odd */
- /* integers the function changes radically. When a is a large */
- /* positive half odd integer, the magnitude of Y(-a,z)=J(a,z)* */
- /* sin(a*pi) is a large negative power of ten. But when a is */
- /* not a half odd integer, Y(a,z) dominates in magnitude with a */
- /* large positive power of ten and the most that the second term */
- /* can be reduced is by unit roundoff from the coefficient. */
- /* Thus, wide changes can occur within unit roundoff of a large */
- /* half odd integer. Here, large means a>abs(z). */
- /* In most complex variable computation, one must evaluate ele- */
- /* mentary functions. When the magnitude of Z or FNU+N-1 is */
- /* large, losses of significance by argument reduction occur. */
- /* Consequently, if either one exceeds U1=SQRT(0.5/UR), then */
- /* losses exceeding half precision are likely and an error flag */
- /* IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double */
- /* precision unit roundoff limited to 18 digits precision. Also, */
- /* if either is larger than U2=0.5/UR, then all significance is */
- /* lost and IERR=4. In order to use the INT function, arguments */
- /* must be further restricted not to exceed the largest machine */
- /* integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1 */
- /* is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and */
- /* U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision */
- /* and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This */
- /* makes U2 limiting in single precision and U3 limiting in */
- /* double precision. This means that one can expect to retain, */
- /* in the worst cases on IEEE machines, no digits in single pre- */
- /* cision and only 6 digits in double precision. Similar con- */
- /* siderations hold for other machines. */
- /* The approximate relative error in the magnitude of a complex */
- /* Bessel function can be expressed as P*10**S where P=MAX(UNIT */
- /* ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre- */
- /* sents the increase in error due to argument reduction in the */
- /* elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))), */
- /* ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF */
- /* ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may */
- /* have only absolute accuracy. This is most likely to occur */
- /* when one component (in magnitude) is larger than the other by */
- /* several orders of magnitude. If one component is 10**K larger */
- /* than the other, then one can expect only MAX(ABS(LOG10(P))-K, */
- /* 0) significant digits; or, stated another way, when K exceeds */
- /* the exponent of P, no significant digits remain in the smaller */
- /* component. However, the phase angle retains absolute accuracy */
- /* because, in complex arithmetic with precision P, the smaller */
- /* component will not (as a rule) decrease below P times the */
- /* magnitude of the larger component. In these extreme cases, */
- /* the principal phase angle is on the order of +P, -P, PI/2-P, */
- /* or -PI/2+P. */
- /* ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe- */
- /* matical Functions, National Bureau of Standards */
- /* Applied Mathematics Series 55, U. S. Department */
- /* of Commerce, Tenth Printing (1972) or later. */
- /* 2. D. E. Amos, Computation of Bessel Functions of */
- /* Complex Argument, Report SAND83-0086, Sandia National */
- /* Laboratories, Albuquerque, NM, May 1983. */
- /* 3. D. E. Amos, Computation of Bessel Functions of */
- /* Complex Argument and Large Order, Report SAND83-0643, */
- /* Sandia National Laboratories, Albuquerque, NM, May */
