unpacked_tests.cpp 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. /* This file is part of the dynarmic project.
  2. * Copyright (c) 2018 MerryMage
  3. * SPDX-License-Identifier: 0BSD
  4. */
  5. #include <tuple>
  6. #include <vector>
  7. #include <catch2/catch_test_macros.hpp>
  8. #include <mcl/stdint.hpp>
  9. #include "../rand_int.h"
  10. #include "dynarmic/common/fp/fpcr.h"
  11. #include "dynarmic/common/fp/fpsr.h"
  12. #include "dynarmic/common/fp/unpacked.h"
  13. using namespace Dynarmic;
  14. using namespace Dynarmic::FP;
  15. TEST_CASE("FPUnpack Tests", "[fp]") {
  16. const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases{
  17. {0x00000000, {FPType::Zero, false, ToNormalized(false, 0, 0)}, 0},
  18. {0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0},
  19. {0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0},
  20. {0x7F800001, {FPType::SNaN, false, ToNormalized(false, 0, 0)}, 0},
  21. {0xFF800001, {FPType::SNaN, true, ToNormalized(true, 0, 0)}, 0},
  22. {0x7FC00001, {FPType::QNaN, false, ToNormalized(false, 0, 0)}, 0},
  23. {0xFFC00001, {FPType::QNaN, true, ToNormalized(true, 0, 0)}, 0},
  24. {0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
  25. {0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
  26. };
  27. const FPCR fpcr;
  28. for (const auto& [input, expected_output, expected_fpsr] : test_cases) {
  29. FPSR fpsr;
  30. const auto output = FPUnpack<u32>(input, fpcr, fpsr);
  31. INFO("Input: " << std::hex << input);
  32. INFO("Output Sign: " << std::get<2>(output).sign);
  33. INFO("Output Exponent: " << std::get<2>(output).exponent);
  34. INFO("Output Mantissa: " << std::hex << std::get<2>(output).mantissa);
  35. INFO("Expected Sign: " << std::get<2>(expected_output).sign);
  36. INFO("Expected Exponent: " << std::get<2>(expected_output).exponent);
  37. INFO("Expected Mantissa: " << std::hex << std::get<2>(expected_output).mantissa);
  38. REQUIRE(output == expected_output);
  39. REQUIRE(fpsr.Value() == expected_fpsr);
  40. }
  41. }
  42. TEST_CASE("FPRound Tests", "[fp]") {
  43. const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases{
  44. {0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0x14},
  45. {0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0x14},
  46. {0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
  47. {0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
  48. {0x3F800000, {FPType::Nonzero, false, ToNormalized(false, -28, 0xFFFFFFF)}, 0x10}, // rounds to 1.0
  49. };
  50. const FPCR fpcr;
  51. for (const auto& [expected_output, input, expected_fpsr] : test_cases) {
  52. FPSR fpsr;
  53. const auto output = FPRound<u32>(std::get<2>(input), fpcr, fpsr);
  54. INFO("Expected Output: " << std::hex << expected_output);
  55. REQUIRE(output == expected_output);
  56. REQUIRE(fpsr.Value() == expected_fpsr);
  57. }
  58. }
  59. TEST_CASE("FPUnpack<->FPRound Round-trip Tests", "[fp]") {
  60. const FPCR fpcr;
  61. for (size_t count = 0; count < 100000; count++) {
  62. FPSR fpsr;
  63. const u32 input = RandInt(0, 1) == 0 ? RandInt<u32>(0x00000001, 0x7F800000) : RandInt<u32>(0x80000001, 0xFF800000);
  64. const auto intermediate = std::get<2>(FPUnpack<u32>(input, fpcr, fpsr));
  65. const u32 output = FPRound<u32>(intermediate, fpcr, fpsr);
  66. INFO("Count: " << count);
  67. INFO("Intermediate Values: " << std::hex << intermediate.sign << ';' << intermediate.exponent << ';' << intermediate.mantissa);
  68. REQUIRE(input == output);
  69. }
  70. }
  71. TEST_CASE("FPRound (near zero, round to posinf)", "[fp]") {
  72. const FPUnpacked input = {false, -353, 0x0a98d25ace5b2000};
  73. FPSR fpsr;
  74. FPCR fpcr;
  75. fpcr.RMode(RoundingMode::TowardsPlusInfinity);
  76. const u32 output = FPRound<u32>(input, fpcr, fpsr);
  77. REQUIRE(output == 0x00000001);
  78. }