123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- /* zbesj.f -- translated by f2c (version 20100827).
- This file no longer depends on f2c.
- */
- #include "slatec-internal.hpp"
- /* Table of constant values */
- integer const c__4 = 4;
- integer const c__15 = 15;
- integer const c__16 = 16;
- integer const c__5 = 5;
- integer const c__14 = 14;
- integer const c__9 = 9;
- integer const c__1 = 1;
- int zbesj_(double *zr, double *zi, double const *fnu,
- integer const *kode, integer const *n, double *cyr, double *cyi, integer *
- nz, integer *ierr)
- {
- /* Initialized data */
- constexpr double hpi = 1.57079632679489662;
- /* System generated locals */
- integer i__1, i__2;
- double d__1, d__2;
- /* Local variables */
- integer i__, k, k1, k2;
- double aa, bb, fn;
- integer nl;
- double az;
- integer ir;
- double rl, dig, cii, arg, r1m5;
- integer inu;
- double tol, sti, zni, str, znr, alim, elim;
- double atol;
- integer inuh;
- double fnul, rtol, ascle, csgni, csgnr;
- /* ***BEGIN PROLOGUE ZBESJ */
- /* ***PURPOSE Compute a sequence of the Bessel functions J(a,z) for */
- /* complex argument z and real nonnegative orders a=b,b+1, */
- /* b+2,... where b>0. A scaling option is available to */
- /* help avoid overflow. */
- /* ***LIBRARY SLATEC */
- /* ***CATEGORY C10A4 */
- /* ***TYPE COMPLEX (CBESJ-C, ZBESJ-C) */
- /* ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, */
- /* BESSEL FUNCTIONS OF THE FIRST KIND, J BESSEL FUNCTIONS */
- /* ***AUTHOR Amos, D. E., (SNL) */
- /* ***DESCRIPTION */
- /* ***A DOUBLE PRECISION ROUTINE*** */
- /* On KODE=1, ZBESJ computes an N member sequence of complex */
- /* Bessel functions CY(L)=J(FNU+L-1,Z) for real nonnegative */
- /* orders FNU+L-1, L=1,...,N and complex Z in the cut plane */
- /* -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESJ returns */
- /* the scaled functions */
- /* CY(L) = exp(-abs(Y))*J(FNU+L-1,Z), L=1,...,N and Y=Im(Z) */
- /* which remove the exponential growth in both the upper and */
- /* lower half planes as Z goes to infinity. Definitions and */
- /* notation are found in the NBS Handbook of Mathematical */
- /* Functions (Ref. 1). */
- /* Input */
- /* ZR - DOUBLE PRECISION real part of argument Z */
- /* ZI - DOUBLE PRECISION imag part of argument Z */
- /* FNU - DOUBLE PRECISION initial order, FNU>=0 */
- /* KODE - A parameter to indicate the scaling option */
- /* KODE=1 returns */
- /* CY(L)=J(FNU+L-1,Z), L=1,...,N */
- /* =2 returns */
- /* CY(L)=J(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N */
- /* where Y=Im(Z) */
- /* N - Number of terms in the sequence, N>=1 */
- /* Output */
- /* CYR - DOUBLE PRECISION real part of result vector */
- /* CYI - DOUBLE PRECISION imag part of result vector */
- /* NZ - Number of underflows set to zero */
- /* NZ=0 Normal return */
- /* NZ>0 CY(L)=0, L=N-NZ+1,...,N */
- /* IERR - Error flag */
- /* IERR=0 Normal return - COMPUTATION COMPLETED */
- /* IERR=1 Input error - NO COMPUTATION */
- /* IERR=2 Overflow - NO COMPUTATION */
- /* (Im(Z) too large on KODE=1) */
- /* IERR=3 Precision warning - COMPUTATION COMPLETED */
- /* (Result has half precision or less */
- /* because abs(Z) or FNU+N-1 is large) */
- /* IERR=4 Precision error - NO COMPUTATION */
- /* (Result has no precision because */
- /* abs(Z) or FNU+N-1 is too large) */
- /* IERR=5 Algorithmic error - NO COMPUTATION */
- /* (Termination condition not met) */
- /* *Long Description: */
- /* The computation is carried out by the formulae */
- /* J(a,z) = exp( a*pi*i/2)*I(a,-i*z), Im(z)>=0 */
- /* J(a,z) = exp(-a*pi*i/2)*I(a, i*z), Im(z)<0 */
- /* where the I Bessel function is computed as described in the */
- /* prologue to CBESI. */
- /* For negative orders, the formula */
- /* J(-a,z) = J(a,z)*cos(a*pi) - Y(a,z)*sin(a*pi) */
- /* can be used. However, for large orders close to integers, the */
- /* the function changes radically. When a is a large positive */
- /* integer, the magnitude of J(-a,z)=J(a,z)*cos(a*pi) is a */
