123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900 |
- ; (c) Daniel Llorens - 2012-2013
- ; Tests for (ploy ploy).
- ; This library is free software; you can redistribute it and/or modify it under
- ; the terms of the GNU General Public License as published by the Free
- ; Software Foundation; either version 3 of the License, or (at your option) any
- ; later version.
- (import (srfi srfi-1) (srfi srfi-9) (srfi srfi-26) (ploy basic) (ploy ploy)
- (ploy test))
- (assert (= 99 (array-from #0(99))))
- (assert (= 99 (array-from #(99) 0)))
- (assert (= 99 (array-from (array-from #2((55 77) (77 99)) 1) 1)))
- (define a (array-copy #t #3(((0 1) (2 3)) ((4 5) (6 7)))))
- (array-amend! a #(12 13) 0 1)
- (T a #3(((0 1) (12 13)) ((4 5) (6 7))))
- (array-amend! a #2((10 11) (12 13)) 0)
- (T a #3(((10 11) (12 13)) ((4 5) (6 7))))
- (define (test-A A)
- (for-each
- (lambda (d)
- (let ((data (if (zero? d) '(()) (apply list-product (map iota (take ($ A) d))))))
- (for-each
- (lambda (i)
- (T (apply array-from A i) (apply array-from A i)))
- data)))
- (iota (+ 1 (rank A)))))
- (test-A (i. 2 3 2))
- (test-A (i. 2 3))
- (test-A (i. 2))
- (test-A (i.))
- ; @TODO benchmark this other version of i., maybe C.
- (define (i.* . args)
- (let* ((a (apply make-array *unspecified* args))
- (a1 (array-contents a))
- (z (tally a1)))
- (let loop ((i 0))
- (cond ((< i z) (array-set! a1 i i) (loop (1+ i)))
- (else a)))))
- ; ---------------------------------------------
- ; reshape (@TODO complete).
- ; ---------------------------------------------
- ; corner cases, allow placeholder to be zero.
- (T (reshape (i. 0 3) #t 2) #2:0:2())
- (T (reshape (i. 3 0) #t 2) #2:0:2())
- (T (reshape (i. 0 3) 2 #t) #2(() ()))
- (T (reshape (i. 3 0) 2 #t) #2(() ()))
- ; corner cases, flag error if placeholder can't be computed.
- (assert-fail (reshape (i. 3 2) 0 #t) "bad dim deduction with empty shape")
- (T-msg "bad size deduction from scalar" #(9) (reshape 9 #t))
- ; doc examples.
- (T (reshape (i. 2 3) 6) #(0 1 2 3 4 5))
- (T (reshape (i. 2 3) 5) #(0 1 2 3 4))
- (T (reshape (i. 2 3) 7) #(0 1 2 3 4 5 0))
- (T (reshape (i. 2 3) 3 2) #2((0 1) (2 3) (4 5)))
- (T (reshape (i. 2 3) 2 2 2) #3(((0 1) (2 3)) ((4 5) (0 1))))
- (T (reshape (i. 2 3) 4 2) #2((0 1) (2 3) (4 5) (0 1)))
- (T (reshape (i. 2 3) #t 2) #2((0 1) (2 3) (4 5)))
- (T (reshape (i. 2 3) 2 #t) #2((0 1 2) (3 4 5)))
- (T (reshape (i. 2 3) #t) #(0 1 2 3 4 5))
- (T (reshape (i. 2 3) 0 3) #2:0:3())
- (T (reshape (i. 2 3) 0) #())
- (T (reshape (i. 2 3) 0 0 0) #3())
- (assert-fail (reshape (i. 2 3) 0 #t))
- (assert-fail (reshape (i. 2 3) 4 #t))
- (T (reshape (i. 2 3)) 0)
- ; ---------------------------------------------
- ; simpler ply. Match frames at each nesting level, no types. Lots of copying,
- ; testing only. @TODO This approach could work for nested (ragged) vectors.
- ; ---------------------------------------------
- (define (match-frame* A f r)
- (cond ((= (length f) (- (rank A) r))
- A)
- ((not (array? A))
- (match-frame* (make-array A) f r))
- (else
- (apply make-shared-array A
- (lambda i (append (take i (- (rank A) r)) (take-right i r)))
- (append f (take-right ($ A) r))))))
- (define (prefix-frame* A r)
- "Frame common to all arrays A with cell ranks r"
- (fold (lambda (A r f)
- (let ((fA (drop-right! ($ A) r)))
- (let loop ((s f) (sA fA))
- (cond ((null? sA) f)
- ((null? s) fA)
- ((= (car s) (car sA)) (loop (cdr s) (cdr sA)))
- (else (error "shape clash" A r))))))
- '() A r))
- (define (ply* op . a)
- (let ((op (if (verb? op) op (verb op))))
- (let ((ro (apply verb-actual-ri op (map rank a)))
- (sop (if (verb-final? op)
- (verb-op op)
- (lambda a (apply ply* (verb-op op) a)))))
- (let ((f (prefix-frame* a ro)))
- (if (null? f)
- (apply sop a)
- (let ((a (map (cut match-frame* <> f <>) a ro)))
- (collapse-array
- #t
- (let ((o (apply make-array *unspecified* f)))
- (apply array-map/frame! o f sop a)
- o))))))))
- ; prefix-frame*, match-frame*
- (define x 3)
- (define A #(1 2 3))
- (define B #2((1 2) (1 2) (1 2)))
- (define f00 (prefix-frame* (list A B) (list 0 0)))
- (define f01 (prefix-frame* (list A B) (list 0 1)))
- (define f10 (prefix-frame* (list A B) (list 1 0)))
- (define f11 (prefix-frame* (list A B) (list 1 1)))
- (define f00_ (prefix-frame* (list B A) (list 0 0)))
- (define f01_ (prefix-frame* (list B A) (list 1 0)))
- (define f10_ (prefix-frame* (list B A) (list 0 1)))
- (define f11_ (prefix-frame* (list B A) (list 1 1)))
- (assert (equal? f00 f00_ '(3 2)))
- (assert (equal? f01 f01_ '(3)))
- (assert (equal? f10 f10_ '(3 2)))
- (assert (equal? f11 f11_ '(3)))
- (T (match-frame* A f00 0) #2((1 1) (2 2) (3 3)))
- (T (match-frame* B f00 0) #2((1 2) (1 2) (1 2)))
- (T (match-frame* A f01 0) #(1 2 3))
- (T (match-frame* B f01 1) #2((1 2) (1 2) (1 2)))
- (T (match-frame* A f10 1) #3(((1 2 3) (1 2 3)) ((1 2 3) (1 2 3)) ((1 2 3) (1 2 3))))
- (T (match-frame* B f10 0) #2((1 2) (1 2) (1 2)))
- (T (match-frame* A f11 1) #2((1 2 3) (1 2 3) (1 2 3)))
- (T (match-frame* B f11 1) #2((1 2) (1 2) (1 2)))
- (T '(2) (prefix-frame* '(#2((0 0) (0 0)) #(0 0)) '(1 1)))
- (T 9 (match-frame* 9 '() 0))
- (define x 3)
- (define A #(1 2 3))
- (define B #2((1 2 3) (1 2 3) (1 2 3)))
- (T (ply - A B) (ply* - A B) #2((0 -1 -2) (1 0 -1) (2 1 0)))
- (T (ply - B A) (ply* - B A) #2((0 1 2) (-1 0 1) (-2 -1 0)))
- (T (ply - x A) (ply* - x A) #(2 1 0))
- (T (ply - x B) (ply* - x B) #2((2 1 0) (2 1 0) (2 1 0)))
- (T (ply - A x) (ply* - A x) #(-2 -1 0))
- (T (ply - B x) (ply* - B x) #2((-2 -1 0) (-2 -1 0) (-2 -1 0)))
- ; rank 0 inner op, deduced...
