123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- // -*- mode: c++; coding: utf-8 -*-
- // ra-ra/test - Test generic wedge product with compile-time dimensions.
- // (c) Daniel Llorens - 2008-2010, 2015
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #include <iostream>
- #include "ra/test.hh"
- using std::cout, std::endl, std::flush, ra::TestRecorder;
- using ra::mp::Wedge, ra::mp::hodgex, ra::mp::int_list;
- using real = double;
- using complex = std::complex<double>;
- real const GARBAGE(99);
- template <class T, ra::dim_t N> using vec = ra::Small<T, N>;
- using real1 = vec<real, 1>;
- using real2 = vec<real, 2>;
- using real3 = vec<real, 3>;
- using real4 = vec<real, 4>;
- using real6 = vec<real, 6>;
- using complex1 = vec<complex, 1>;
- using complex2 = vec<complex, 2>;
- using complex3 = vec<complex, 3>;
- template <class P, class Plist, int w, int s>
- struct FindCombinationTester
- {
- using finder = ra::mp::FindCombination<P, Plist>;
- static_assert(finder::where==w && finder::sign==s, "bad");
- static void check() {};
- };
- template <int N, int O>
- void test_optimized_hodge_aux(TestRecorder & tr)
- {
- if constexpr (O<=N) {
- tr.section(ra::format("hodge() vs hodgex() with N=", N, " O=", O));
- static_assert(N>=O, "bad_N_or_bad_O");
- using Va = vec<real, Wedge<N, O, N-O>::Na>;
- using Vb = vec<real, Wedge<N, O, N-O>::Nb>;
- Va u = ra::iota(u.size(), 1);
- Vb w(GARBAGE);
- hodge<N, O>(u, w);
- cout << "-> " << u << " hodge " << w << endl;
- // this is the property that u^(*u) = dot(u, u)*vol form.
- if (O==1) {
- real S = sum(sqr(u));
- // since the volume form and the 1-forms are always ordered lexicographically (0 1 2...) vs (0) (1) (2) ...
- tr.info("with O=1, S: ", S, " vs wedge(u, w): ", ra::wedge<N, O, N-O>(u, w))
- .test_eq(S, ra::wedge<N, O, N-O>(u, w));
- } else if (O+1==N) {
- real S = sum(sqr(w));
- // compare with the case above, this is the sign of the (anti)commutativity of the exterior product.
- S *= ra::odd(O*(N-O)) ? -1 : +1;
- tr.info("with O=N-1, S: ", S, " vs wedge(u, w): ", ra::wedge<N, N-O, O>(u, w))
- .test_eq(S, ra::wedge<N, N-O, O>(u, w));
- }
- // test that it does the same as hodgex().
- Vb x(GARBAGE);
- hodgex<N, O>(u, x);
- if (2*O==N) {
- tr.info("-> ", u, " hodgex ", x).test_eq(ra::wedge<N, O, N-O>(u, w), ra::wedge<N, O, N-O>(u, x));
- }
- // test basic duality property, **w = (-1)^{o(n-o)} w.