- /* large negative power of ten. But when a is not an integer, */
- /* Y(a,z) dominates in magnitude with a large positive power of */
- /* ten and the most that the second term can be reduced is by */
- /* unit roundoff from the coefficient. Thus, wide changes can */
- /* occur within unit roundoff of a large integer for a. Here, */
- /* large means a>abs(z). */
- /* In most complex variable computation, one must evaluate ele- */
- /* mentary functions. When the magnitude of Z or FNU+N-1 is */
- /* large, losses of significance by argument reduction occur. */
- /* Consequently, if either one exceeds U1=SQRT(0.5/UR), then */
- /* losses exceeding half precision are likely and an error flag */
- /* IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double */
- /* precision unit roundoff limited to 18 digits precision. Also, */
- /* if either is larger than U2=0.5/UR, then all significance is */
- /* lost and IERR=4. In order to use the INT function, arguments */
- /* must be further restricted not to exceed the largest machine */
- /* integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1 */
- /* is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and */
- /* U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision */
- /* and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This */
- /* makes U2 limiting in single precision and U3 limiting in */
- /* double precision. This means that one can expect to retain, */
- /* in the worst cases on IEEE machines, no digits in single pre- */
- /* cision and only 6 digits in double precision. Similar con- */
- /* siderations hold for other machines. */
- /* The approximate relative error in the magnitude of a complex */
- /* Bessel function can be expressed as P*10**S where P=MAX(UNIT */
- /* ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre- */
- /* sents the increase in error due to argument reduction in the */
- /* elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))), */
- /* ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF */
- /* ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may */
- /* have only absolute accuracy. This is most likely to occur */
- /* when one component (in magnitude) is larger than the other by */
- /* several orders of magnitude. If one component is 10**K larger */
- /* than the other, then one can expect only MAX(ABS(LOG10(P))-K, */
- /* 0) significant digits; or, stated another way, when K exceeds */
- /* the exponent of P, no significant digits remain in the smaller */
- /* component. However, the phase angle retains absolute accuracy */
- /* because, in complex arithmetic with precision P, the smaller */
- /* component will not (as a rule) decrease below P times the */
- /* magnitude of the larger component. In these extreme cases, */
- /* the principal phase angle is on the order of +P, -P, PI/2-P, */
- /* or -PI/2+P. */
- /* ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe- */
- /* matical Functions, National Bureau of Standards */
- /* Applied Mathematics Series 55, U. S. Department */
- /* of Commerce, Tenth Printing (1972) or later. */
- /* 2. D. E. Amos, Computation of Bessel Functions of */
- /* Complex Argument, Report SAND83-0086, Sandia National */
- /* Laboratories, Albuquerque, NM, May 1983. */
- /* 3. D. E. Amos, Computation of Bessel Functions of */
- /* Complex Argument and Large Order, Report SAND83-0643, */
- /* Sandia National Laboratories, Albuquerque, NM, May */
- /* 1983. */
- /* 4. D. E. Amos, A Subroutine Package for Bessel Functions */
- /* of a Complex Argument and Nonnegative Order, Report */
- /* SAND85-1018, Sandia National Laboratory, Albuquerque, */
- /* NM, May 1985. */
- /* 5. D. E. Amos, A portable package for Bessel functions */
- /* of a complex argument and nonnegative order, ACM */
- /* Transactions on Mathematical Software, 12 (September */
- /* 1986), pp. 265-273. */
- /* ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU */
- /* ***REVISION HISTORY (YYMMDD) */
- /* 830501 DATE WRITTEN */