- (T (ply + #(10 20) #2((1 2 3) (1 2 3)))
- #2((11 12 13) (21 22 23)))
- ; a case that requires rank>2 loop.
- ; (10 20) + (2 2 2 $ 1 + i. 8)
- (T (ply + #(10 20) (reshape #(1 2 3 4 5 6 7 8) 2 2 2))
- #3(((11 12) (13 14)) ((25 26) (27 28))))
- ; rank 0 inner op, explicit.
- (T (ply (verb + '() 0 0) #(10 20) #2((1 2 3) (1 2 3)))
- #2((11 12 13) (21 22 23)))
- ; specifying output rank.
- (T (ply (verb + '() 0 0) #(10 20) #2((1 2 3) (1 2 3)))
- #2((11 12 13) (21 22 23)))
- ; rank 0 with wrapped ranks.
- ; (10 * 1 + i.2) (+"0 0) (2 3 $ 1 2 3 1 2 3)
- (T (ply (w/rank + 0 0) #(10 20) #2((1 2 3) (1 2 3)))
- #2((11 12 13) (21 22 23)))
- ; (10 * 1 + i.3) (+"1 1) (2 3 $ 1 2 3 1 2 3)
- (T (ply (w/rank + 1 1) #(10 20 30) #2((1 2 3) (1 2 3)))
- #2((11 22 33) (11 22 33)))
- ; (10 * 1 + i.3) (+"1 0) (2 3 $ 1 2 3 5 6 7)
- (T (ply (w/rank + 1 0) #(10 20 30) #2((1 2 3) (5 6 7)))
- #3(((11 21 31) (12 22 32) (13 23 33)) ((15 25 35) (16 26 36) (17 27 37))))
- ; (10 * 1 + i.2) (+"1 2) (2 3 $ 1 2 3 5 6 7)
- (T (ply (w/rank + 1 2) #(10 20) #2((1 2 3) (5 6 7)))
- #2((11 12 13) (25 26 27)))
- ; rank 0 with nested ranks.
- ; 100 200 300 +"0"0 _ (1 2 3 4) NB. From Rich2006 ch. 6
- (T (ply (w/rank (w/rank + 0 0) 0 '_) #(100 200 300) #(1 2 3 4))
- #2((101 102 103 104) (201 202 203 204) (301 302 303 304)))
- ; 100 200 +"0"_ 0 (1 2 3) NB. From Rich2006 ch. 6
- (T (ply (w/rank (w/rank + 0 0) '_ 0) #(100 200) #(1 2 3))
- #2((101 201) (102 202) (103 203)))
- (define (_sqr a) (* a a))
- (define _sqrm
- (verb (lambda (a)
- (array-fold (lambda (a c) (+ c (_sqr (real-part a)) (_sqr (imag-part a))))
- 0. a))
- #f 1))
- (define _sqrmd
- (verb (lambda (a b)
- (array-fold (lambda (a b c)
- (let ((a (- a b)))
- (+ c (_sqr (real-part a)) (_sqr (imag-part a)))))
- 0. a b))
- #f 1 1))
- ; rank 1 inner op.
- (T-eps 0. (ply _sqrm #2((1 1 1) (2 2 2))) #(3. 12.))
- (T (ply (verb tally '() 1) #2((1 1 1) (2 2 2))) #(3 3))
- ; specifying output rank, so collapse-rank can be elided.
- (T (ply (verb from (lambda (x y) '(3)) -1 0)
- (array-copy 's32 (i. 3 3 3))
- #(2 0 1))
- ; alternative: output-shape will be called with the shapes of the cells.
- (ply (verb from (lambda (x y) (cdr x)) -1 0)
- (array-copy 's32 (i. 3 3 3))
- #(2 0 1))
- #2s32((6 7 8) (9 10 11) (21 22 23)))
- ; @TODO since the output is pile'd, any output rank is ok. However, this should somehow be known in advance to preallocate the result array.
- (T (ply (verb (cut sort <> <) #f 1) #2((4 2 1) (1 3 2)))
- #2((1 2 4) (1 2 3)))
- (define _cross (verb (lambda (a b)
- (let ((a (cut array-ref a <>))
- (b (cut array-ref b <>)))
- (vector (- (* (a 1) (b 2)) (* (a 2) (b 1)))
- (- (* (a 2) (b 0)) (* (a 0) (b 2)))
- (- (* (a 0) (b 1)) (* (a 1) (b 0))))))
- #f 1 1))
- ; rank 1 with rank extension.
