print_info.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. /* This file is part of the dynarmic project.
  2. * Copyright (c) 2018 MerryMage
  3. * SPDX-License-Identifier: 0BSD
  4. */
  5. #include <algorithm>
  6. #include <cctype>
  7. #include <cstdlib>
  8. #include <cstring>
  9. #include <iostream>
  10. #include <map>
  11. #include <optional>
  12. #include <string>
  13. #include <fmt/format.h>
  14. #include <fmt/ostream.h>
  15. #include <mcl/bit/swap.hpp>
  16. #include <mcl/stdint.hpp>
  17. #include "dynarmic/common/llvm_disassemble.h"
  18. #include "dynarmic/frontend/A32/a32_location_descriptor.h"
  19. #include "dynarmic/frontend/A32/decoder/arm.h"
  20. #include "dynarmic/frontend/A32/decoder/asimd.h"
  21. #include "dynarmic/frontend/A32/decoder/vfp.h"
  22. #include "dynarmic/frontend/A32/translate/a32_translate.h"
  23. #include "dynarmic/frontend/A32/translate/impl/a32_translate_impl.h"
  24. #include "dynarmic/frontend/A64/a64_location_descriptor.h"
  25. #include "dynarmic/frontend/A64/decoder/a64.h"
  26. #include "dynarmic/frontend/A64/translate/a64_translate.h"
  27. #include "dynarmic/frontend/A64/translate/impl/impl.h"
  28. #include "dynarmic/interface/A32/a32.h"
  29. #include "dynarmic/interface/A32/disassembler.h"
  30. #include "dynarmic/ir/basic_block.h"
  31. #include "dynarmic/ir/opt/passes.h"
  32. using namespace Dynarmic;
  33. const char* GetNameOfA32Instruction(u32 instruction) {
  34. if (auto vfp_decoder = A32::DecodeVFP<A32::TranslatorVisitor>(instruction)) {
  35. return vfp_decoder->get().GetName();
  36. } else if (auto asimd_decoder = A32::DecodeASIMD<A32::TranslatorVisitor>(instruction)) {
  37. return asimd_decoder->get().GetName();
  38. } else if (auto decoder = A32::DecodeArm<A32::TranslatorVisitor>(instruction)) {
  39. return decoder->get().GetName();
  40. }
  41. return "<null>";
  42. }
  43. const char* GetNameOfA64Instruction(u32 instruction) {
  44. if (auto decoder = A64::Decode<A64::TranslatorVisitor>(instruction)) {
  45. return decoder->get().GetName();
  46. }
  47. return "<null>";
  48. }
  49. void PrintA32Instruction(u32 instruction) {
  50. fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch32(false, 0, (u8*)&instruction, sizeof(instruction)));
  51. fmt::print("Name: {}\n", GetNameOfA32Instruction(instruction));
  52. const A32::LocationDescriptor location{0, {}, {}};
  53. IR::Block ir_block{location};
  54. const bool should_continue = A32::TranslateSingleInstruction(ir_block, location, instruction);
  55. fmt::print("should_continue: {}\n\n", should_continue);
  56. Optimization::NamingPass(ir_block);
  57. fmt::print("IR:\n");
  58. fmt::print("{}\n", IR::DumpBlock(ir_block));
  59. Optimization::A32GetSetElimination(ir_block, {});
  60. Optimization::DeadCodeElimination(ir_block);
  61. Optimization::ConstantPropagation(ir_block);
  62. Optimization::DeadCodeElimination(ir_block);
  63. Optimization::IdentityRemovalPass(ir_block);
  64. fmt::print("Optimized IR:\n");
  65. fmt::print("{}\n", IR::DumpBlock(ir_block));
  66. }
  67. void PrintA64Instruction(u32 instruction) {
  68. fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch64(instruction));
  69. fmt::print("Name: {}\n", GetNameOfA64Instruction(instruction));
  70. const A64::LocationDescriptor location{0, {}};
  71. IR::Block ir_block{location};
  72. const bool should_continue = A64::TranslateSingleInstruction(ir_block, location, instruction);
  73. fmt::print("should_continue: {}\n\n", should_continue);
  74. Optimization::NamingPass(ir_block);
  75. fmt::print("IR:\n");
  76. fmt::print("{}\n", IR::DumpBlock(ir_block));
  77. Optimization::A64GetSetElimination(ir_block);
  78. Optimization::DeadCodeElimination(ir_block);
  79. Optimization::ConstantPropagation(ir_block);
  80. Optimization::DeadCodeElimination(ir_block);
  81. Optimization::IdentityRemovalPass(ir_block);
  82. fmt::print("Optimized IR:\n");
  83. fmt::print("{}\n", IR::DumpBlock(ir_block));
  84. }
  85. void PrintThumbInstruction(u32 instruction) {