- {
- Va b(GARBAGE);
- hodgex<N, N-O>(x, b);
- tr.info("duality test with hodgex() (N ", N, " O ", O, ") -> ", u, " hodge ", x, " hodge(hodge) ", b)
- .test_eq((ra::odd(O*(N-O)) ? -1 : +1)*u, b);
- }
- {
- Va a(GARBAGE);
- hodge<N, N-O>(w, a);
- tr.info("duality test with hodge() (N ", N, " O ", O, ") -> ", u, " hodge ", w, " hodge(hodge) ", a)
- .test_eq((ra::odd(O*(N-O)) ? -1 : +1)*u, a);
- }
- test_optimized_hodge_aux<N, O+1>(tr);
- }
- }
- template <int N>
- void test_optimized_hodge(TestRecorder & tr)
- {
- static_assert(N>=0, "bad_N");
- test_optimized_hodge_aux<N, 0>(tr);
- test_optimized_hodge<N-1>(tr);
- }
- template <>
- void test_optimized_hodge<-1>(TestRecorder & tr)
- {
- }
- template <int D, class R, class A, class B>
- R test_scalar_case(A const & a, B const & b)
- {
- R r = ra::wedge<D, 0, 0>(a, b);
- cout << "[" << D << "/0/0] " << a << " ^ " << b << " -> " << r << endl;
- return r;
- }
- template <int D, int OA, int OB, class R, class A, class B>
- R test_one_one_case(TestRecorder & tr, A const & a, B const & b)
- {
- R r1(GARBAGE);
- Wedge<D, OA, OB>::product(a, b, r1);
- cout << "[" << D << "/" << OA << "/" << OB << "] " << a << " ^ " << b << " -> " << r1 << endl;
- R r2(ra::wedge<D, OA, OB>(a, b));
- cout << "[" << D << "/" << OA << "/" << OB << "] " << a << " ^ " << b << " -> " << r2 << endl;
- tr.test_eq(r1, r2);
- return r1;
- }
- template <int D, int OA, int OB, class R, class A, class B>
- R test_one_scalar_case(A const & a, B const & b)
- {
- R r2(ra::wedge<D, OA, OB>(a, b));
- cout << "[" << D << "/" << OA << "/" << OB << "] " << a << " ^ " << b << " -> " << r2 << endl;
- return r2;
- }
- int main()
- {
- TestRecorder tr(std::cout);
- static_assert(ra::mp::n_over_p(0, 0)==1, "");
- tr.section("Testing FindCombination");
- {
- using la = ra::mp::iota<3>;
- using ca = ra::mp::combinations<la, 2>;
- FindCombinationTester<int_list<0, 1>, ca, 0, +1>::check();
- FindCombinationTester<int_list<1, 0>, ca, 0, -1>::check();
- FindCombinationTester<int_list<0, 2>, ca, 1, +1>::check();
- FindCombinationTester<int_list<2, 0>, ca, 1, -1>::check();
- FindCombinationTester<int_list<1, 2>, ca, 2, +1>::check();
- FindCombinationTester<int_list<2, 1>, ca, 2, -1>::check();
- FindCombinationTester<int_list<0, 0>, ca, -1, 0>::check();
- FindCombinationTester<int_list<1, 1>, ca, -1, 0>::check();
- FindCombinationTester<int_list<2, 2>, ca, -1, 0>::check();
- FindCombinationTester<int_list<3, 0>, ca, -1, 0>::check();
- }
- tr.section("Testing AntiCombination");
- {
- using la = ra::mp::iota<3>;
- using ca = ra::mp::combinations<la, 1>;
- using cc0 = ra::mp::AntiCombination<ra::mp::ref<ca, 0>, 3>::type;
- static_assert(ra::mp::check_idx<cc0, 1, 2>::value, "bad");
- using cc1 = ra::mp::AntiCombination<ra::mp::ref<ca, 1>, 3>::type;
- static_assert(ra::mp::check_idx<cc1, 2, 0>::value, "bad");
- using cc2 = ra::mp::AntiCombination<ra::mp::ref<ca, 2>, 3>::type;
- static_assert(ra::mp::check_idx<cc2, 0, 1>::value, "bad");
- }
- tr.section("Testing ChooseComponents");
- {
- using c1 = ra::mp::ChooseComponents<3, 1>::type;
- static_assert(ra::mp::len<c1> == 3, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c1, 0>, 0>::value, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c1, 1>, 1>::value, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c1, 2>, 2>::value, "bad");
- using c2 = ra::mp::ChooseComponents<3, 2>::type;
- static_assert(ra::mp::len<c2> == 3, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c2, 0>, 1, 2>::value, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c2, 1>, 2, 0>::value, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c2, 2>, 0, 1>::value, "bad");
- using c3 = ra::mp::ChooseComponents<3, 3>::type;
- static_assert(ra::mp::len<c3> == 1, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c3, 0>, 0, 1, 2>::value, "bad");
- }
- {
- using c0 = ra::mp::ChooseComponents<1, 0>::type;
- static_assert(ra::mp::len<c0> == 1, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c0, 0>>::value, "bad");
- using c1 = ra::mp::ChooseComponents<1, 1>::type;
- static_assert(ra::mp::len<c1> == 1, "bad");
- static_assert(ra::mp::check_idx<ra::mp::ref<c1, 0>, 0>::value, "bad");
- }
- tr.section("Testing Wedge<>::product()");
- {
- real1 a(1);
- real1 b(3);
- real1 r(GARBAGE);
- Wedge<1, 0, 0>::product(a, b, r);
- tr.info("[1/0/0] ", a, " ^ ", b, " -> ", r).test_eq(3, r[0]);
- real1 h(GARBAGE);
- hodgex<1, 0>(r, h);
- tr.info("thodge-star: ", h).test_eq(3, h[0]);
- }
- tr.section("change order changes sign");
- {
- real3 a {1, 0, 0};
- real3 b {0, 1, 0};
- real3 r(GARBAGE);
- Wedge<3, 1, 1>::product(a, b, r);
- tr.info("[3/1/1] ", a, " ^ ", b, " -> ", r).test_eq(real3{0, 0, +1}, r); // +1, 0, 0 in lex. order.