- (T (ply _cross #2((1 0 0) (0 1 0)) #2((0 1 0) (0 0 1)))
- #2((0 0 1) (1 0 0)))
- (T (ply _cross #(1 0 0) #(0 0 1))
- #(0 -1 0))
- (T (ply _cross #2((1 0 0) (0 1 0)) #(0 0 1))
- #2((0 -1 0) (1 0 0)))
- (T (ply _cross #(0 0 1) #2((1 0 0) (0 1 0)))
- #2((0 1 0) (-1 0 0)))
- ; rank 1 with wrapped rank.
- (T (ply (w/rank _cross 2 1) #2((1 0 0) (0 1 0)) #(0 0 1))
- #2((0 -1 0) (1 0 0)))
- (T (ply _cross #3(((1 0 0) (0 1 0)) ((2 0 0) (0 2 0))) #(0 0 1))
- #3(((0 -1 0) (1 0 0)) ((0 -2 0) (2 0 0))))
- (T (ply _cross #3(((1 0 0) (0 1 0)) ((2 0 0) (0 2 0))) #2((0 0 1) (0 0 2)))
- #3(((0 -1 0) (1 0 0)) ((0 -4 0) (4 0 0))))
- (T (ply (w/rank _cross 2 2) #3(((1 0 0) (0 1 0)) ((2 0 0) (0 2 0))) #2((0 0 1) (0 0 2)))
- #3(((0 -1 0) (2 0 0)) ((0 -2 0) (4 0 0))))
- (T (ply (w/rank _cross 3 2) #3(((1 0 0) (0 1 0)) ((2 0 0) (0 2 0))) #2((0 0 1) (0 0 2)))
- #3(((0 -1 0) (1 0 0)) ((0 -4 0) (4 0 0))))
- ; rank 2.
- (define (_invert a)
- (let* ((a (cut array-ref a <> <>))
- (D (- (* (a 0 0) (a 1 1)) (* (a 0 1) (a 1 0)))))
- (reshape `#(,(a 1 1) ,(- (a 0 1)) ,(- (a 1 0)) ,(a 0 0)) 2 2)))
- (T-eps 0.0
- (ply (verb _invert values 2) #3(((1 0) (0 1)) ((1 1) (0 1))))
- #3(((1.0 0.0) (0.0 1.0)) ((1.0 -1.0) (0.0 1.0))))
- ; mixed ranks inner op (in J( { b. 0 -> 1 0 _ )
- ; (2 2 $ 3 2 0 1) { 1 2 3 4
- (T (ply (verb from #f 1 0) #(1 2 3 4) #2((3 2) (0 1)))
- #2((4 3) (1 2)))
- ; 0 1 1 0 { (2 2 $ 3 2 0 1)
- (T (ply (verb from #f 2 0) #2((3 2) (0 1)) #(0 1 1 0))
- #2((3 2) (0 1) (0 1) (3 2)))
- ; 0 1 1 0 ({"1 2) (2 2 $ 3 2 0 1)
- (T (ply (w/rank (verb from #f 2 0) 2 1) #2((3 2) (0 1)) #(0 1 1 0))
- #2((3 2) (0 1) (0 1) (3 2)))
- ; (2 2 $ 0 1 1 0) { (2 2 $ 3 2 0 1)
- (T (ply (verb from #f 2 0) #2((3 2) (0 1)) #2((0 1) (1 0)))
- #3(((3 2) (0 1)) ((0 1) (3 2))))
- ; (2 2 $ 0 1 1 0) ({"1 2) (2 2 $ 3 2 0 1)
- (T (ply (w/rank (verb from #f 2 0) 2 1) #2((3 2) (0 1)) #2((0 1) (1 0)))
- #3(((3 2) (0 1)) ((0 1) (3 2))))
- ; (2 2 $ 0 1 1 0) ({"2 1) (2 2 $ 3 2 0 1)
- (T (ply (w/rank (verb from #f '_ 0) 1 2) #2((3 2) (0 1)) #2((0 1) (1 0)))
- #3(((3 2) (2 3)) ((0 1) (1 0))))
- ; (i. 3 4) +"1"2 i. 2 3 4
- (T (ply (w/rank (w/rank + 1 1) 2 2) (i. 3 4) (i. 2 3 4))
- #3(((0 2 4 6) (8 10 12 14) (16 18 20 22)) ((12 14 16 18) (20 22 24 26) (28 30 32 34))))
- ; re$* provides a case with output rank > input rank. Also a case where inner op rank is larger than out.
- ; note that J $ uses the list of items to fill the shape, so s $ a ~ (re$* s (from a 0)).
- (define (re$* s a)
- (let ((rs (tally s)))
- (apply make-shared-array
- (if (array? a) a (make-typed-array (array-type* a) a))
- (lambda i (drop i rs))
- (append (vector->list s) ($ a)))))
- ; (2 3) $ 1 2 $ 1 2
- (T (ply (verb re$* #f 1 '_) #(2 3) #(1 2))
- #3(((1 2) (1 2) (1 2)) ((1 2) (1 2) (1 2))))
- ; (2 3) ($"1 0) 1 2 $ 1 2
- (T (ply (w/rank (verb re$* #f 1 '_) 1 0) #(2 3) #(1 2))
- #3(((1 1 1) (1 1 1)) ((2 2 2) (2 2 2))))
- ; exercise a case with in rank 0, out rank > 0, where there's a work around array-map's output.
- ; (2 3) ($"1 0) 1 3 $ 1 2 3
- (T (ply (verb (cut re$* #(2 3) <>) #f 0) #(1 2 3))
- #3(((1 1 1) (1 1 1)) ((2 2 2) (2 2 2)) ((3 3 3) (3 3 3))))
- ; This is J $. J considers a scalar to have 1 item, so that's a special case.
- ; @TODO Don't reuse reshape, we know more here and can avoid work.
- ; @TODO interesting case for oshape (can do better than #f).
