1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2013 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements the signature matching for resolving
- ## the call to overloaded procs, generic procs and operators.
- import
- intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
- magicsys, idents, lexer, options, parampatterns, strutils, trees,
- linter, lineinfos, lowerings, modulegraphs, concepts
- when defined(nimPreviewSlimSystem):
- import std/assertions
- type
- MismatchKind* = enum
- kUnknown, kAlreadyGiven, kUnknownNamedParam, kTypeMismatch, kVarNeeded,
- kMissingParam, kExtraArg, kPositionalAlreadyGiven
- MismatchInfo* = object
- kind*: MismatchKind # reason for mismatch
- arg*: int # position of provided arguments that mismatches
- formal*: PSym # parameter that mismatches against provided argument
- # its position can differ from `arg` because of varargs
- TCandidateState* = enum
- csEmpty, csMatch, csNoMatch
- CandidateError* = object
- sym*: PSym
- firstMismatch*: MismatchInfo
- diagnostics*: seq[string]
- enabled*: bool
- CandidateErrors* = seq[CandidateError]
- TCandidate* = object
- c*: PContext
- exactMatches*: int # also misused to prefer iters over procs
- genericMatches: int # also misused to prefer constraints
- subtypeMatches: int
- intConvMatches: int # conversions to int are not as expensive
- convMatches: int
- state*: TCandidateState
- callee*: PType # may not be nil!
- calleeSym*: PSym # may be nil
- calleeScope*: int # scope depth:
- # is this a top-level symbol or a nested proc?
- call*: PNode # modified call
- bindings*: TIdTable # maps types to types
- magic*: TMagic # magic of operation
- baseTypeMatch: bool # needed for conversions from T to openarray[T]
- # for example
- fauxMatch*: TTypeKind # the match was successful only due to the use
- # of error or wildcard (unknown) types.
- # this is used to prevent instantiations.
- genericConverter*: bool # true if a generic converter needs to
- # be instantiated
- coerceDistincts*: bool # this is an explicit coercion that can strip away
- # a distrinct type
- typedescMatched*: bool
- isNoCall*: bool # misused for generic type instantiations C[T]
- inferredTypes: seq[PType] # inferred types during the current signature
- # matching. they will be reset if the matching
- # is not successful. may replace the bindings
- # table in the future.
- diagnostics*: seq[string] # \
- # when diagnosticsEnabled, the matching process
- # will collect extra diagnostics that will be
- # displayed to the user.
- # triggered when overload resolution fails
- # or when the explain pragma is used. may be
- # triggered with an idetools command in the
- # future.
- inheritancePenalty: int # to prefer closest father object type
- firstMismatch*: MismatchInfo # mismatch info for better error messages
- diagnosticsEnabled*: bool
- TTypeRelFlag* = enum
- trDontBind
- trNoCovariance
- trBindGenericParam # bind tyGenericParam even with trDontBind
- trIsOutParam
- TTypeRelFlags* = set[TTypeRelFlag]
- const
- isNilConversion = isConvertible # maybe 'isIntConv' fits better?
- proc markUsed*(c: PContext; info: TLineInfo, s: PSym)
- proc markOwnerModuleAsUsed*(c: PContext; s: PSym)
- template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone
- proc initCandidateAux(ctx: PContext,
- c: var TCandidate, callee: PType) {.inline.} =
- c.c = ctx
- c.exactMatches = 0
- c.subtypeMatches = 0
- c.convMatches = 0
- c.intConvMatches = 0
- c.genericMatches = 0
- c.state = csEmpty
- c.firstMismatch = MismatchInfo()
- c.callee = callee
- c.call = nil
- c.baseTypeMatch = false
- c.genericConverter = false
- c.inheritancePenalty = 0
- proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) =
- initCandidateAux(ctx, c, callee)
- c.calleeSym = nil
- initIdTable(c.bindings)
- proc put(c: var TCandidate, key, val: PType) {.inline.} =
- ## Given: proc foo[T](x: T); foo(4)
- ## key: 'T'
- ## val: 'int' (typeof(4))
- when false:
- let old = PType(idTableGet(c.bindings, key))
- if old != nil:
