123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657 |
- /* dbesi.f -- translated by f2c (version 20100827).
- This file no longer depends on f2c.
- */
- #include "slatec-internal.hpp"
- /* Table of constant values */
- static integer const c__3 = 3;
- static integer const c__15 = 15;
- static integer const c__5 = 5;
- static integer const c__14 = 14;
- static integer const c__2 = 2;
- static integer const c__1 = 1;
- static integer const c__6 = 6;
- int dbesi_(double const *x, double const *alpha, integer const *kode, integer const *n, double *y, integer *nz)
- {
- /* Initialized data */
- static double const rttpi = .398942280401433;
- static integer inlim = 80;
- /* System generated locals */
- integer i__1;
- double d__1;
- /* Local variables. Some initialized to avoid -Wmaybe-uninitialized */
- integer i__, k;
- double s, t, z__;
- integer i1;
- double s1, s2, t2, ak, ap, ra, fn, ta;
- integer kk, in, km = 0;
- double tb;
- integer is, nn;
- double dx;
- integer kt, ns = 0;
- double tm, sx, xo2, ain, akm, arg, dfn, fnf, fni, gln, ans, dtm, tfn,
- fnu, tol, etx, trx, fnp1, xo2l, sxo2, earg;
- integer ialp;
- double elim, atol, temp[3], flgik, tolln;
- /* ***BEGIN PROLOGUE DBESI */
- /* ***PURPOSE Compute an N member sequence of I Bessel functions */
- /* I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions */
- /* EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for nonnegative */
- /* ALPHA and X. */
- /* ***LIBRARY SLATEC */
- /* ***CATEGORY C10B3 */
- /* ***TYPE DOUBLE PRECISION (BESI-S, DBESI-D) */
- /* ***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS */
- /* ***AUTHOR Amos, D. E., (SNLA) */
- /* Daniel, S. L., (SNLA) */
- /* ***DESCRIPTION */
- /* Abstract **** a double precision routine **** */
- /* DBESI computes an N member sequence of I Bessel functions */
- /* I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions */
- /* EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for nonnegative ALPHA */
- /* and X. A combination of the power series, the asymptotic */
- /* expansion for X to infinity, and the uniform asymptotic */
- /* expansion for NU to infinity are applied over subdivisions of */
- /* the (NU,X) plane. For values not covered by one of these */
- /* formulae, the order is incremented by an integer so that one */
- /* of these formulae apply. Backward recursion is used to reduce */
- /* orders by integer values. The asymptotic expansion for X to */
- /* infinity is used only when the entire sequence (specifically */
- /* the last member) lies within the region covered by the */
- /* expansion. Leading terms of these expansions are used to test */
- /* for over or underflow where appropriate. If a sequence is */
- /* requested and the last member would underflow, the result is */
- /* set to zero and the next lower order tried, etc., until a */
- /* member comes on scale or all are set to zero. An overflow */
- /* cannot occur with scaling. */
- /* The maximum number of significant digits obtainable */
- /* is the smaller of 14 and the number of digits carried in */
- /* double precision arithmetic. */
- /* Description of Arguments */
- /* Input X,ALPHA are double precision */
- /* X - X .GE. 0.0D0 */
- /* ALPHA - order of first member of the sequence, */
- /* ALPHA .GE. 0.0D0 */
- /* KODE - a parameter to indicate the scaling option */
- /* KODE=1 returns */
- /* Y(K)= I/sub(ALPHA+K-1)/(X), */
- /* K=1,...,N */
- /* KODE=2 returns */
- /* Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X), */