- (define (reshape-J s A)
- (if (zero? (rank A))
- (apply make-array A (vector->list s))
- (apply reshape A (append (vector->list s) (cdr ($ A))))))
- ; (2 3) $ 1 2
- (T (ply (verb reshape-J #f 1 '_) #(2 3) #(1 2))
- #2((1 2 1) (2 1 2)))
- ; (2 3) $ 2 2 $ 1 2 3 4
- (T (ply (verb reshape-J #f 1 '_) #(2 3) #2((1 2) (3 4)))
- #3(((1 2) (3 4) (1 2)) ((3 4) (1 2) (3 4))))
- ; (2 3) ($"1 0) 1 2
- (T (ply (w/rank (verb reshape-J #f 1 '_) 1 0) #(2 3) #(1 2))
- #3(((1 1 1) (1 1 1)) ((2 2 2) (2 2 2))))
- ; empty arrays.
- (T (ply + (i. 0 2) 7) #2:0:2())
- (T (ply + (i. 2 0) 7) #2(() ()))
- ; ------------------------
- ; other tests with higher rank arrays.
- ; ------------------------
- ; single ply; marred by array copying and no-op looping.
- ; see w/rank chain in (0 0 0 1) -> (0 0 1 1) -> (0 1 1 1) out.
- (define (_meshgrid . l)
- (let ((n (length l)))
- (apply
- ply/t 'f64
- (let loop ((i (- n 1)))
- (if (zero? i)
- vector
- (apply w/rank (loop (- i 1)) (append (make-list (- n i) 0) (make-list i 1)))))
- l)))
- (define (_meshgrid-last . l)
- (let ((n (length l)))
- (apply
- ply/t 'f64
- (let loop ((i (- n 1)))
- (if (zero? i)
- vector
- (apply w/rank (loop (- i 1)) (append (make-list i 1) (make-list (- n i) 0)))))
- l)))
- (T (apply _meshgrid (map i. (iota 4 1)))
- (apply ply/t 'f64 (w/rank (w/rank (w/rank vector 0 0 0 1) 0 0 1 1) 0 1 1 1)
- (map i. (iota 4 1)))
- #5f64(((((0 0 0 0) (0 0 0 1) (0 0 0 2) (0 0 0 3))
- ((0 0 1 0) (0 0 1 1) (0 0 1 2) (0 0 1 3))
- ((0 0 2 0) (0 0 2 1) (0 0 2 2) (0 0 2 3)))
- (((0 1 0 0) (0 1 0 1) (0 1 0 2) (0 1 0 3))
- ((0 1 1 0) (0 1 1 1) (0 1 1 2) (0 1 1 3))
- ((0 1 2 0) (0 1 2 1) (0 1 2 2) (0 1 2 3))))))
- (T (apply _meshgrid-last (map i. (iota 4 1)))
- (apply ply/t 'f64 (w/rank (w/rank (w/rank vector 1 0 0 0) 1 1 0 0) 1 1 1 0)
- (map i. (iota 4 1)))
- #5f64(((((0 0 0 0)) ((0 1 0 0))) (((0 0 1 0)) ((0 1 1 0))) (((0 0 2 0)) ((0 1 2 0))))
- ((((0 0 0 1)) ((0 1 0 1))) (((0 0 1 1)) ((0 1 1 1))) (((0 0 2 1)) ((0 1 2 1))))
- ((((0 0 0 2)) ((0 1 0 2))) (((0 0 1 2)) ((0 1 1 2))) (((0 0 2 2)) ((0 1 2 2))))
- ((((0 0 0 3)) ((0 1 0 3))) (((0 0 1 3)) ((0 1 1 3))) (((0 0 2 3)) ((0 1 2 3))))))
- ; out, of which the meshgrid loop above is a case.
- (T (out * #(10 20 30) (i. 5))
- #2((0 10 20 30 40) (0 20 40 60 80) (0 30 60 90 120)))
- ; out with op ranks != 0.
- (T-eps 0
- (out _sqrmd (i. 3 2) (i. 4 2))
- #2((0 8 32 72) (8 0 8 32) (32 8 0 8)))
- ; out with different ranks. @TODO A case with rank '_ or negative.
- (define (_cons a b) (list->vector (cons a (vector->list b))))
- (T (out (verb _cons #f 0 1) (i. 2) (i. 3 4))
- #3(((0 0 1 2 3) (0 4 5 6 7) (0 8 9 10 11))
- ((1 0 1 2 3) (1 4 5 6 7) (1 8 9 10 11))))
- (T (out (verb _cons #f 1 1) (i. 2) (i. 3 4))
- #2((#(0 1) 0 1 2 3) (#(0 1) 4 5 6 7) (#(0 1) 8 9 10 11)))
- ; with more args, giving oshape. @BUG Mismatched shape/rank/args are not caught.
- (T (out (verb vector '(3) 0 0 0) #(1 2) #(10 20) #(100 200))
- #4((((1 10 100) (1 10 200)) ((1 20 100) (1 20 200)))
- (((2 10 100) (2 10 200)) ((2 20 100) (2 20 200)))))
- ; test against once array-for-each-cell bug.
- (T (out (verb list '() 1 1) #2((10 45)(10 0)) #2((a b) (c d)))
- #2(((#1(10 45) #1(a b)) (#1(10 45) #1(c d))) ((#1(10 0) #1(a b)) (#1(10 0) #1(c d)))))
- ; profile giving oshape or not. @BUG Giving it is actually slower.
- ; ,profile (out (verb vector '(3) 0 0 0) (i. 100) (i. 100) (i. 100))
- ; ,profile (out (verb vector #f 0 0 0) (i. 100) (i. 100) (i. 100))
- ; ------------------------
- ; ply-n/o
- ; ------------------------
- (define o (vector 9 4))
- (ply-n/o (verb (lambda (v) (set! o (ply + v o))) #f 1)
- (i. 10 2))
- (T o #(99 104))
- ; ------------------------
- ; linspace.
- ; ------------------------
- (T (linspace. 0 10 0) #())
- (T (linspace. 0 10 1) #(0))
- (T (linspace. 0 10 2) #(0 10))
- (T (linspace. 0 10 3) #(0 5 10))
- (T (linspace. 0 10 4) #(0 10/3 20/3 10))
- (T (linspace-m. 0 10 0) #())
- (T (linspace-m. 0 10 1) #())
- (T (linspace-m. 0 10 2) #(0))
- (T (linspace-m. 0 10 3) #(0 5))
- (T (linspace-m. 0 10 4) #(0 10/3 20/3))
- ; ------------------------
- ; some tests about the need for optimization.