- /* 1983. */
- /* 4. D. E. Amos, A Subroutine Package for Bessel Functions */
- /* of a Complex Argument and Nonnegative Order, Report */
- /* SAND85-1018, Sandia National Laboratory, Albuquerque, */
- /* NM, May 1985. */
- /* 5. D. E. Amos, A portable package for Bessel functions */
- /* of a complex argument and nonnegative order, ACM */
- /* Transactions on Mathematical Software, 12 (September */
- /* 1986), pp. 265-273. */
- /* ***ROUTINES CALLED D1MACH, I1MACH, ZBESH */
- /* ***REVISION HISTORY (YYMMDD) */
- /* 830501 DATE WRITTEN */
- /* 890801 REVISION DATE from Version 3.2 */
- /* 910415 Prologue converted to Version 4.0 format. (BAB) */
- /* 920128 Category corrected. (WRB) */
- /* 920811 Prologue revised. (DWL) */
- /* ***END PROLOGUE ZBESY */
- /* COMPLEX CWRK,CY,C1,C2,EX,HCI,Z,ZU,ZV */
- /* ***FIRST EXECUTABLE STATEMENT ZBESY */
- /* Parameter adjustments */
- --cwrki;
- --cwrkr;
- --cyi;
- --cyr;
- /* Function Body */
- *ierr = 0;
- *nz = 0;
- if (*zr == 0. && *zi == 0.) {
- *ierr = 1;
- }
- if (*fnu < 0.) {
- *ierr = 1;
- }
- if (*kode < 1 || *kode > 2) {
- *ierr = 1;
- }
- if (*n < 1) {
- *ierr = 1;
- }
- if (*ierr != 0) {
- return 0;
- }
- hcii = .5;
- zbesh_(zr, zi, fnu, kode, &c__1, n, &cyr[1], &cyi[1], &nz1, ierr);
- if (*ierr != 0 && *ierr != 3) {
- goto L170;
- }
- zbesh_(zr, zi, fnu, kode, &c__2, n, &cwrkr[1], &cwrki[1], &nz2, ierr);
- if (*ierr != 0 && *ierr != 3) {
- goto L170;
- }
- *nz = min(nz1,nz2);
- if (*kode == 2) {
- goto L60;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- str = cwrkr[i__] - cyr[i__];
- sti = cwrki[i__] - cyi[i__];
- cyr[i__] = -sti * hcii;
- cyi[i__] = str * hcii;
- /* L50: */
- }
- return 0;
- L60:
- /* Computing MAX */
- d__1 = d1mach_(4);
- tol = max(d__1,1e-18);
- k1 = i1mach_(15);
- k2 = i1mach_(16);
- /* Computing MIN */
- i__1 = abs(k1), i__2 = abs(k2);
- k = min(i__1,i__2);
- r1m5 = d1mach_(5);
- /* ----------------------------------------------------------------------- */
- /* ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT */
- /* ----------------------------------------------------------------------- */
- elim = (k * r1m5 - 3.) * 2.303;
- exr = cos(*zr);
- exi = sin(*zr);
- ey = 0.;
- tay = (d__1 = *zi + *zi, abs(d__1));
- if (tay < elim) {
- ey = exp(-tay);
- }
- if (*zi < 0.) {
- goto L90;
- }
- c1r = exr * ey;
- c1i = exi * ey;
- c2r = exr;
- c2i = -exi;
- L70:
- *nz = 0;
- rtol = 1. / tol;
- ascle = d1mach_(1) * rtol * 1e3;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* STR = C1R*CYR(I) - C1I*CYI(I) */
- /* STI = C1R*CYI(I) + C1I*CYR(I) */
- /* STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I) */
- /* STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I) */
- /* CYR(I) = -STI*HCII */
- /* CYI(I) = STR*HCII */
- aa = cwrkr[i__];
- bb = cwrki[i__];
- atol = 1.;
- /* Computing MAX */
- d__1 = abs(aa), d__2 = abs(bb);
- if (max(d__1,d__2) > ascle) {
- goto L75;
- }
- aa *= rtol;
- bb *= rtol;
- atol = tol;
- L75:
- str = (aa * c2r - bb * c2i) * atol;
- sti = (aa * c2i + bb * c2r) * atol;
- aa = cyr[i__];
- bb = cyi[i__];
- atol = 1.;
- /* Computing MAX */
- d__1 = abs(aa), d__2 = abs(bb);
- if (max(d__1,d__2) > ascle) {
- goto L85;
- }
- aa *= rtol;
- bb *= rtol;
- atol = tol;
- L85:
- str -= (aa * c1r - bb * c1i) * atol;
- sti -= (aa * c1i + bb * c1r) * atol;
- cyr[i__] = -sti * hcii;
- cyi[i__] = str * hcii;
- if (str == 0. && sti == 0. && ey == 0.) {
- ++(*nz);
- }
- /* L80: */
- }
- return 0;
- L90:
- c1r = exr;
- c1i = exi;
- c2r = exr * ey;
- c2i = -exi * ey;
- goto L70;
- L170:
- *nz = 0;
- return 0;
- } /* zbesy_ */
|