- /* K=1,...,N */
- /* N - number of members in the sequence, N .GE. 1 */
- /* Output Y is double precision */
- /* Y - a vector whose first N components contain */
- /* values for I/sub(ALPHA+K-1)/(X) or scaled */
- /* values for EXP(-X)*I/sub(ALPHA+K-1)/(X), */
- /* K=1,...,N depending on KODE */
- /* NZ - number of components of Y set to zero due to */
- /* underflow, */
- /* NZ=0 , normal return, computation completed */
- /* NZ .NE. 0, last NZ components of Y set to zero, */
- /* Y(K)=0.0D0, K=N-NZ+1,...,N. */
- /* Error Conditions */
- /* Improper input arguments - a fatal error */
- /* Overflow with KODE=1 - a fatal error */
- /* Underflow - a non-fatal error(NZ .NE. 0) */
- /* ***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600 */
- /* subroutines IBESS and JBESS for Bessel functions */
- /* I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM */
- /* Transactions on Mathematical Software 3, (1977), */
- /* pp. 76-92. */
- /* F. W. J. Olver, Tables of Bessel Functions of Moderate */
- /* or Large Orders, NPL Mathematical Tables 6, Her */
- /* Majesty's Stationery Office, London, 1962. */
- /* ***ROUTINES CALLED D1MACH, DASYIK, DLNGAM, I1MACH, XERMSG */
- /* ***REVISION HISTORY (YYMMDD) */
- /* 750101 DATE WRITTEN */
- /* 890531 Changed all specific intrinsics to generic. (WRB) */
- /* 890911 Removed unnecessary intrinsics. (WRB) */
- /* 890911 REVISION DATE from Version 3.2 */
- /* 891214 Prologue converted to Version 4.0 format. (BAB) */
- /* 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) */
- /* 900326 Removed duplicate information from DESCRIPTION section. */
- /* (WRB) */
- /* 920501 Reformatted the REFERENCES section. (WRB) */
- /* ***END PROLOGUE DBESI */
- /* Parameter adjustments */
- --y;
- /* Function Body */
- /* ***FIRST EXECUTABLE STATEMENT DBESI */
- *nz = 0;
- kt = 1;
- /* I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE */
- /* I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE */
- ra = d1mach_(3);
- tol = max(ra,1e-15);
- i1 = -i1mach_(15);
- gln = d1mach_(5);
- elim = (i1 * gln - 3.) * 2.303;
- /* TOLLN = -LN(TOL) */
- i1 = i1mach_(14) + 1;
- tolln = gln * 2.303 * i1;
- tolln = min(tolln,34.5388);
- if ((i__1 = *n - 1) < 0) {
- goto L590;
- } else if (i__1 == 0) {
- goto L10;
- } else {
- goto L20;
- }
- L10:
- kt = 2;
- L20:
- nn = *n;
- if (*kode < 1 || *kode > 2) {
- goto L570;
- }
- if (*x < 0.) {
- goto L600;
- } else if (*x == 0) {
- goto L30;
- } else {
- goto L80;
- }
- L30:
- if (*alpha < 0.) {
- goto L580;
- } else if (*alpha == 0) {
- goto L40;
- } else {
- goto L50;
- }
- L40:
- y[1] = 1.;
- if (*n == 1) {
- return 0;
- }
- i1 = 2;
- goto L60;
- L50:
- i1 = 1;
- L60:
- i__1 = *n;
- for (i__ = i1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
- /* L70: */
- }
- return 0;
- L80:
- if (*alpha < 0.) {
- goto L580;
- }
- ialp = (integer) (*alpha);
- fni = (double) (ialp + *n - 1);
- fnf = *alpha - ialp;
- dfn = fni + fnf;
- fnu = dfn;
- in = 0;
- xo2 = *x * .5;
- sxo2 = xo2 * xo2;
- etx = (double) (*kode - 1);
- sx = etx * *x;
- /* DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X */
- /* TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE */
- /* APPLIED. */
- if (sxo2 <= fnu + 1.) {
- goto L90;
- }
- if (*x <= 12.) {
- goto L110;
- }
- fn = fnu * .55 * fnu;
- fn = max(17.,fn);
- if (*x >= fn) {
- goto L430;
- }
- /* Computing MAX */
- d__1 = 36. - fnu;
- ans = max(d__1,0.);
- ns = (integer) ans;
- fni += ns;
- dfn = fni + fnf;
- fn = dfn;
- is = kt;
- km = *n - 1 + ns;
