123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // -*- mode: c++; coding: utf-8 -*-
- /// @file explode-0.cc
- /// @brief Tests for explode() and collapse().
- // (c) Daniel Llorens - 2013-2016
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #include <numeric>
- #include <iostream>
- #include <iterator>
- #include "ra/test.hh"
- #include "mpdebug.hh"
- using std::cout, std::endl, std::flush, ra::TestRecorder;
- using real = double;
- using complex = std::complex<double>;
- using ra::real_part, ra::imag_part;
- int main()
- {
- TestRecorder tr(std::cout);
- tr.section("explode");
- {
- ra::Big<int, 2> A({2, 3}, ra::_0 - ra::_1);
- auto B = ra::explode<ra::Small<int, 3>>(A);
- tr.test_eq(3, ra::size_s<decltype(B(0))>());
- tr.test_eq(ra::Small<int, 3> {0, -1, -2}, B(0));
- tr.test_eq(ra::Small<int, 3> {1, 0, -1}, B(1));
- B(1) = 9;
- tr.test_eq(ra::Small<int, 3> {0, -1, -2}, B(0));
- tr.test_eq(ra::Small<int, 3> {9, 9, 9}, B(1));
- }
- // note that dynamic-rank operator() returns a rank 0 array (since the rank
- // cannot be known at compile time). So we have to peel that back.
- {
- ra::Big<int> A({2, 3}, ra::_0 - ra::_1);
- auto B = ra::explode<ra::Small<int, 3>>(A);
- tr.test_eq(3, ra::size_s<decltype(*(B(0).data()))>());
- tr.test_eq(ra::scalar(ra::Small<int, 3> {0, -1, -2}), B(0));
- tr.test_eq(ra::scalar(ra::Small<int, 3> {1, 0, -1}), B(1));
- B(1) = 9;
- tr.test_eq(ra::scalar(ra::Small<int, 3> {0, -1, -2}), B(0));
- tr.test_eq(ra::scalar(ra::Small<int, 3> {9, 9, 9}), B(1));
- }
- tr.section("explode<complex>");
- {
- ra::Big<real, 3> A({2, 3, 2}, ra::_0 - ra::_1 + ra::_2);
- auto B = ra::explode<complex>(A);
- tr.test_eq(2, B.rank());
- tr.test_eq(ra::Small<real, 2, 3> {0, -1, -2, 1, 0, -1}, real_part(B));
- tr.test_eq(ra::Small<real, 2, 3> {1, 0, -1, 2, 1, 0}, imag_part(B));
- imag_part(B(1)) = 9;
- tr.test_eq(ra::Small<real, 2, 3> {0, -1, -2, 1, 0, -1}, A(ra::all, ra::all, 0));
- tr.test_eq(ra::Small<real, 2, 3> {1, 0, -1, 9, 9, 9}, A(ra::all, ra::all, 1));
- }
- {
- ra::Big<real> A({2, 3, 2}, ra::_0 - ra::_1 + ra::_2);
- auto B = ra::explode<complex>(A);
- tr.test_eq(2, B.rank());
- tr.test_eq(ra::Small<real, 2, 3> {0, -1, -2, 1, 0, -1}, real_part(B));
- tr.test_eq(ra::Small<real, 2, 3> {1, 0, -1, 2, 1, 0}, imag_part(B));
- imag_part(B(1)) = 9;
- tr.test_eq(ra::Small<real, 2, 3> {0, -1, -2, 1, 0, -1}, A(ra::all, ra::all, 0));
- tr.test_eq(ra::Small<real, 2, 3> {1, 0, -1, 9, 9, 9}, A(ra::all, ra::all, 1));
- }
- tr.section("collapse");
- {
- tr.section("sub is real to super complex");
- {
- auto test_sub_real = [&tr](auto && A)
- {
- A = ra::cast<double>(ra::_0)*complex(4, 1) + ra::cast<double>(ra::_1)*complex(1, 4);
- auto B = ra::collapse<double>(A);
- tr.test_eq(real_part(A), B(ra::all, ra::all, 0));
- tr.test_eq(imag_part(A), B(ra::all, ra::all, 1));
- };
- test_sub_real(ra::Unique<complex, 2>({4, 4}, ra::none));
- test_sub_real(ra::Unique<complex>({4, 4}, ra::none));
- }
- tr.section("sub is int to super Small of rank 1");
- {
- using r2 = ra::Small<int, 2>;
- auto test_sub_small2 = [&tr](auto && A)
- {
- A = map([](int i, int j) { return r2 {i+j, i-j}; }, ra::_0, ra::_1);
- auto B = ra::collapse<int>(A);
- tr.test_eq(B(ra::all, ra::all, 0), map([](auto && a) { return a(0); }, A));
- tr.test_eq(B(ra::all, ra::all, 1), map([](auto && a) { return a(1); }, A));
- };
- test_sub_small2(ra::Unique<r2, 2>({4, 4}, ra::none));
- test_sub_small2(ra::Unique<r2>({4, 4}, ra::none));
- }
- tr.section("sub is int to super Small of rank 2");
- {
- using super = ra::Small<int, 2, 3>;
- auto test_sub_small23 = [&tr](auto && A)
- {
- A = map([](int i, int j) { return super(i-j+ra::_0-ra::_1); }, ra::_0, ra::_1);
- auto B = ra::collapse<int>(A);
- for (int i=0; i<super::len(0); ++i) {
- for (int j=0; j<super::len(1); ++j) {
- tr.test_eq(B(ra::all, ra::all, i, j), map([i, j](auto && a) { return a(i, j); }, A));
- }
- }