  86. const size_t inst_size = (instruction >> 16) == 0 ? 2 : 4;
  87. if (inst_size == 4)
  88. instruction = mcl::bit::swap_halves_32(instruction);
  89. fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch32(true, 0, (u8*)&instruction, inst_size));
  90. const A32::LocationDescriptor location{0, A32::PSR{0x1F0}, {}};
  91. IR::Block ir_block{location};
  92. const bool should_continue = A32::TranslateSingleInstruction(ir_block, location, instruction);
  93. fmt::print("should_continue: {}\n\n", should_continue);
  94. Optimization::NamingPass(ir_block);
  95. fmt::print("IR:\n");
  96. fmt::print("{}\n", IR::DumpBlock(ir_block));
  97. Optimization::A32GetSetElimination(ir_block, {});
  98. Optimization::DeadCodeElimination(ir_block);
  99. Optimization::ConstantPropagation(ir_block);
  100. Optimization::DeadCodeElimination(ir_block);
  101. Optimization::IdentityRemovalPass(ir_block);
  102. fmt::print("Optimized IR:\n");
  103. fmt::print("{}\n", IR::DumpBlock(ir_block));
  104. }
  105. class ExecEnv final : public Dynarmic::A32::UserCallbacks {
  106. public:
  107. u64 ticks_left = 0;
  108. std::map<u32, u8> memory;
  109. std::uint8_t MemoryRead8(u32 vaddr) override {
  110. if (auto iter = memory.find(vaddr); iter != memory.end()) {
  111. return iter->second;
  112. }
  113. return 0;
  114. }
  115. std::uint16_t MemoryRead16(u32 vaddr) override {
  116. return u16(MemoryRead8(vaddr)) | u16(MemoryRead8(vaddr + 1)) << 8;
  117. }
  118. std::uint32_t MemoryRead32(u32 vaddr) override {
  119. return u32(MemoryRead16(vaddr)) | u32(MemoryRead16(vaddr + 2)) << 16;
  120. }
  121. std::uint64_t MemoryRead64(u32 vaddr) override {
  122. return u64(MemoryRead32(vaddr)) | u64(MemoryRead32(vaddr + 4)) << 32;
  123. }
  124. void MemoryWrite8(u32 vaddr, std::uint8_t value) override {
  125. memory[vaddr] = value;
  126. }
  127. void MemoryWrite16(u32 vaddr, std::uint16_t value) override {
  128. MemoryWrite8(vaddr, static_cast<u8>(value));
  129. MemoryWrite8(vaddr + 1, static_cast<u8>(value >> 8));
  130. }
  131. void MemoryWrite32(u32 vaddr, std::uint32_t value) override {
  132. MemoryWrite16(vaddr, static_cast<u16>(value));
  133. MemoryWrite16(vaddr + 2, static_cast<u16>(value >> 16));
  134. }
  135. void MemoryWrite64(u32 vaddr, std::uint64_t value) override {
  136. MemoryWrite32(vaddr, static_cast<u32>(value));
  137. MemoryWrite32(vaddr + 4, static_cast<u32>(value >> 32));
  138. }
  139. void InterpreterFallback(u32 pc, size_t num_instructions) override {
  140. fmt::print("> InterpreterFallback({:08x}, {}) code = {:08x}\n", pc, num_instructions, *MemoryReadCode(pc));
  141. }
  142. void CallSVC(std::uint32_t swi) override {
  143. fmt::print("> CallSVC({})\n", swi);
  144. }
  145. void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
  146. fmt::print("> ExceptionRaised({:08x}, {})", pc, static_cast<size_t>(exception));
  147. }
  148. void AddTicks(std::uint64_t ticks) override {
  149. if (ticks > ticks_left) {
  150. ticks_left = 0;
  151. return;
  152. }
  153. ticks_left -= ticks;
  154. }
  155. std::uint64_t GetTicksRemaining() override {
  156. return ticks_left;
  157. }
  158. };
  159. void ExecuteA32Instruction(u32 instruction) {
  160. ExecEnv env;
  161. A32::Jit cpu{A32::UserConfig{&env}};
  162. env.ticks_left = 1;
  163. std::array<u32, 16> regs{};
  164. std::array<u32, 64> ext_regs{};
  165. u32 cpsr = 0;
  166. u32 fpscr = 0;
  167. const std::map<std::string, u32*> name_map = [&regs, &ext_regs, &cpsr, &fpscr] {
  168. std::map<std::string, u32*> name_map;
  169. for (size_t i = 0; i < regs.size(); i++) {
  170. name_map[fmt::format("r{}", i)] = &regs[i];
  171. }
  172. for (size_t i = 0; i < ext_regs.size(); i++) {
  173. name_map[fmt::format("s{}", i)] = &ext_regs[i];
  174. }
  175. name_map["sp"] = &regs[13];
  176. name_map["lr"] = &regs[14];
  177. name_map["pc"] = &regs[15];
  178. name_map["cpsr"] = &cpsr;
  179. name_map["fpscr"] = &fpscr;
  180. return name_map;
  181. }();