- ; ------------------------
- ; cf uniform-grid-cube-points.
- (define (_uniform-grid-cube-points rank n)
- (reshape (apply _meshgrid-last (make-list rank (linspace. 0 1 n)))
- (expt n rank) rank))
- (define (test-each rank n ext)
- (transpose-array
- (ply + (transpose-array (ply * ext (_uniform-grid-cube-points rank n)) 1 0)
- (reshape (* -.5 ext) rank))
- 1 0))
- ; (ext * ugc) ("+1 1) (rank $ -.5 * ext)
- (define (test-each* rank n ext)
- (ply (w/rank + 1 1)
- (ply * ext (_uniform-grid-cube-points rank n))
- (reshape (* -.5 ext) rank)))
- (define (test-each** rank n ext)
- (ply* (w/rank + 1 1)
- (ply* * ext (_uniform-grid-cube-points rank n))
- (reshape (* -.5 ext) rank)))
- (T (test-each 2 100 1) (test-each* 2 100 1) (test-each** 2 100 1))
- (T (test-each 3 30 1) (test-each* 3 30 1) (test-each** 3 30 1))
- ; maybe
- ; (+ (each (* ext (uniform-grid-cube-points rank n)))
- ; (reshape (* -.5 ext) rank))
- ; ,profile (test-each 2 100 1)
- ; ,profile (test-each* 2 100 1)
- ; ,profile (test-each 3 30 1)
- ; ,profile (test-each* 3 30 1)
- ; -----------------------------------------------
- ; with precomputed nested frames & ranks, or not.
- ; -----------------------------------------------
- (define a (i. 3 2))
- (define b (i. 3))
- (define c (i. 2))
- (T (ply (w/rank + 1 0) a b) (ply* (w/rank + 1 0) a b) #2((0 1) (3 4) (6 7)))
- (T (ply (w/rank + 1 1) a c) (ply* (w/rank + 1 1) a c) #2((0 2) (2 4) (4 6)))
- ; -----------------------------------------------
- ; developing (from)
- ; -----------------------------------------------
- ; How to do cartesian selection with arbitrary indices in a single ply.
- ; @TODO this could be used e.g. in (from), after the scalars and J-selectors have been 'beaten'.
- ; Simple enough along a single dimension,
- (ply (w/rank (verb array-from #f '_ 0) 3 1) (i. 10 10 10) #(1 2))
- (ply (w/rank (verb array-from #f '_ 0) 2 1) (i. 10 10 10) #(1 2))
- (ply (w/rank (verb array-from #f '_ 0) 1 1) (i. 10 10 10) #(1 2))
- ; Let's say we have index vectors a, b, c. Remember what prefix-frame does!
- ; we start with -> (w/rank '_ 0 1 1) -> (w/rank '_ 0 0 1) -> (w/rank '_ 0 0 0)
- ; [---] [A] | [---] [AB] | [---] [ABC] | [---]
- ; [a] [a] | [aB] | [aBC] |
- ; [b] [A] | [b] [Ab] | [AbC] |
- ; [c] [A] | [c] [AB] | [c] [ABc] |
- ; The last w/rank is redundant, so:
- (T (ply (w/rank (w/rank (verb array-from #f '_ 0 0 0) '_ 0 0 1) '_ 0 1 1)
- (i. 10 10 10)
- #(1 2)
- #(3 4 5)
- #(6 7 8 9))
- (ply (w/rank (verb array-from #f '_ 0) 1 1)
- (ply (w/rank (verb array-from #f '_ 0) 2 1)
- (ply (w/rank (verb array-from #f '_ 0) 3 1)
- (i. 10 10 10)
- #(1 2))
- #(3 4 5))
- #(6 7 8 9))
- #3(((136 137 138 139) (146 147 148 149) (156 157 158 159))
- ((236 237 238 239) (246 247 248 249) (256 257 258 259))))
- ; This gives -> (w/rank '_ 0 2 1) -> (w/rank '_ 0 0 1) -> etc.
- ; [---] [A] | [---] [ABC] | [---]
- ; [a] [a] | [aBC] |
- ; [bc] [A] | [bc] [Abc] |
- ; [d] [A] | [d] [ABC] | [d]
- (T (ply (w/rank (w/rank (verb array-from #f '_ 0 0 0) '_ 0 0 1) '_ 0 2 1)
- (i. 10 10 10)
- #(0 1)
- #2((2 3 4) (5 6 7))
- #(8 9))
- #4(((( 28 29) ( 38 39) ( 48 49)) (( 58 59) ( 68 69) ( 78 79)))
- (((128 129) (138 139) (148 149)) ((158 159) (168 169) (178 179)))))
- ; benchmarks
- ; 1. single ply saves much array-copy.
- ; 2. fixing args of inf rank (relative to the loop) should be done by ply.
- (define i10 (i. 10 10 10))
- (define i100 (i. 100 100 100))
- (define (test0 iN)
- (repeat 1000 (ply (w/rank (w/rank (verb (cut array-from iN <> <> <>) '() 0 0 0) 0 0 1) 0 1 1)
- #(1 2 3) #(4 5 6 7) #(6 7 8 9))))
- (define (test1 iN)
- (repeat 1000 (ply (w/rank (w/rank (verb (cut array-from iN <> <> <>) #f 0 0 0) 0 0 1) 0 1 1)
- #(1 2 3) #(4 5 6 7) #(6 7 8 9))))
- (define (test2 iN)
- (repeat 1000 (ply (w/rank (w/rank (verb array-from #f '_ 0 0 0) '_ 0 0 1) '_ 0 1 1)
- iN #(1 2 3) #(4 5 6 7) #(6 7 8 9))))
- (define (test3 iN)
- (repeat 1000 (ply (w/rank (verb array-from #f '_ 0) 1 1)
- (ply (w/rank (verb array-from #f '_ 0) 2 1)
- (ply (w/rank (verb array-from #f '_ 0) 3 1)
- iN #(1 2 3))
- #(4 5 6 7))
- #(6 7 8 9))))
- (define (crude-median . a)
- (list-ref (sort a <) (ceiling (/ (- (length a) 1) 2))))
- (define (median-time n proc)
- (apply crude-median (map-in-order (lambda (i) (time (proc))) (iota n))))
- (let ((t0 (time (test0 i10)))
- (t1 (time (test1 i10)))
- (t2 (time (test2 i10)))
- (t3 (time (test3 i10))))
- (format! "\n~:{test~a i10 ~a\n~}" (zip (iota 4) (list t0 t1 t2 t3)))
- ; t2 should be < t3, but too variable too enforce.