- echo "Putting ", typeToString(key), " ", typeToString(val), " and old is ", typeToString(old)
- if typeToString(old) == "float32":
- writeStackTrace()
- if c.c.module.name.s == "temp3":
- echo "binding ", key, " -> ", val
- idTablePut(c.bindings, key, val.skipIntLit(c.c.idgen))
- proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym,
- binding: PNode, calleeScope = -1,
- diagnosticsEnabled = false) =
- initCandidateAux(ctx, c, callee.typ)
- c.calleeSym = callee
- if callee.kind in skProcKinds and calleeScope == -1:
- if callee.originatingModule == ctx.module:
- c.calleeScope = 2
- var owner = callee
- while true:
- owner = owner.skipGenericOwner
- if owner.kind == skModule: break
- inc c.calleeScope
- else:
- c.calleeScope = 1
- else:
- c.calleeScope = calleeScope
- c.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil
- c.diagnosticsEnabled = diagnosticsEnabled
- c.magic = c.calleeSym.magic
- initIdTable(c.bindings)
- if binding != nil and callee.kind in routineKinds:
- var typeParams = callee.ast[genericParamsPos]
- for i in 1..min(typeParams.len, binding.len-1):
- var formalTypeParam = typeParams[i-1].typ
- var bound = binding[i].typ
- if bound != nil:
- if formalTypeParam.kind == tyTypeDesc:
- if bound.kind != tyTypeDesc:
- bound = makeTypeDesc(ctx, bound)
- else:
- bound = bound.skipTypes({tyTypeDesc})
- put(c, formalTypeParam, bound)
- proc newCandidate*(ctx: PContext, callee: PSym,
- binding: PNode, calleeScope = -1): TCandidate =
- initCandidate(ctx, result, callee, binding, calleeScope)
- proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
- initCandidate(ctx, result, callee)
- proc copyCandidate(a: var TCandidate, b: TCandidate) =
- a.c = b.c
- a.exactMatches = b.exactMatches
- a.subtypeMatches = b.subtypeMatches
- a.convMatches = b.convMatches
- a.intConvMatches = b.intConvMatches
- a.genericMatches = b.genericMatches
- a.state = b.state
- a.callee = b.callee
- a.calleeSym = b.calleeSym
- a.call = copyTree(b.call)
- a.baseTypeMatch = b.baseTypeMatch
- copyIdTable(a.bindings, b.bindings)
- proc typeRel*(c: var TCandidate, f, aOrig: PType,
- flags: TTypeRelFlags = {}): TTypeRelation
- proc checkGeneric(a, b: TCandidate): int =
- let c = a.c
- let aa = a.callee
- let bb = b.callee
- var winner = 0
- for i in 1..<min(aa.len, bb.len):
- var ma = newCandidate(c, bb[i])
- let tra = typeRel(ma, bb[i], aa[i], {trDontBind})
- var mb = newCandidate(c, aa[i])
- let trb = typeRel(mb, aa[i], bb[i], {trDontBind})
- if tra == isGeneric and trb == isNone:
- if winner == -1: return 0
- winner = 1
- if trb == isGeneric and tra == isNone:
- if winner == 1: return 0
- winner = -1
- result = winner
- proc sumGeneric(t: PType): int =
- # count the "genericness" so that Foo[Foo[T]] has the value 3
- # and Foo[T] has the value 2 so that we know Foo[Foo[T]] is more
- # specific than Foo[T].
- var t = t
- var isvar = 1
- while true:
- case t.kind
- of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyUncheckedArray,
- tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody,
- tyLent, tyOwned:
- t = t.lastSon
- inc result
- of tyOr:
- var maxBranch = 0
- for branch in t.sons:
- let branchSum = sumGeneric(branch)
- if branchSum > maxBranch: maxBranch = branchSum
- inc result, maxBranch
- break
- of tyVar:
- t = t[0]
- inc result
- inc isvar
- of tyTypeDesc:
- t = t.lastSon
- if t.kind == tyEmpty: break
- inc result
- of tyGenericInvocation, tyTuple, tyProc, tyAnd:
- result += ord(t.kind in {tyGenericInvocation, tyAnd})
- for i in 0..<t.len:
- if t[i] != nil:
- result += sumGeneric(t[i])
- break
- of tyStatic:
- return sumGeneric(t[0]) + 1
- of tyGenericParam, tyUntyped, tyTyped: break
- of tyAlias, tySink: t = t.lastSon
- of tyBool, tyChar, tyEnum, tyObject, tyPointer,
- tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
- tyUInt..tyUInt64, tyCompositeTypeClass:
- return isvar
- else:
- return 0
- proc complexDisambiguation(a, b: PType): int =
- # 'a' matches better if *every* argument matches better or equal than 'b'.