- real3 h(GARBAGE);
- hodgex<3, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(real3{0, 0, 1}, h);
- }
- {
- real3 a {0, 1, 0};
- real3 b {1, 0, 0};
- real3 r(GARBAGE);
- Wedge<3, 1, 1>::product(a, b, r);
- tr.info("[3/1/1] ", a, " ^ ", b, " -> ", r).test_eq(real3{0, 0, -1}, r); // -1, 0, 0 in lex order.
- real3 h(GARBAGE);
- hodgex<3, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(real3{0, 0, -1}, h);
- }
- tr.section("check type promotion");
- {
- complex3 a {complex(0, 1), 0, 0};
- real3 b{0, 1, 0};
- complex3 r(GARBAGE);
- Wedge<3, 1, 1>::product(a, b, r);
- tr.info("[3/1/1] ", a, " ^ ", b, " -> ", r).test_eq(complex3{0, 0, complex(0, 1)}, r); // +j, 0, 0 in lex. o.
- complex3 h(GARBAGE);
- hodgex<3, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(complex3{0, 0, complex(0, 1)}, h);
- }
- tr.section("sign change in going from lexicographic -> our peculiar order");
- {
- real3 a {1, 0, 0};
- real3 b {0, 0, 2};
- real3 r(GARBAGE);
- Wedge<3, 1, 1>::product(a, b, r);
- tr.info("[3/1/1] ", a, " ^ ", b, " -> ", r).test_eq(real3{0, -2, 0}, r); // 0, 2, 0 in lex order.
- real3 h(GARBAGE);
- hodgex<3, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(real3{0, -2, 0}, h);
- }
- {
- real3 a {1, 0, 2};
- real3 b {1, 0, 2};
- real3 r(GARBAGE);
- Wedge<3, 1, 1>::product(a, b, r);
- tr.info("[3/1/1] ", a, " ^ ", b, " -> ", r).test_eq(0., r);
- real3 h(GARBAGE);
- hodgex<3, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(0., h);
- }
- {
- real3 a {0, 1, 0};
- real3 b {0, -1, 0}; // 0, 1, 0 in lex order.
- real1 r(GARBAGE);
- Wedge<3, 1, 2>::product(a, b, r);
- tr.info("[3/1/2] ", a, " ^ ", b, " -> ", r).test_eq(-1, r[0]);
- real1 h(GARBAGE);
- hodgex<3, 3>(r, h);
- tr.info("\thodge-star: ", h).test_eq(-1, h[0]);
- // this is not forced for hodgex (depends on vec::ChooseComponents<> as used in Wedge<>) so if you change that, change this too.