- (assert (and (< t1 t2) (< t1 t3))))
- (let ((t0 (time (test0 i100)))
- (t1 (time (test1 i100)))
- (t2 (time (test2 i100)))
- (t3 (time (test3 i100))))
- (format! "~:{test~a i100 ~a\n~}" (zip (iota 4) (list t0 t1 t2 t3)))
- (assert (< t1 t2 t3)))
- ; from
- (T (from #2f64((1 2 3 4) (5 6 7 8)) (- 2 1) (J 2 0 2))
- #f64(5.0 7.0))
- (T (from #2f64((1 2 3 4) (5 6 7 8)) (- 2 1) (J 2 (- 4 2)))
- #f64(7.0 8.0))
- (T (from #2f64((1 2 3 4) (5 6 7 8)) (- 2 1) (J 2 (- 4 4)))
- #f64(5.0 6.0))
- (T (from #2f64((1 2 3 4) (5 6 7 8)) (- 2 1) (J 2 (- 4 4) 2))
- #f64(5.0 7.0))
- (T (from (i. 2 2) #(0 1) #(0 1)) #2((0 1) (2 3)))
- (T (from (i. 2 2) #(1 0) #(0 1)) #2((2 3) (0 1)))
- (T (from (i. 2 2) #(0 1) #(1 0)) #2((1 0) (3 2)))
- (T (from (i. 2 2) #(1 0) #(1 0)) #2((3 2) (1 0)))
- (T (from (i. 2 2) #t #(0 1)) #2((0 1) (2 3)))
- (T (from (i. 2 2) #t #(1 0)) #2((1 0) (3 2)))
- (T (from (i. 2 2) #(0 1) #t) #2((0 1) (2 3)))
- (T (from (i. 2 2) #(1 0) #t) #2((2 3) (0 1)))
- (T (from (i. 2 2) #(0 1)) #2((0 1) (2 3)))
- (T (from (i. 2 2) #(1 0)) #2((2 3) (0 1)))
- (T (from (i. 2 2 2) #(0 1) #(0 1) #(0 1)) #3(((0 1) (2 3)) ((4 5) (6 7))))
- (T (from (i. 2 2 2) #(0 1) #(0 1) #(1 0)) #3(((1 0) (3 2)) ((5 4) (7 6))))
- (T (from (i. 2 2 2) #(0 1) #(1 0) #(0 1)) #3(((2 3) (0 1)) ((6 7) (4 5))))
- (T (from (i. 2 2 2) #(0 1) #(1 0) #(1 0)) #3(((3 2) (1 0)) ((7 6) (5 4))))
- (T (from (i. 2 2 2) #(1 0) #(0 1) #(0 1)) #3(((4 5) (6 7)) ((0 1) (2 3))))
- (T (from (i. 2 2 2) #(1 0) #(0 1) #(1 0)) #3(((5 4) (7 6)) ((1 0) (3 2))))
- (T (from (i. 2 2 2) #(1 0) #(1 0) #(0 1)) #3(((6 7) (4 5)) ((2 3) (0 1))))
- (T (from (i. 2 2 2) #(1 0) #(1 0) #(1 0)) #3(((7 6) (5 4)) ((3 2) (1 0))))
- (T (from (i. 2 2 2) #t #t #t) #3(((0 1) (2 3)) ((4 5) (6 7))))
- (T (from (i. 2 2 2) #t #t #(1 0)) #3(((1 0) (3 2)) ((5 4) (7 6))))
- (T (from (i. 2 2 2) #t #(1 0) #t) #3(((2 3) (0 1)) ((6 7) (4 5))))
- (T (from (i. 2 2 2) #t #(1 0) #(1 0)) #3(((3 2) (1 0)) ((7 6) (5 4))))
- (T (from (i. 2 2 2) #(1 0) #t #t) #3(((4 5) (6 7)) ((0 1) (2 3))))
- (T (from (i. 2 2 2) #(1 0) #t #(1 0)) #3(((5 4) (7 6)) ((1 0) (3 2))))
- (T (from (i. 2 2 2) #(1 0) #(1 0) #t) #3(((6 7) (4 5)) ((2 3) (0 1))))
- (T (from (i. 2 2 2) #(1 0) #(1 0) #(1 0)) #3(((7 6) (5 4)) ((3 2) (1 0))))
- ; TODONOW
- (T (ply (w/rank (w/rank (verb array-from #f '_ 0 0) 2 0 1) 2 1 1) (i. 2 2 2) #(1 0) #(1 0))
- #3(((3 2) (1 0)) ((7 6) (5 4))))
- ; with higher rank indices.
- (T (from (i. 2 2) #(0 1) #2((0 1) (1 0)))
- (from (i. 2 2) #t #2((0 1) (1 0)))
- #3(((0 1) (1 0)) ((2 3) (3 2))))
- (T (from (i. 2 2) #(1 0) #2((0 1) (1 0)))
- #3(((2 3) (3 2)) ((0 1) (1 0))))
- (T (from (i. 2 2) #2((0 1) (1 0)))
- (from (i. 2 2) #2((0 1) (1 0)) #t)
- (from (i. 2 2) #2((0 1) (1 0)) #(0 1))
- #3(((0 1) (2 3)) ((2 3) (0 1))))
- (T (from (i. 2 2) #2((0 1) (1 0)) #(1 0))
- #3(((1 0) (3 2)) ((3 2) (1 0))))
- ; with higher rank indices and empty axis in the middle.