  182. const auto get_line = []() {
  183. std::string line;
  184. std::getline(std::cin, line);
  185. std::transform(line.begin(), line.end(), line.begin(), [](unsigned char c) { return static_cast<char>(std::tolower(c)); });
  186. return line;
  187. };
  188. const auto get_value = [&get_line]() -> std::optional<u32> {
  189. std::string line = get_line();
  190. if (line.length() > 2 && line[0] == '0' && line[1] == 'x')
  191. line = line.substr(2);
  192. if (line.length() > 8)
  193. return std::nullopt;
  194. char* endptr;
  195. const u32 value = strtol(line.c_str(), &endptr, 16);
  196. if (line.c_str() + line.length() != endptr)
  197. return std::nullopt;
  198. return value;
  199. };
  200. while (std::cin) {
  201. fmt::print("register: ");
  202. const std::string reg_name = get_line();
  203. if (const auto iter = name_map.find(reg_name); iter != name_map.end()) {
  204. fmt::print("value: ");
  205. if (const auto value = get_value()) {
  206. *(iter->second) = *value;
  207. fmt::print("> {} = 0x{:08x}\n", reg_name, *value);
  208. }
  209. } else if (reg_name == "mem" || reg_name == "memory") {
  210. fmt::print("address: ");
  211. if (const auto address = get_value()) {
  212. fmt::print("value: ");
  213. if (const auto value = get_value()) {
  214. env.MemoryWrite32(*address, *value);
  215. fmt::print("> mem[0x{:08x}] = 0x{:08x}\n", *address, *value);
  216. }
  217. }
  218. } else if (reg_name == "end") {
  219. break;
  220. }
  221. }
  222. fmt::print("\n\n");
  223. cpu.Regs() = regs;
  224. cpu.ExtRegs() = ext_regs;
  225. cpu.SetCpsr(cpsr);
  226. cpu.SetFpscr(fpscr);
  227. const u32 initial_pc = regs[15];
  228. env.MemoryWrite32(initial_pc + 0, instruction);
  229. env.MemoryWrite32(initial_pc + 4, 0xEAFFFFFE); // B +0
  230. cpu.Run();
  231. fmt::print("Registers modified:\n");
  232. for (size_t i = 0; i < regs.size(); ++i) {
  233. if (regs[i] != cpu.Regs()[i]) {
  234. fmt::print("{:3s}: {:08x}\n", static_cast<A32::Reg>(i), cpu.Regs()[i]);
  235. }
  236. }
  237. for (size_t i = 0; i < ext_regs.size(); ++i) {
  238. if (ext_regs[i] != cpu.ExtRegs()[i]) {
  239. fmt::print("{:3s}: {:08x}\n", static_cast<A32::ExtReg>(i), cpu.Regs()[i]);
  240. }
  241. }
  242. if (cpsr != cpu.Cpsr()) {
  243. fmt::print("cpsr {:08x}\n", cpu.Cpsr());
  244. }
  245. if (fpscr != cpu.Fpscr()) {
  246. fmt::print("fpscr{:08x}\n", cpu.Fpscr());
  247. }
  248. fmt::print("Modified memory:\n");
  249. for (auto iter = env.memory.begin(); iter != env.memory.end(); ++iter) {
  250. fmt::print("{:08x} {:02x}\n", iter->first, iter->second);
  251. }
  252. }
  253. int main(int argc, char** argv) {
  254. if (argc < 3 || argc > 4) {
  255. fmt::print("usage: {} <a32/a64/thumb> <instruction_in_hex> [-exec]\n", argv[0]);
  256. return 1;
  257. }
  258. const char* const hex_instruction = [argv] {
  259. if (strlen(argv[2]) > 2 && argv[2][0] == '0' && argv[2][1] == 'x') {
  260. return argv[2] + 2;
  261. }
  262. return argv[2];
  263. }();
  264. if (strlen(hex_instruction) > 8) {
  265. fmt::print("hex string too long\n");
  266. return 1;
  267. }
  268. const u32 instruction = strtol(hex_instruction, nullptr, 16);
  269. if (strcmp(argv[1], "a32") == 0) {
  270. PrintA32Instruction(instruction);
  271. } else if (strcmp(argv[1], "a64") == 0) {
  272. PrintA64Instruction(instruction);
  273. } else if (strcmp(argv[1], "t32") == 0 || strcmp(argv[1], "t16") == 0 || strcmp(argv[1], "thumb") == 0) {
  274. PrintThumbInstruction(instruction);
  275. } else {
  276. fmt::print("Invalid mode: {}\nValid values: a32, a64, thumb\n", argv[1]);
  277. return 1;
  278. }
  279. if (argc == 4) {
  280. if (strcmp(argv[3], "-exec") != 0) {
  281. fmt::print("Invalid option {}\n", argv[3]);
  282. return 1;
  283. }
  284. if (strcmp(argv[1], "a32") == 0) {
  285. ExecuteA32Instruction(instruction);
  286. } else {
  287. fmt::print("Executing in this mode not currently supported\n");
  288. return 1;
  289. }
  290. }
  291. return 0;
  292. }