- if (km > 0) {
- is = 3;
- }
- goto L120;
- L90:
- fn = fnu;
- fnp1 = fn + 1.;
- xo2l = log(xo2);
- is = kt;
- if (*x <= .5) {
- goto L230;
- }
- ns = 0;
- L100:
- fni += ns;
- dfn = fni + fnf;
- fn = dfn;
- fnp1 = fn + 1.;
- is = kt;
- if (*n - 1 + ns > 0) {
- is = 3;
- }
- goto L230;
- L110:
- xo2l = log(xo2);
- ns = (integer) (sxo2 - fnu);
- goto L100;
- L120:
- /* OVERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION */
- if (*kode == 2) {
- goto L130;
- }
- if (*alpha < 1.) {
- goto L150;
- }
- z__ = *x / *alpha;
- ra = sqrt(z__ * z__ + 1.);
- gln = log((ra + 1.) / z__);
- t = ra * (1. - etx) + etx / (z__ + ra);
- arg = *alpha * (t - gln);
- if (arg > elim) {
- goto L610;
- }
- if (km == 0) {
- goto L140;
- }
- L130:
- /* UNDERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION */
- z__ = *x / fn;
- ra = sqrt(z__ * z__ + 1.);
- gln = log((ra + 1.) / z__);
- t = ra * (1. - etx) + etx / (z__ + ra);
- arg = fn * (t - gln);
- L140:
- if (arg < -elim) {
- goto L280;
- }
- goto L190;
- L150:
- if (*x > elim) {
- goto L610;
- }
- goto L130;
- /* UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY */
- L160:
- if (km != 0) {
- goto L170;
- }
- y[1] = temp[2];
- return 0;
- L170:
- temp[0] = temp[2];
- in = ns;
- kt = 1;
- i1 = 0;
- L180:
- is = 2;
- fni += -1.;
- dfn = fni + fnf;
- fn = dfn;
- if (i1 == 2) {
- goto L350;
- }
- z__ = *x / fn;
- ra = sqrt(z__ * z__ + 1.);
- gln = log((ra + 1.) / z__);
- t = ra * (1. - etx) + etx / (z__ + ra);
- arg = fn * (t - gln);
- L190:
- i1 = (i__1 = 3 - is, abs(i__1));
- i1 = max(i1,1);
- flgik = 1.;
- dasyik_(x, &fn, kode, &flgik, &ra, &arg, &i1, &temp[is - 1]);
- switch (is) {
- case 1: goto L180;
- case 2: goto L350;
- case 3: goto L510;
- }
- /* SERIES FOR (X/2)**2.LE.NU+1 */
- L230:
- gln = dlngam_(&fnp1);
- arg = fn * xo2l - gln - sx;
- if (arg < -elim) {
- goto L300;
- }
- earg = exp(arg);
- L240:
- s = 1.;
- if (*x < tol) {
- goto L260;
- }
- ak = 3.;
- t2 = 1.;
- t = 1.;
- s1 = fn;
- for (k = 1; k <= 17; ++k) {
- s2 = t2 + s1;
- t = t * sxo2 / s2;
- s += t;
- if (abs(t) < tol) {
- goto L260;
- }
- t2 += ak;
- ak += 2.;
- s1 += fn;
- /* L250: */
- }
- L260:
- temp[is - 1] = s * earg;
- switch (is) {
- case 1: goto L270;
- case 2: goto L350;
- case 3: goto L500;
- }
- L270:
- earg = earg * fn / xo2;
- fni += -1.;
- dfn = fni + fnf;
- fn = dfn;
- is = 2;
- goto L240;
- /* SET UNDERFLOW VALUE AND UPDATE PARAMETERS */
- L280:
- y[nn] = 0.;
- --nn;
- fni += -1.;
- dfn = fni + fnf;
- fn = dfn;
- if ((i__1 = nn - 1) < 0) {
- goto L340;
- } else if (i__1 == 0) {
- goto L290;
- } else {
- goto L130;
- }
- L290:
- kt = 2;
- is = 2;
- goto L130;
- L300:
- y[nn] = 0.;
- --nn;
- fnp1 = fn;
- fni += -1.;
- dfn = fni + fnf;
- fn = dfn;
- if ((i__1 = nn - 1) < 0) {
- goto L340;
- } else if (i__1 == 0) {
- goto L310;
- } else {
- goto L320;
- }
- L310:
- kt = 2;
- is = 2;
- L320:
- if (sxo2 <= fnp1) {
- goto L330;
- }
- goto L130;
- L330:
- arg = arg - xo2l + log(fnp1);
- if (arg < -elim) {
- goto L300;
- }
- goto L230;
- L340:
- *nz = *n - nn;
- return 0;
- /* BACKWARD RECURSION SECTION */
- L350:
- *nz = *n - nn;
- L360:
- if (kt == 2) {
- goto L420;
- }
- s1 = temp[0];
- s2 = temp[1];
- trx = 2. / *x;
- dtm = fni;
- tm = (dtm + fnf) * trx;
- if (in == 0) {
- goto L390;
- }
- /* BACKWARD RECUR TO INDEX ALPHA+NN-1 */
- i__1 = in;
- for (i__ = 1; i__ <= i__1; ++i__) {
- s = s2;
- s2 = tm * s2 + s1;
- s1 = s;
- dtm += -1.;
- tm = (dtm + fnf) * trx;
- /* L380: */
- }
- y[nn] = s1;
- if (nn == 1) {
- return 0;
- }