- (T (from (i. 2 2 2) #2((0 1) (1 0)) #(0 1) #(0 1))
- (from (i. 2 2 2) #2((0 1) (1 0)) #t #(0 1))
- #4((((0 1) (2 3)) ((4 5) (6 7))) (((4 5) (6 7)) ((0 1) (2 3)))))
- (T (from (i. 2 2 2) #2((0 1) (1 0)) #(1 0) #(0 1))
- #4((((2 3) (0 1)) ((6 7) (4 5))) (((6 7) (4 5)) ((2 3) (0 1)))))
- ; -------------------------
- ; more indexing examples (cf numpy)
- ; -------------------------
- (define z (i. 5 5))
- (define i (i. 2 2))
- ; z[i]
- (T (from z i)
- #3(((0 1 2 3 4) (5 6 7 8 9)) ((10 11 12 13 14) (15 16 17 18 19))))
- (T (from z i i) ;
- #4((((0 1) (2 3)) ((5 6) (7 8))) (((10 11) (12 13)) ((15 16) (17 18)))))
- ; z[i, i] in numpy
- (T (ply (cut from z <> <>) i i)
- #2((0 6) (12 18)))
- ; idem
- (T (ply (verb from #f '_ 0 0) z i i)
- #2((0 6) (12 18)))
- ; p
- (T (from z i #2((0 1 0 1) (2 3 2 3))) ; (cat 1 i i)
- #4((((0 1 0 1) (2 3 2 3)) ((5 6 5 6) (7 8 7 8)))
- (((10 11 10 11) (12 13 12 13)) ((15 16 15 16) (17 18 17 18)))))
- ; from the doc.
- (T (from (i. 2 3) 0) #(0 1 2))
- (T (from (i. 2 3) 0 #t) #(0 1 2))
- (T (from (i. 2 3) #t 0) #(0 3))
- (T (from #(#(0 1) #(2)) 1) #(2))
- (assert-fail (from #(#(0 1) #(2)) 1 0))
- (T (from (i. 10 2) (J 2 2) #t) #2((4 5) (6 7)))
- (T (from #(1 2 3) #2((0 1) (1 2) (2 0))) #2((1 2) (2 3) (3 1)))
- (T (from (i. 10 10) #(3 4) #(7 9 2)) #2((37 39 32) (47 49 42)))
- ; --------------------------------
- ; reshape, raveling version.
- ; --------------------------------
- ; used in one of the reshape cases.
- (T (index-rect-lsd-first '(2 3 5) '(0 0 0)) 0)
- (T (index-rect-lsd-first '(2 3 5) '(1 0 0)) 1)
- (T (index-rect-lsd-first '(2 3 5) '(0 1 0)) 2)
- (T (index-rect-lsd-first '(2 3 5) '(0 0 1)) 6)
- (T (index-rect-lsd-first '(2 3 5) '(1 1 1)) 9)
- (T (index-rect '() '()) 0)
- (T (index-rect '(2 3 5) '(0 0 0)) 0)
- (T (index-rect '(2 3 5) '(1 0 0)) 15)
- (T (index-rect '(2 3 5) '(0 1 0)) 5)
- (T (index-rect '(2 3 5) '(0 0 1)) 1)
- (T (index-rect '(2 3 5) '(1 1 1)) 21)
- ; select ravel.
- (T (reshape #2((1 2) (3 4)) 2 3) #2((1 2 3) (4 1 2)))
- (T (reshape #2((1 2) (3 4)) 2 4 2) #3(((1 2) (3 4) (1 2) (3 4)) ((1 2) (3 4) (1 2) (3 4))))
- (T (reshape #(1 2 3 4 5 6 7 8) 2 2 2) #3(((1 2) (3 4)) ((5 6) (7 8))))
- (T (reshape #(1 2 3 4 5 6 7 8) 2 2) #2((1 2) (3 4)))
- ; copy case.
- (T (reshape #2((1 2) (3 4)) 4 3) #2((1 2 3) (4 1 2) (3 4 1) (2 3 4)))
- ; copy, but maybe not necessary.
- (T (reshape #2((1 2) (3 4)) 4 4 2)
- #3(((1 2) (3 4) (1 2) (3 4))
- ((1 2) (3 4) (1 2) (3 4))
- ((1 2) (3 4) (1 2) (3 4))
- ((1 2) (3 4) (1 2) (3 4))))
- ; copy case, but maybe not necessary.
- (T (reshape #2((1 2) (3 4)) 4 2) #2((1 2) (3 4) (1 2) (3 4)))
- ; same size case.
- (T (reshape #(1 2 3 4) 1 2 2) #3(((1 2) (3 4))))
- (T (reshape #(1 2 3 4) 2 2) #2((1 2) (3 4)))
- (T (reshape #(1 2 3 4) 2 2 1) #3(((1) (2)) ((3) (4))))
- ; tile cases.
- (T (reshape #2((1 2) (3 4)) 4 2 2) #3(((1 2) (3 4)) ((1 2) (3 4)) ((1 2) (3 4)) ((1 2) (3 4))))
- (T (reshape #(1 2 3 4) 2 2 2) #3(((1 2) (3 4)) ((1 2) (3 4))))
- (T (reshape #(1 2 3 4) 2 3 2) #3(((1 2) (3 4) (1 2)) ((3 4) (1 2) (3 4))))
- (T (reshape #(9) 3) #(9 9 9))
- ; select cases,
- (T (reshape #2((1 2) (3 4)) 2 2) #2((1 2) (3 4)))
- (T (reshape #2((1 2) (3 4)) 2) #(1 2))
- ; take case.
- (T (reshape #(1 2 3 4) 1 1 1) #3(((1))))
- (T (reshape #(1 2 3 4 5 6 7 8) 2 3) #2((1 2 3) (4 5 6)))
- ; cases that need copy vs cases that do not. @TODO This for every case above.