- };
- test_sub_small23(ra::Unique<super, 2>({2, 2}, ra::none));
- test_sub_small23(ra::Unique<super>({2, 2}, ra::none));
- }
- tr.section("sub is Small of rank 1 to super Small of rank 2");
- {
- using super = ra::Small<int, 2, 3>;
- auto test_sub_small23 = [&tr](auto && A)
- {
- A = map([](int i, int j) { return super(i-j+ra::_0-ra::_1); }, ra::_0, ra::_1);
- using sub = ra::Small<int, 3>;
- auto B = ra::collapse<sub>(A);
- // TODO sub() is used to cover a problem with where() and SmallView/SmallArray, since they convert to each other
- tr.test_eq(B(ra::all, ra::all, 0), map([](auto && a) { return sub(a(0)); }, A));
- tr.test_eq(B(ra::all, ra::all, 1), map([](auto && a) { return sub(a(1)); }, A));
- };
- test_sub_small23(ra::Unique<super, 2>({2, 2}, ra::none));
- test_sub_small23(ra::Unique<super>({2, 2}, ra::none));
- }
- tr.section("sub is real to super complex Small of rank 2");
- {
- using super = ra::Small<complex, 2, 2>;
- auto test_sub_real = [&tr](auto && A)
- {
- A = map([](complex a) { return super { a, conj(a), -conj(a), -a }; },
- ra::cast<double>(ra::_0)*complex(4, 1) + ra::cast<double>(ra::_1)*complex(1, 4));
- auto B = ra::collapse<double>(A);
- for (int i=0; i<super::len(0); ++i) {
- for (int j=0; j<super::len(1); ++j) {
- tr.test_eq(B(ra::all, ra::all, i, j, 0), map([i, j](auto && a) { return real_part(a(i, j)); }, A));
- tr.test_eq(B(ra::all, ra::all, i, j, 1), map([i, j](auto && a) { return imag_part(a(i, j)); }, A));
- }
- }
- };
- test_sub_real(ra::Unique<super, 2>({4, 4}, ra::none));
- test_sub_real(ra::Unique<super>({4, 4}, ra::none));
- }
- }
- tr.section("old tests");
- {
- tr.section("super rank 1");
- {
- auto test = [&tr](auto && A)
- {
- using T = ra::Small<double, 2>;
- auto B = ra::explode<T>(A);
- for (int i=0; i<3; ++i) {
- tr.test_eq(i*2, ((T &)(B(i)))(0));
- tr.test_eq(i*2+1, ((T &)(B(i)))(1));
- }
- };
- test(ra::Unique<double, 2>({4, 2}, ra::_0*2 + ra::_1));
- test(ra::Unique<double>({4, 2}, ra::_0*2 + ra::_1));
- }
- tr.section("super rank 0");
- {
- #define TEST(CHECK_RANK_S) \
- [&tr](auto && A) \
- { \
- using T = complex; \
- auto convtest = [](T & x) -> T & { return x; }; \
- auto B = ra::explode_<T, 1>(A); \
- static_assert(rank_s(B)==CHECK_RANK_S, "bad static rank"); \
- cout << B << endl; \
- for (int i=0; i<3; ++i) { \
- tr.test_eq(i*2, real_part((T &)(B(i)))); \
- tr.test_eq(i*2+1, imag_part((T &)(B(i)))); \
- tr.test_eq(i*2, convtest(B(i)).real()); \
- tr.test_eq(i*2+1, convtest(B(i)).imag()); \
- } \
- }
- TEST(ra::ANY)(ra::Unique<double>({4, 2}, ra::_0*2 + ra::_1));
- TEST(1)(ra::Unique<double, 2>({4, 2}, ra::_0*2 + ra::_1));
- }
- tr.section("super rank 2");
- {
- auto test = [&tr](auto && A)
- {
- using T = ra::Small<double, 2, 2>;
- auto B = ra::explode<T>(A);
- tr.test_eq(1, B.rank());
- tr.test_eq(T { 0, 1, 2, 3 }, (T &)(B[0]));
- tr.test_eq(T { 4, 5, 6, 7 }, (T &)(B[1]));
- tr.test_eq(T { 8, 9, 10, 11 }, (T &)(B[2]));
- tr.test_eq(T { 12, 13, 14, 15}, (T &)(B[3]));
- };
- test(ra::Unique<double, 3>({4, 2, 2}, ra::_0*4 + ra::_1*2 + ra::_2));
- test(ra::Unique<double>({4, 2, 2}, ra::_0*4 + ra::_1*2 + ra::_2));
- }
- }
- tr.section("explode for Small");
- {
- ra::Small<double, 2, 3> a(ra::_0 + 10*ra::_1);
- auto c = ra::explode<ra::Small<double, 3>>(a);
- using lens = std::decay_t<decltype(c)>::lens;
- using steps = std::decay_t<decltype(c)>::steps;
- tr.info(ra::mp::print_int_list<lens> {}).test(std::is_same_v<ra::mp::int_list<2>, lens>);
- tr.info(ra::mp::print_int_list<steps> {}).test(std::is_same_v<ra::mp::int_list<1>, steps>);
- tr.test_eq(ra::scalar(a[0].data()), ra::scalar(c[0].data()));
- tr.test_eq(ra::scalar(a[1].data()), ra::scalar(c[1].data()));
- c[1] = { 3, 2, 1 };
- tr.test_eq(ra::Small<double, 3> { 0, 10, 20 }, c[0]);
- tr.test_eq(ra::Small<double, 3> { 0, 10, 20 }, a[0]);
- tr.test_eq(ra::Small<double, 3> { 3, 2, 1 }, a[1]);
- }
- return tr.summary();
- }
|