123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # SPDX-License-Identifier: AGPL-3.0-or-later
- """This is the implementation of the Google Scholar engine.
- Compared to other Google services the Scholar engine has a simple GET REST-API
- and there does not exists `async` API. Even though the API slightly vintage we
- can make use of the :ref:`google API` to assemble the arguments of the GET
- request.
- """
- from typing import TYPE_CHECKING
- from typing import Optional
- from urllib.parse import urlencode
- from datetime import datetime
- from lxml import html
- from searx.utils import (
- eval_xpath,
- eval_xpath_getindex,
- eval_xpath_list,
- extract_text,
- )
- from searx.exceptions import SearxEngineCaptchaException
- from searx.engines.google import fetch_traits # pylint: disable=unused-import
- from searx.engines.google import (
- get_google_info,
- time_range_dict,
- )
- from searx.enginelib.traits import EngineTraits
- if TYPE_CHECKING:
- import logging
- logger: logging.Logger
- traits: EngineTraits
- # about
- about = {
- "website": 'https://scholar.google.com',
- "wikidata_id": 'Q494817',
- "official_api_documentation": 'https://developers.google.com/custom-search',
- "use_official_api": False,
- "require_api_key": False,
- "results": 'HTML',
- }
- # engine dependent config
- categories = ['science', 'scientific publications']
- paging = True
- max_page = 50
- language_support = True
- time_range_support = True
- safesearch = False
- send_accept_language_header = True
- def time_range_args(params):
- """Returns a dictionary with a time range arguments based on
- ``params['time_range']``.
- Google Scholar supports a detailed search by year. Searching by *last
- month* or *last week* (as offered by SearXNG) is uncommon for scientific
- publications and is not supported by Google Scholar.
- To limit the result list when the users selects a range, all the SearXNG
- ranges (*day*, *week*, *month*, *year*) are mapped to *year*. If no range
- is set an empty dictionary of arguments is returned. Example; when
- user selects a time range (current year minus one in 2022):
- .. code:: python
- { 'as_ylo' : 2021 }
- """
- ret_val = {}
- if params['time_range'] in time_range_dict:
- ret_val['as_ylo'] = datetime.now().year - 1
- return ret_val
- def detect_google_captcha(dom):
- """In case of CAPTCHA Google Scholar open its own *not a Robot* dialog and is
- not redirected to ``sorry.google.com``.
- """
- if eval_xpath(dom, "//form[@id='gs_captcha_f']"):
- raise SearxEngineCaptchaException()
- def request(query, params):
- """Google-Scholar search request"""
- google_info = get_google_info(params, traits)
- # subdomain is: scholar.google.xy
- google_info['subdomain'] = google_info['subdomain'].replace("www.", "scholar.")
- args = {
- 'q': query,
- **google_info['params'],
- 'start': (params['pageno'] - 1) * 10,
- 'as_sdt': '2007', # include patents / to disable set '0,5'
- 'as_vis': '0', # include citations / to disable set '1'
- }
- args.update(time_range_args(params))
- params['url'] = 'https://' + google_info['subdomain'] + '/scholar?' + urlencode(args)
- params['cookies'] = google_info['cookies']
- params['headers'].update(google_info['headers'])
- return params
- def parse_gs_a(text: Optional[str]):
- """Parse the text written in green.
- Possible formats:
- * "{authors} - {journal}, {year} - {publisher}"
- * "{authors} - {year} - {publisher}"
- * "{authors} - {publisher}"
- """
- if text is None or text == "":
- return None, None, None, None
- s_text = text.split(' - ')
- authors = s_text[0].split(', ')
- publisher = s_text[-1]
- if len(s_text) != 3:
- return authors, None, publisher, None
- # the format is "{authors} - {journal}, {year} - {publisher}" or "{authors} - {year} - {publisher}"
- # get journal and year
- journal_year = s_text[1].split(', ')
- # journal is optional and may contains some coma
- if len(journal_year) > 1:
- journal = ', '.join(journal_year[0:-1])
- if journal == '…':
- journal = None
- else:
- journal = None
- # year
- year = journal_year[-1]
- try:
- publishedDate = datetime.strptime(year.strip(), '%Y')
- except ValueError:
- publishedDate = None
- return authors, journal, publisher, publishedDate
- def response(resp): # pylint: disable=too-many-locals
- """Parse response from Google Scholar"""
- results = []
- # convert the text to dom
- dom = html.fromstring(resp.text)
- detect_google_captcha(dom)
- # parse results
- for result in eval_xpath_list(dom, '//div[@data-rp]'):
- title = extract_text(eval_xpath(result, './/h3[1]//a'))
- if not title:
- # this is a [ZITATION] block
- continue
- pub_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
- if pub_type:
- pub_type = pub_type[1:-1].lower()
- url = eval_xpath_getindex(result, './/h3[1]//a/@href', 0)
- content = extract_text(eval_xpath(result, './/div[@class="gs_rs"]'))
- authors, journal, publisher, publishedDate = parse_gs_a(
- extract_text(eval_xpath(result, './/div[@class="gs_a"]'))
- )
- if publisher in url:
- publisher = None
- # cited by
- comments = extract_text(eval_xpath(result, './/div[@class="gs_fl"]/a[starts-with(@href,"/scholar?cites=")]'))
- # link to the html or pdf document
- html_url = None
- pdf_url = None
- doc_url = eval_xpath_getindex(result, './/div[@class="gs_or_ggsm"]/a/@href', 0, default=None)
- doc_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
- if doc_type == "[PDF]":
- pdf_url = doc_url
- else:
- html_url = doc_url
- results.append(
- {
- 'template': 'paper.html',
- 'type': pub_type,
- 'url': url,
- 'title': title,
- 'authors': authors,
- 'publisher': publisher,
- 'journal': journal,
- 'publishedDate': publishedDate,
- 'content': content,
- 'comments': comments,
- 'html_url': html_url,
- 'pdf_url': pdf_url,
- }
- )
- # parse suggestion
- for suggestion in eval_xpath(dom, '//div[contains(@class, "gs_qsuggest_wrap")]//li//a'):
- # append suggestion
- results.append({'suggestion': extract_text(suggestion)})
- for correction in eval_xpath(dom, '//div[@class="gs_r gs_pda"]/a'):
- results.append({'correction': extract_text(correction)})
- return results
|