123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- // -*- mode: c++; coding: utf-8 -*-
- // ra-ra/test - Array reductions.
- // (c) Daniel Llorens - 2014
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #include <iostream>
- #include <iterator>
- #include "ra/test.hh"
- #include "mpdebug.hh"
- using std::cout, std::endl, std::flush, std::tuple, ra::TestRecorder;
- using real = double;
- using complex = std::complex<double>;
- using ra::sqrm;
- int main()
- {
- TestRecorder tr(std::cout);
- tr.section("amax with different expr types");
- {
- auto test_amax_expr = [&tr](auto && a, auto && b)
- {
- a = ra::Small<real, 2, 2> {1, 2, 9, -10};
- tr.test_eq(amax(a), 9);
- b = ra::Small<real, 2, 2> {1, 1, 1, 1};
- tr.test_eq(amax(a+b), 10);
- };
- test_amax_expr(ra::Unique<real, 2>({2, 2}, 0.), ra::Unique<real, 2>({2, 2}, 0.));
- test_amax_expr(ra::Small<real, 2, 2>(), ra::Small<real, 2, 2>());
- // failed in gcc 5.1 when amax() took its args by plain auto (now auto &&).
- test_amax_expr(ra::Unique<real, 2>({2, 2}, 0.), ra::Small<real, 2, 2>());
- }
- tr.section("every / any");
- {
- tr.test(every(ra::Unique<real, 2>({4, 4}, 10+ra::_0-ra::_1)));
- tr.test(any(ra::Unique<real, 2>({4, 4}, ra::_0-ra::_1)));
- tr.test(ra::every(true));
- tr.test(!ra::every(false));
- tr.test(ra::any(true));
- tr.test(!ra::any(false));
- tr.test(every(ra::Unique<int, 1> {5, 5}==5));
- tr.test(!every(ra::Unique<int, 1> {2, 5}==5));
- tr.test(!every(ra::Unique<int, 1> {5, 2}==5));
- tr.test(!every(ra::Unique<int, 1> {2, 3}==5));
- tr.test(any(ra::Unique<int, 1> {5, 5}==5));
- tr.test(any(ra::Unique<int, 1> {2, 5}==5));
- tr.test(any(ra::Unique<int, 1> {5, 2}==5));
- tr.test(!any(ra::Unique<int, 1> {2, 3}==5));
- }
- tr.section("norm2");
- {
- ra::Small<real, 2> a {1, 2};
- tr.test_abs(std::sqrt(5.), norm2(a), 1e-15);
- ra::Small<float, 2> b {1, 2};
- tr.test_abs(std::sqrt(5.f), norm2(b), 4e-8);
- tr.info("type of norm2(floats)").test(std::is_same_v<float, decltype(norm2(b))>);
- tr.info("type of reduce_sqrm(floats)").test(std::is_same_v<float, decltype(reduce_sqrm(b))>);
- tr.info("type of sqrm(floats)").test(std::is_same_v<float, decltype(sqrm(b[0]))>);
- }
- tr.section("normv");
- {
- ra::Small<real, 2> a {1, 2};
- ra::Small<real, 2> b;
- b = normv(a);
- cout << "normv of lvalue: " << b << endl;
- tr.test_eq(b[0], 1./sqrt(5));
- tr.test_eq(b[1], 2./sqrt(5));
- b = normv(ra::Small<real, 2> {2, 1});
- cout << "normv of rvalue: "<< b << endl;
- tr.test_eq(b[0], 2./sqrt(5));
- tr.test_eq(b[1], 1./sqrt(5));
- }
- tr.section("reductions");
- {
- auto test_dot = [](auto && test) // TODO Use this for other real reductions.