- y[nn - 1] = s2;
- if (nn == 2) {
- return 0;
- }
- goto L400;
- L390:
- /* BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA */
- y[nn] = s1;
- y[nn - 1] = s2;
- if (nn == 2) {
- return 0;
- }
- L400:
- k = nn + 1;
- i__1 = nn;
- for (i__ = 3; i__ <= i__1; ++i__) {
- --k;
- y[k - 2] = tm * y[k - 1] + y[k];
- dtm += -1.;
- tm = (dtm + fnf) * trx;
- /* L410: */
- }
- return 0;
- L420:
- y[1] = temp[1];
- return 0;
- /* ASYMPTOTIC EXPANSION FOR X TO INFINITY */
- L430:
- earg = rttpi / sqrt(*x);
- if (*kode == 2) {
- goto L440;
- }
- if (*x > elim) {
- goto L610;
- }
- earg *= exp(*x);
- L440:
- etx = *x * 8.;
- is = kt;
- in = 0;
- fn = fnu;
- L450:
- dx = fni + fni;
- tm = 0.;
- if (fni == 0. && abs(fnf) < tol) {
- goto L460;
- }
- tm = fnf * 4. * (fni + fni + fnf);
- L460:
- dtm = dx * dx;
- s1 = etx;
- trx = dtm - 1.;
- dx = -(trx + tm) / etx;
- t = dx;
- s = dx + 1.;
- atol = tol * abs(s);
- s2 = 1.;
- ak = 8.;
- for (k = 1; k <= 25; ++k) {
- s1 += etx;
- s2 += ak;
- dx = dtm - s2;
- ap = dx + tm;
- t = -t * ap / s1;
- s += t;
- if (abs(t) <= atol) {
- goto L480;
- }
- ak += 8.;
- /* L470: */
- }
- L480:
- temp[is - 1] = s * earg;
- if (is == 2) {
- goto L360;
- }
- is = 2;
- fni += -1.;
- dfn = fni + fnf;
- fn = dfn;
- goto L450;
- /* BACKWARD RECURSION WITH NORMALIZATION BY */
- /* ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES. */
- L500:
- /* COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION */
- /* Computing MAX */
- d__1 = 3. - fn;
- akm = max(d__1,0.);
- km = (integer) akm;
- tfn = fn + km;
- ta = (gln + tfn - .9189385332 - .0833333333 / tfn) / (tfn + .5);
- ta = xo2l - ta;
- tb = -(1. - 1. / tfn) / tfn;
- ain = tolln / (-ta + sqrt(ta * ta - tolln * tb)) + 1.5;
- in = (integer) ain;
- in += km;
- goto L520;
- L510:
- /* COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION */
- t = 1. / (fn * ra);
- ain = tolln / (gln + sqrt(gln * gln + t * tolln)) + 1.5;
- in = (integer) ain;
- if (in > inlim) {
- goto L160;
- }
- L520:
- trx = 2. / *x;
- dtm = fni + in;
- tm = (dtm + fnf) * trx;
- ta = 0.;
- tb = tol;
- kk = 1;
- L530:
- /* BACKWARD RECUR UNINDEXED */
- i__1 = in;
- for (i__ = 1; i__ <= i__1; ++i__) {
- s = tb;
- tb = tm * tb + ta;
- ta = s;
- dtm += -1.;
- tm = (dtm + fnf) * trx;
- /* L540: */
- }
- /* NORMALIZATION */
- if (kk != 1) {
- goto L550;
- }
- ta = ta / tb * temp[2];
- tb = temp[2];
- kk = 2;
- in = ns;
- if (ns != 0) {
- goto L530;
- }
- L550:
- y[nn] = tb;
- *nz = *n - nn;
- if (nn == 1) {
- return 0;
- }
- tb = tm * tb + ta;
- k = nn - 1;
- y[k] = tb;
- if (nn == 2) {
- return 0;
- }
- dtm += -1.;
- tm = (dtm + fnf) * trx;
- km = k - 1;
- /* BACKWARD RECUR INDEXED */
- i__1 = km;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[k - 1] = tm * y[k] + y[k + 1];
- dtm += -1.;
- tm = (dtm + fnf) * trx;
- --k;
- /* L560: */
- }
- return 0;
- L570:
- xermsg_("SLATEC", "DBESI", "SCALING OPTION, KODE, NOT 1 OR 2.", &c__2, &
- c__1, (ftnlen)6, (ftnlen)5, (ftnlen)33);
- return 0;
- L580:
- xermsg_("SLATEC", "DBESI", "ORDER, ALPHA, LESS THAN ZERO.", &c__2, &c__1,
- (ftnlen)6, (ftnlen)5, (ftnlen)29);
- return 0;
- L590:
- xermsg_("SLATEC", "DBESI", "N LESS THAN ONE.", &c__2, &c__1, (ftnlen)6, (
- ftnlen)5, (ftnlen)16);
- return 0;
- L600:
- xermsg_("SLATEC", "DBESI", "X LESS THAN ZERO.", &c__2, &c__1, (ftnlen)6, (
- ftnlen)5, (ftnlen)17);
- return 0;
- L610:
- xermsg_("SLATEC", "DBESI", "OVERFLOW, X TOO LARGE FOR KODE = 1.", &c__6, &
- c__1, (ftnlen)6, (ftnlen)5, (ftnlen)35);
- return 0;
- } /* dbesi_ */
|