1234567891011121314151617181920212223242526272829303132333435363738 |
- discard """
- action: "compile"
- """
- # A vector space over a field F concept.
- type VectorSpace*[F] = concept x, y, type V
- vector_add(x, y) is V
- scalar_mul(x, F) is V
- dimension(V) is Natural
- # Real numbers (here floats) form a vector space.
- func vector_add*(v: float, w: float): float = v + w
- func scalar_mul*(v: float, s: float): float = v * s
- func dimension*(x: typedesc[float]): Natural = 1
- # 2-tuples of real numbers form a vector space.
- func vector_add*(v, w: (float, float)): (float, float) =
- (vector_add(v[0], w[0]), vector_add(v[1], w[1]))
- func scalar_mul*(v: (float, float), s: float): (float, float) =
- (scalar_mul(v[0], s), scalar_mul(v[1], s))
- func dimension*(x: typedesc[(float, float)]): Natural = 2
- # Check concept requirements.
- assert float is VectorSpace
- assert (float, float) is VectorSpace
- # Commutivity axiom for vector spaces over the same field.
- func axiom_commutivity*[F](u, v: VectorSpace[F]): bool =
- vector_add(u, v) == vector_add(v, u)
- # This is okay.
- assert axiom_commutivity(2.2, 3.3)
- # This is not.
- assert axiom_commutivity((2.2, 3.3), (4.4, 5.5))
|