- real3 c;
- hodgex<3, 1>(b, c);
- tr.info("hodge<3, 1>(", b, "): ", c).test_eq(real3{0, -1, 0}, b);
- hodgex<3, 2>(b, c);
- tr.info("hodge<3, 2>(", b, "): ", c).test_eq(real3{0, -1, 0}, b);
- }
- {
- real4 a {1, 0, 0, 0};
- real4 b {0, 0, 1, 0};
- real6 r(GARBAGE);
- Wedge<4, 1, 1>::product(a, b, r);
- tr.info("[4/1/1] ", a, " ^ ", b, " -> ", r).test_eq(real6{0, 1, 0, 0, 0, 0}, r);
- real6 h(GARBAGE);
- hodgex<4, 2>(r, h);
- tr.info("hodge-star: ", h).test_eq(real6{0, 0, 0, 0, -1, 0}, h);
- r = GARBAGE;
- hodgex<4, 2>(h, r);
- tr.info("hodge-star(hodge-star()): ", r).test_eq(real6{0, 1, 0, 0, 0, 0}, r);
- }
- {
- real4 a {0, 0, 1, 0};
- real4 b {1, 0, 0, 0};
- real6 r(GARBAGE);
- Wedge<4, 1, 1>::product(a, b, r);
- tr.info("[4/1/1] ", a, " ^ ", b, " -> ", r).test_eq(real6{0, -1, 0, 0, 0, 0}, r);
- }
- {
- real6 r {1, 0, 0, 0, 0, 0};
- real6 h(GARBAGE);
- hodgex<4, 2>(r, h);
- tr.info("r: ", r, " -> hodge-star: ", h).test_eq(real6{0, 0, 0, 0, 0, 1}, h);
- }
- tr.section("important as a case where a^b==b^a");
- {
- real6 a {1, 0, 0, 0, 0, 0};
- real6 b {0, 0, 0, 0, 0, 1};
- real1 r(GARBAGE);
- Wedge<4, 2, 2>::product(a, b, r);
- tr.info("[4/2/2] ", a, " ^ ", b, " -> ", r).test_eq(1, r[0]);
- Wedge<4, 2, 2>::product(b, a, r);
- tr.info("[4/2/2] ", a, " ^ ", b, " -> ", r).test_eq(1, r[0]);
- }
- tr.section("important as a case where a^a!=0, see DoCarmo1994, Ch. 1 after Prop. 2.");
- {
- real6 a {1, 0, 0, 0, 0, 1};
- real6 b {1, 0, 0, 0, 0, 1};
- real1 r(GARBAGE);
- Wedge<4, 2, 2>::product(a, b, r);
- tr.info("[4/2/2] ", a, " ^ ", b, " -> ", r).test_eq(2, r[0]);
- }
- tr.section("important as a case where a^b is not dot(a, b) even though O(a)=D-O(b). This happens when O(a)==O(b), i.e. they have the same components");
- {
- real2 a {1, 0};
- real2 b {0, 1};
- real1 r(GARBAGE);
- Wedge<2, 1, 1>::product(a, b, r);
- tr.info("[2/1/1] ", a, " ^ ", b, " -> ", r).test_eq(1, r[0]);
- real2 p{1, 2};
- real2 q(GARBAGE);
- hodgex<2, 1>(p, q);
- tr.info("p: ", p, " -> hodge-star: ", q).test_eq(real2{-2, 1}, q);
- }
- tr.section("test the specializations in cross(), wedge<>()");
- {
- real2 a {1, 0};
- real2 b {0, 1};
- real c(cross(a, b));
- tr.info("a cross b: ", c).test_eq(1, c);
- c = cross(b, a);
- tr.test_eq(-1, c);
- // accepts expr arguments.