- {
- test(ra::Small<complex, 2>{1, 2}, ra::Small<real, 2>{3, 4});
- test(ra::Small<real, 2>{1, 2}, ra::Small<complex, 2>{3, 4});
- test(ra::Small<real, 2>{1, 2}, ra::Small<real, 2>{3, 4});
- test(ra::Small<complex, 2>{1, 2}, ra::Small<complex, 2>{3, 4});
- test(ra::Big<complex, 1>{1, 2}, ra::Big<real, 1>{3, 4});
- test(ra::Big<real, 1>{1, 2}, ra::Big<complex, 1>{3, 4});
- test(ra::Big<real, 1>{1, 2}, ra::Big<real, 1>{3, 4});
- test(ra::Big<complex, 1>{1, 2}, ra::Big<complex, 1>{3, 4});
- test(ra::Small<complex, 2>{1, 2}, ra::Big<real, 1>{3, 4});
- test(ra::Small<real, 2>{1, 2}, ra::Big<complex, 1>{3, 4});
- test(ra::Small<real, 2>{1, 2}, ra::Big<real, 1>{3, 4});
- test(ra::Small<complex, 2>{1, 2}, ra::Big<complex, 1>{3, 4});
- test(ra::Big<complex, 1>{1, 2}, ra::Small<real, 2>{3, 4});
- test(ra::Big<real, 1>{1, 2}, ra::Small<complex, 2>{3, 4});
- test(ra::Big<real, 1>{1, 2}, ra::Small<real, 2>{3, 4});
- test(ra::Big<complex, 1>{1, 2}, ra::Small<complex, 2>{3, 4});
- };
- test_dot([&tr](auto && a, auto && b) { tr.test_eq(11., dot(a, b)); });
- test_dot([&tr](auto && a, auto && b) { tr.test_eq(11., cdot(a, b)); });
- test_dot([&tr](auto && a, auto && b) { tr.test_eq(sqrt(8.), norm2(a-b)); });
- test_dot([&tr](auto && a, auto && b) { tr.test_eq(8., reduce_sqrm(a-b)); });
- auto test_cdot = [](auto && test)
- {
- test(ra::Small<complex, 2>{1, complex(2, 3)}, ra::Small<complex, 2>{complex(4, 5), 6});
- test(ra::Big<complex, 1>{1, complex(2, 3)}, ra::Small<complex, 2>{complex(4, 5), 6});
- test(ra::Small<complex, 2>{1, complex(2, 3)}, ra::Big<complex, 1>{complex(4, 5), 6});
- test(ra::Big<complex, 1>{1, complex(2, 3)}, ra::Big<complex, 1>{complex(4, 5), 6});
- };
- complex value = conj(1.)*complex(4., 5.) + conj(complex(2., 3.))*6.;
- tr.test_eq(value, complex(16, -13));
- test_cdot([&tr](auto && a, auto && b) { tr.test_eq(complex(16., -13.), cdot(a, b)); });
- test_cdot([&tr](auto && a, auto && b) { tr.test_eq(sqrt(59.), norm2(a-b)); });
- test_cdot([&tr](auto && a, auto && b) { tr.test_eq(59., reduce_sqrm(a-b)); });
- auto test_sum = [](auto && test)
- {
- test(ra::Small<complex, 2>{complex(4, 5), 6});
- test(ra::Big<complex, 1>{complex(4, 5), 6});
- };
- test_sum([&tr](auto && a) { tr.test_eq(complex(10, 5), sum(a)); });
- test_sum([&tr](auto && a) { tr.test_eq(complex(24, 30), prod(a)); });
- test_sum([&tr](auto && a) { tr.test_eq(sqrt(41.), amax(abs(a))); });
- test_sum([&tr](auto && a) { tr.test_eq(6., amin(abs(a))); });
- }
- tr.section("amax/amin ignore NaN");
- {
- constexpr real QNAN = std::numeric_limits<real>::quiet_NaN();
- tr.test_eq(std::numeric_limits<real>::lowest(), std::max(std::numeric_limits<real>::lowest(), QNAN));
- tr.test_eq(-std::numeric_limits<real>::infinity(), amax(ra::Small<real, 3>(QNAN)));
- tr.test_eq(std::numeric_limits<real>::infinity(), amin(ra::Small<real, 3>(QNAN)));
- }
- // TODO these reductions require a destination argument; there are no exprs really.
- tr.section("to sum columns in crude ways");
- {
- ra::Unique<real, 2> A({100, 111}, ra::_0 - ra::_1);
- ra::Unique<real, 1> B({100}, 0.);
- for (int i=0, iend=A.len(0); i<iend; ++i) {
- B(i) = sum(A(i));
- }
- {
- ra::Unique<real, 1> C({100}, 0.);
- for_each([](auto & c, auto a) { c += a; }, C, A);
- tr.test_eq(B, C);
- }
- // This depends on matching frames for += just as for any other op, which is at odds with e.g. amend.
- {
- ra::Unique<real, 1> C({100}, 0.);
- C += A;
- tr.test_eq(B, C);
- }
- // Same as above.
- {
- ra::Unique<real, 1> C({100}, 0.);
- C = C + A;
- tr.test_eq(B, C);
- }
- // It cannot work with a lhs scalar value since += must be a class member, but it will work with a rank 0 array or with ra::Scalar.
- {
- ra::Unique<real, 0> C({}, 0.);
- C += A(0);
- tr.test_eq(B(0), C);
- real c(0.);
- ra::scalar(c) += A(0);
- tr.test_eq(B(0), c);
- }
- // This will fail because the assumed driver (ANY) has lower actual rank than the other argument. TODO check that it fails.