- /* 890801 REVISION DATE from Version 3.2 */
- /* 910415 Prologue converted to Version 4.0 format. (BAB) */
- /* 920128 Category corrected. (WRB) */
- /* 920811 Prologue revised. (DWL) */
- /* ***END PROLOGUE ZBESJ */
- /* COMPLEX CI,CSGN,CY,Z,ZN */
- /* Parameter adjustments */
- --cyi;
- --cyr;
- /* Function Body */
- /* ***FIRST EXECUTABLE STATEMENT ZBESJ */
- *ierr = 0;
- *nz = 0;
- if (*fnu < 0.) {
- *ierr = 1;
- }
- if (*kode < 1 || *kode > 2) {
- *ierr = 1;
- }
- if (*n < 1) {
- *ierr = 1;
- }
- if (*ierr != 0) {
- return 0;
- }
- /* ----------------------------------------------------------------------- */
- /* SET PARAMETERS RELATED TO MACHINE CONSTANTS. */
- /* TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. */
- /* ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. */
- /* EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND */
- /* EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR */
- /* UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. */
- /* RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. */
- /* DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). */
- /* FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. */
- /* ----------------------------------------------------------------------- */
- /* Computing MAX */
- d__1 = d1mach_(4);
- tol = max(d__1,1e-18);
- k1 = i1mach_(15);
- k2 = i1mach_(16);
- r1m5 = d1mach_(5);
- /* Computing MIN */
- i__1 = abs(k1), i__2 = abs(k2);
- k = min(i__1,i__2);
- elim = (k * r1m5 - 3.) * 2.303;
- k1 = i1mach_(14) - 1;
- aa = r1m5 * k1;
- dig = min(aa,18.);
- aa *= 2.303;
- /* Computing MAX */
- d__1 = -aa;
- alim = elim + max(d__1,-41.45);
- rl = dig * 1.2 + 3.;
- fnul = (dig - 3.) * 6. + 10.;
- /* ----------------------------------------------------------------------- */
- /* TEST FOR PROPER RANGE */
- /* ----------------------------------------------------------------------- */
- az = zabs_(zr, zi);
- fn = *fnu + (*n - 1);
- aa = .5 / tol;
- bb = i1mach_(9) * .5;
- aa = min(aa,bb);
- if (az > aa) {
- goto L260;
- }
- if (fn > aa) {
- goto L260;
- }
- aa = sqrt(aa);
- if (az > aa) {
- *ierr = 3;
- }
- if (fn > aa) {
- *ierr = 3;
- }
- /* ----------------------------------------------------------------------- */
- /* CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE */
- /* WHEN FNU IS LARGE */
- /* ----------------------------------------------------------------------- */
- cii = 1.;
- inu = (integer) (*fnu);
- inuh = inu / 2;
- ir = inu - (inuh << 1);
- arg = (*fnu - (inu - ir)) * hpi;
- csgnr = cos(arg);
- csgni = sin(arg);
- if (inuh % 2 == 0) {
- goto L40;
- }
- csgnr = -csgnr;
- csgni = -csgni;
- L40:
- /* ----------------------------------------------------------------------- */
- /* ZN IS IN THE RIGHT HALF PLANE */
- /* ----------------------------------------------------------------------- */
- znr = *zi;
- zni = -(*zr);
- if (*zi >= 0.) {
- goto L50;
- }
- znr = -znr;
- zni = -zni;
- csgni = -csgni;
- cii = -cii;
- L50:
- zbinu_(&znr, &zni, fnu, kode, n, &cyr[1], &cyi[1], nz, &rl, &fnul, &tol, &elim, &alim);
- if (*nz < 0) {
- goto L130;
- }
- nl = *n - *nz;
- if (nl == 0) {
- return 0;
- }
- rtol = 1. / tol;
- ascle = d1mach_(1) * rtol * 1e3;
- i__1 = nl;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* STR = CYR(I)*CSGNR - CYI(I)*CSGNI */
- /* CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR */
- /* CYR(I) = STR */
- aa = cyr[i__];
- bb = cyi[i__];
- atol = 1.;
- /* Computing MAX */
- d__1 = abs(aa), d__2 = abs(bb);
- if (max(d__1,d__2) > ascle) {
- goto L55;
- }
- aa *= rtol;
- bb *= rtol;
- atol = tol;
- L55:
- str = aa * csgnr - bb * csgni;
- sti = aa * csgni + bb * csgnr;
- cyr[i__] = str * atol;
- cyi[i__] = sti * atol;
- str = -csgni * cii;
- csgni = csgnr * cii;
- csgnr = str;
- /* L60: */
- }
- return 0;
- L130:
- if (*nz == -2) {
- goto L140;
- }
- *nz = 0;
- *ierr = 2;
- return 0;
- L140:
- *nz = 0;
- *ierr = 5;
- return 0;
- L260:
- *nz = 0;
- *ierr = 4;
- return 0;
- } /* zbesj_ */
|