- c = cross(a, b+1.);
- tr.test_eq(2, c);
- }
- tr.section("test the cross product some more");
- {
- real3 x3 {1., 0. ,0.};
- real3 y3 {0., 1., 0.};
- real3 z3 {0., 0., 1.};
- tr.test_eq(z3, cross(x3, y3));
- tr.test_eq(x3, cross(y3, z3));
- tr.test_eq(y3, cross(z3, x3));
- tr.test_eq(-z3, cross(y3, x3));
- tr.test_eq(-x3, cross(z3, y3));
- tr.test_eq(-y3, cross(x3, z3));
- real2 x2 {1., 0.};
- real2 y2 {0., 1.};
- tr.test_eq(1., cross(x2, y2));
- tr.test_eq(-1., cross(y2, x2));
- complex2 cy2{0., 1.};
- tr.test_eq(complex(1., 0.), cross(x2, cy2));
- }
- tr.section("verify that wedge<>() returns an expression where appropriate");
- {
- real3 u {1., 2., 3.};
- real3 v {3., 2., 1.};
- tr.test_eq(10., ra::wedge<3, 1, 2>(u, v));
- tr.test_eq(cross(u, v), ra::wedge<3, 1, 1>(u, v));
- tr.test_eq(10., ra::wedge<3, 1, 2>(u, v));
- }
- tr.section("verify that we are allowed to choose our return type to wedge<>(a, b, r)");
- {
- real a(GARBAGE);
- real1 b(GARBAGE);
- ra::wedge<2, 1, 1>(real2 {1, 0}, real2 {0, 1}, a);
- ra::wedge<2, 1, 1>(real2 {1, 0}, real2 {0, 1}, b);
- tr.test_eq(1, a);
- tr.test_eq(1, b[0]);
- }
- tr.section("check the optimization of hodgex() that relies on a complementary order of bases in the 2*O>D forms");
- {
- test_optimized_hodge<6>(tr);
- }
- tr.section("Test scalar arg cases");
- {
- tr.test_eq(6, test_scalar_case<0, real>(real1(2), real(3)));
- tr.test_eq(6, test_scalar_case<1, real>(real1(2), real(3)));
- tr.test_eq(6, test_scalar_case<0, real>(real(2), real(3)));
- tr.test_eq(6, test_scalar_case<1, real>(real(2), real(3)));
- tr.test_eq(6, test_scalar_case<0, real>(real(2), real1(3)));
- tr.test_eq(6, test_scalar_case<1, real>(real(2), real1(3)));
- tr.test_eq(6, test_scalar_case<0, real>(real1(2), real1(3)));
- tr.test_eq(6, test_scalar_case<1, real>(real1(2), real1(3)));
- tr.test_eq(6, test_scalar_case<0, real1>(real(2), real(3)));
- tr.test_eq(6, test_scalar_case<1, real1>(real(2), real(3)));
- tr.test_eq(6, test_scalar_case<0, real1>(real1(2), real(3)));
- tr.test_eq(6, test_scalar_case<1, real1>(real1(2), real(3)));
- tr.test_eq(6, test_scalar_case<0, real1>(real(2), real1(3)));
- tr.test_eq(6, test_scalar_case<1, real1>(real(2), real1(3)));
- tr.test_eq(6, test_scalar_case<0, real1>(real1(2), real1(3)));
- tr.test_eq(6, test_scalar_case<1, real1>(real1(2), real1(3)));
- }
- tr.section("Test scalar x nonscalar arg cases.");
- {
- tr.test_eq(real2{6, 10}, test_one_one_case<2, 0, 1, real2>(tr, real1(2), real2{3, 5}));
- tr.test_eq(real2{6, 10}, test_one_one_case<2, 1, 0, real2>(tr, real2{3, 5}, real1(2)));
- tr.test_eq(real3{2, 6, 10}, test_one_one_case<3, 0, 1, real3>(tr, real1(2), real3{1, 3, 5}));
- tr.test_eq(real3{2, 6, 10}, test_one_one_case<3, 1, 0, real3>(tr, real3{1, 3, 5}, real1(2)));
- }
- {
- tr.test_eq(real2{6, 10}, test_one_scalar_case<2, 0, 1, real2>(real1(2), real2{3, 5}));
- tr.test_eq(real2{6, 10}, test_one_scalar_case<2, 1, 0, real2>(real2{3, 5}, real1(2)));
- tr.test_eq(real3{2, 6, 10}, test_one_scalar_case<3, 0, 1, real3>(real1(2), real3{1, 3, 5}));
- tr.test_eq(real3{2, 6, 10}, test_one_scalar_case<3, 1, 0, real3>(real3{1, 3, 5}, real1(2)));
- }
- tr.section("Test scalar x ~scalar arg cases.");
- {
- tr.test_eq(6., ra::wedge<1, 0, 1>(3., complex1(2.)));
- }
- return tr.summary();
- }
|