- (define A #2((1 2 3) (4 5 6) (7 8 9)))
- (define B (from A (J 3) (J 2)))
- (assert (eq? (shared-array-root A) (shared-array-root B)))
- (T B #2((1 2) (4 5) (7 8)))
- (define Arow (reshape A 9))
- (T Arow #(1 2 3 4 5 6 7 8 9))
- (assert (eq? (shared-array-root A) (shared-array-root Arow)))
- (define Brow (reshape B 6))
- (T Brow #(1 2 4 5 7 8))
- (define A #(1 2 3 4))
- (assert (eq? (shared-array-root A) (shared-array-root (reshape A 2 2 2))))
- ; was col->array, row->array
- (let ((a #f64(1 2 3 4)))
- (T (reshape a #f 1) #2f64((1) (2) (3) (4)))
- (T (reshape a 1 #f) #2f64((1 2 3 4))))
- ; --------------------------------
- ; axis ops.
- ; --------------------------------
- (T (rollaxis (i. 2 3 4 5) 0 -1)
- (transpose-array (i. 2 3 4 5) 3 0 1 2))
- (T (rollaxis (i. 2 3 4 5) -1 0)
- (transpose-array (i. 2 3 4 5) 1 2 3 0))
- (T (rollaxis (i. 2 3 4 5) 0 2)
- (transpose-array (i. 2 3 4 5) 2 0 1 3))
- (T (rollaxis (i. 2 3 4 5) 3 1)
- (transpose-array (i. 2 3 4 5) 0 2 3 1))
- (define (axes-to-front a . x)
- (let ((xy (sort (zip x (iota (length x)))
- (lambda (a b) (< (car a) (car b))))))
- (apply transpose-array a
- (let loop ((y '()) (xy xy) (i (length x)) (j 0))
- (cond ((= j (rank a))
- (reverse! y))
- ; one of x.
- ((and (pair? xy) (= j (first (car xy))))
- (loop (cons (second (car xy)) y)
- (cdr xy)
- i
- (+ j 1)))
- ; one not of x.
- (else
- (loop (cons i y)
- xy
- (+ 1 i)
- (+ 1 j))))))))
- ; @TODO Probably should test with perm of comb.
- (define (combinations l k)
- (cond ((zero? k)
- '(()))
- ((null? l)
- '())
- (else
- (append
- (map (cute cons (car l) <>)
- (combinations (cdr l) (- k 1)))
- (combinations (cdr l) k)))))
- (let ((I (i. 2 3 4 5)))
- (for-each
- (lambda (i)
- (T (map (cute list-ref ($ I) <>) (append i (lset-difference = (iota 4) i)))
- ($ (apply axes-to-front I i))))
- (append-map
- (cute combinations (iota (rank I)) <>)
- (iota (rank I)))))
- ; --------------------------------
- ; ply! with suffix matching. @TODO Do I want suffix matching?
- ; --------------------------------
- (T (ply! (make-array 0 4) (verb (const 2) '()))
- #(2 2 2 2))
- (T (ply! (make-array 0 4) (const 2))
- #(2 2 2 2))
- (T (ply! (make-array 0 4) values 9)
- #(9 9 9 9))
- (T (ply! (make-array 0 4 3) (cut iota. 3 <>) #(1 2 3 4))
- #2((1 2 3) (2 3 4) (3 4 5) (4 5 6)))
- ; suffix matching.
- (T (ply! (make-array 0 4 3) values #(1 2 3))
- #2((1 2 3) (1 2 3) (1 2 3) (1 2 3)))
- ; prefix matching.
- (T (ply!! (make-array 0 4 3) values #(1 2 3 4))
- #2((1 1 1) (2 2 2) (3 3 3) (4 4 4)))
- (T (ply! (i. 4 3 3) (const #(1 2 3)))
- (reshape #(1 2 3) 4 3 3))
- (T (ply! (i. 4 3 3) values (out * #(1 2 3) #(1 2 3)))
- (reshape (out * #(1 2 3) #(1 2 3)) 4 3 3))
- (T (ply! (i. 4 3 3) (w/rank + 1 0) #(1 2 3) #(10 20 30))
- (reshape (ply (w/rank + 1 0) #(1 2 3) #(10 20 30)) 4 3 3))
- ; --------------------------------
- ; Regression test for match-frame (@TODO exact test).
- ; --------------------------------
- (define q (reshape #(1 2 3) 6 2 8 3))
- (define w (reshape #(10 20 30) 2 3))
- (define y #2((10 20 30) (10 20 30)))
- (T (ply (w/rank (w/rank + 1 1) -1 '_) q w)
- (ply (w/rank (w/rank + 1 1) -1 '_) q y))
- ; --------------------------------
- ; Regression test for array-map/frame (null? case)
- ; --------------------------------
- (assert (equal? #f64(1 2) (ply/t 'f64 (verb identity #f 1) #(1 2)))
- "bad type conversion")
- ; --------------------------------
- ; There might be more bugs (@TODO research)
- ; --------------------------------
- ;; ; down to make-shared-array.
- ;; (import (srfi srfi-1))
- ;; (define a (make-shared-array #0(0) (lambda i '()) 6 2 3)) ; works, should it?
- ;; (define a (make-array 0 6 2 3)) ; doesn't work.
- ;; (apply make-shared-array a
- ;; (lambda i (format #t "$a ~a\n" (array-dimensions a)) (pk 'attempt (append (take i 1) (take i 1) (take-right i 1))))
- ;; '(6 2 8 3))
- ;; ; rank 0 arrays; (array-map/frame) has a case (null? f) that hands off #0() to op, which 0-rank verbs may not take. Probably should be handled in λ → verb conversion.
- ;; (ply + #0(99))
- ;; (from #(1 2 3) #0(1))
- ; --------------------------------
- ; experiments.
- ; --------------------------------
- ; (out op ...) supports variable arity but (ply (outv op) ...) doesn't.
- ; to fix that, have nested-op-frames actualize op with then-known arity.
- (define (outv op)
- (let* ((op (if (verb? op) op (verb op)))
- (ri (verb-ri op))
- (n (begin (assert (list? ri) "outv requires known input ranks")
- (length ri)))
- (infs (make-list n '_)))
- (let loop ((i 1))
- (if (>= i n)
- op
- (apply w/rank (loop (+ i 1)) (append (take ri i) (drop infs i)))))))
- (T (ply/t 'f64 (outv (verb sqrm-reduce '() 1 1)) (i. 5 4 3) (i. 6 7 3))
- (out/t 'f64 (verb sqrm-reduce '() 1 1) (i. 5 4 3) (i. 6 7 3)))
|