- // {
- // ra::Unique<real, 2> A({2, 3}, {1, 2, 3, 4 ,5, 6});
- // ra::Unique<real> C({}, 0.);
- // C += A(0);
- // }
- }
- tr.section("to sum rows in crude ways");
- {
- ra::Unique<real, 2> A({100, 111}, ra::_0 - ra::_1);
- ra::Unique<real, 1> B({111}, 0.);
- for (int j=0, jend=A.len(1); j<jend; ++j) {
- B(j) = sum(A(ra::all, j));
- }
- {
- ra::Unique<real, 1> C({111}, 0.);
- for_each([&C](auto && a) { C += a; }, A.iter<1>());
- tr.info("rhs iterator of rank > 0").test_eq(B, C);
- }
- {
- ra::Unique<real, 1> C({111}, 0.);
- for_each(ra::wrank<1, 1>([](auto & c, auto && a) { c += a; }), C, A);
- tr.info("rank conjuction").test_eq(B, C);
- }
- {
- ra::Unique<real, 1> C({111}, 0.);
- for_each(ra::wrank<1, 1>(ra::wrank<0, 0>([](auto & c, auto a) { c += a; })), C, A);
- tr.info("double rank conjunction").test_eq(B, C);
- }
- {
- ra::Unique<real, 1> C({111}, 0.);
- ra::scalar(C) += A.iter<1>();
- tr.info("scalar() and iterators of rank > 0").test_eq(B, C);
- }
- {
- ra::Unique<real, 1> C({111}, 0.);
- C.iter<1>() += A.iter<1>();
- tr.info("assign to iterators of rank > 0").test_eq(B, C);
- }
- }
- tr.section("reductions with amax");
- {
- ra::Big<int, 2> c({2, 3}, {1, 3, 2, 7, 1, 3});
- tr.info("max of rows").test_eq(ra::Big<int, 1> {3, 7}, map([](auto && a) { return amax(a); }, iter<1>(c)));
- ra::Big<int, 1> m({3}, 0);
- scalar(m) = max(scalar(m), iter<1>(c)); // requires inner forward in ra.hh: DEF_NAME_OP
- tr.info("max of columns I").test_eq(ra::Big<int, 1> {7, 3, 3}, m);
- m = 0;
- iter<1>(m) = max(iter<1>(m), iter<1>(c)); // FIXME
- tr.info("max of columns III [ma113]").test_eq(ra::Big<int, 1> {7, 3, 3}, m);
- m = 0;
- for_each([&m](auto && a) { m = max(m, a); }, iter<1>(c));
- tr.info("max of columns II").test_eq(ra::Big<int, 1> {7, 3, 3}, m);
- ra::Big<double, 1> q({0}, {});
- tr.info("amax default").test_eq(std::numeric_limits<double>::infinity(), amin(q));
- tr.info("amin default").test_eq(-std::numeric_limits<double>::infinity(), amax(q));
- }
- tr.section("vector-matrix reductions");
- {
- auto test = [&tr](auto t, auto s, auto r)
- {
- using T = decltype(t);
- using S = decltype(s);
- using R = decltype(r);
- S x[4] = {1, 2, 3, 4};
- ra::Small<T, 3, 4> a = ra::_0 - ra::_1;
- R y[3] = {99, 99, 99};
- ra::start(y) = ra::gemv(a, x);
- auto z = ra::gemv(a, x);
- tr.test_eq(ra::Small<R, 3> {-20, -10, 0}, y);
- tr.test_eq(ra::Small<R, 3> {-20, -10, 0}, z);
- };
- test(double(0), double(0), double(0));
- test(std::complex<double>(0), std::complex<double>(0), std::complex<double>(0));
- test(int(0), int(0), int(0));
- test(int(0), double(0), double(0));
- test(double(0), int(0), double(0));
- }
- {
- auto test = [&tr](auto t, auto s, auto r)
- {
- using T = decltype(t);
- using S = decltype(s);
- using R = decltype(r);
- S x[4] = {1, 2, 3, 4};
- ra::Small<T, 4, 3> a = ra::_1 - ra::_0;
- R y[3] = {99, 99, 99};
- ra::start(y) = ra::gevm(x, a);
- auto z = ra::gevm(x, a);
- tr.test_eq(ra::Small<R, 3> {-20, -10, 0}, y);
- tr.test_eq(ra::Small<R, 3> {-20, -10, 0}, z);
- };
- test(double(0), double(0), double(0));
- test(std::complex<double>(0), std::complex<double>(0), std::complex<double>(0));
- test(int(0), int(0), int(0));
- test(int(0), double(0), double(0));
- test(double(0), int(0), double(0));
- }
- tr.section("matrix-matrix reductions");
- {
- ra::Big<double, 2> A({0, 0}, 0.);
- ra::Big<double, 2> B({0, 0}, 0.);
- auto C = gemm(A, B);
- tr.test_eq(0, C.len(0));
- tr.test_eq(0, C.len(1));
- }
- tr.section("reference reductions");
- {
- ra::Big<double, 2> A({2, 3}, ra::_1 - ra::_0);
- double & mn = refmin(A);
- tr.test_eq(-1, mn);
- mn = -99;
- ra::Big<double, 2> B({2, 3}, ra::_1 - ra::_0);
- B(1, 0) = -99;
- tr.test_eq(B, A);
- double & mx = refmin(A, std::greater<double>());
- tr.test_eq(2, mx);
- mx = 0;
- B(0, 2) = 0;
- tr.test_eq(B, A);
- double & my = refmax(A);
- tr.test_eq(1, my);
- my = 77;
- B(0, 1) = 77;
- tr.test_eq(B, A);
- // cout << refmin(A+B) << endl; // compile error
- }
- return tr.summary();
- }
|