- var winner = 0
- for i in 1..<min(a.len, b.len):
- let x = a[i].sumGeneric
- let y = b[i].sumGeneric
- if x != y:
- if winner == 0:
- if x > y: winner = 1
- else: winner = -1
- elif x > y:
- if winner != 1:
- # contradiction
- return 0
- else:
- if winner != -1:
- return 0
- result = winner
- when false:
- var x, y: int
- for i in 1..<a.len: x += a[i].sumGeneric
- for i in 1..<b.len: y += b[i].sumGeneric
- result = x - y
- proc writeMatches*(c: TCandidate) =
- echo "Candidate '", c.calleeSym.name.s, "' at ", c.c.config $ c.calleeSym.info
- echo " exact matches: ", c.exactMatches
- echo " generic matches: ", c.genericMatches
- echo " subtype matches: ", c.subtypeMatches
- echo " intconv matches: ", c.intConvMatches
- echo " conv matches: ", c.convMatches
- echo " inheritance: ", c.inheritancePenalty
- proc cmpCandidates*(a, b: TCandidate): int =
- result = a.exactMatches - b.exactMatches
- if result != 0: return
- result = a.genericMatches - b.genericMatches
- if result != 0: return
- result = a.subtypeMatches - b.subtypeMatches
- if result != 0: return
- result = a.intConvMatches - b.intConvMatches
- if result != 0: return
- result = a.convMatches - b.convMatches
- if result != 0: return
- # the other way round because of other semantics:
- result = b.inheritancePenalty - a.inheritancePenalty
- if result != 0: return
- # check for generic subclass relation
- result = checkGeneric(a, b)
- if result != 0: return
- # prefer more specialized generic over more general generic:
- result = complexDisambiguation(a.callee, b.callee)
- # only as a last resort, consider scoping:
- if result != 0: return
- result = a.calleeScope - b.calleeScope
- proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
- if arg.kind in nkSymChoices:
- result = typeToString(arg[0].typ, prefer)
- for i in 1..<arg.len:
- result.add(" | ")
- result.add typeToString(arg[i].typ, prefer)
- elif arg.typ == nil:
- result = "void"
- else:
- result = arg.typ.typeToString(prefer)
- proc describeArgs*(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
- result = ""
- for i in startIdx..<n.len:
- var arg = n[i]
- if n[i].kind == nkExprEqExpr:
- result.add renderTree(n[i][0])
- result.add ": "
- if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
- # XXX we really need to 'tryExpr' here!
- arg = c.semOperand(c, n[i][1])
- n[i].typ = arg.typ
- n[i][1] = arg
- else:
- if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo, nkElse,
- nkOfBranch, nkElifBranch,
- nkExceptBranch}:
- arg = c.semOperand(c, n[i])
- n[i] = arg
- if arg.typ != nil and arg.typ.kind == tyError: return
- result.add argTypeToString(arg, prefer)
- if i != n.len - 1: result.add ", "
- proc concreteType(c: TCandidate, t: PType; f: PType = nil): PType =
- case t.kind
- of tyTypeDesc:
- if c.isNoCall: result = t
- else: result = nil
- of tySequence, tySet:
- if t[0].kind == tyEmpty: result = nil
- else: result = t
- of tyGenericParam, tyAnything, tyConcept:
- result = t
- while true:
- result = PType(idTableGet(c.bindings, t))
- if result == nil:
- break # it's ok, no match
- # example code that triggers it:
- # proc sort[T](cmp: proc(a, b: T): int = cmp)
- if result.kind != tyGenericParam: break
- of tyGenericInvocation:
- result = nil
- of tyOwned:
- # bug #11257: the comparison system.`==`[T: proc](x, y: T) works
- # better without the 'owned' type:
- if f != nil and f.len > 0 and f[0].skipTypes({tyBuiltInTypeClass}).kind == tyProc:
- result = t.lastSon
- else:
- result = t
- else:
- result = t # Note: empty is valid here
- proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation =
- if a.kind == f.kind:
- result = isEqual
- else:
- let ab = skipTypes(a, {tyRange})
- let k = ab.kind
- if k == f.kind: result = isSubrange
- elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64,
- tyUInt..tyUInt64} and
- isIntLit(ab) and getInt(ab.n) >= firstOrd(nil, f) and
- getInt(ab.n) <= lastOrd(nil, f):
- # passing 'nil' to firstOrd/lastOrd here as type checking rules should
- # not depend on the target integer size configurations!
- # integer literal in the proper range; we want ``i16 + 4`` to stay an
- # ``int16`` operation so we declare the ``4`` pseudo-equal to int16
- result = isFromIntLit
- elif f.kind == tyInt and k in {tyInt8..tyInt32}:
- result = isIntConv
- elif f.kind == tyUInt and k in {tyUInt8..tyUInt32}:
- result = isIntConv
- elif k >= min and k <= max:
- result = isConvertible
- elif a.kind == tyRange and
- # Make sure the conversion happens between types w/ same signedness
- (f.kind in {tyInt..tyInt64} and a[0].kind in {tyInt..tyInt64} or
- f.kind in {tyUInt8..tyUInt32} and a[0].kind in {tyUInt8..tyUInt32}) and
- a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f):
- # passing 'nil' to firstOrd/lastOrd here as type checking rules should
- # not depend on the target integer size configurations!
- result = isConvertible
- else: result = isNone
- proc isConvertibleToRange(f, a: PType): bool =
- if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
- a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
- case f.kind
- of tyInt8: result = isIntLit(a) or a.kind in {tyInt8}
- of tyInt16: result = isIntLit(a) or a.kind in {tyInt8, tyInt16}
- of tyInt32: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32}
- # This is wrong, but seems like there's a lot of code that relies on it :(
- of tyInt, tyUInt, tyUInt64: result = true
- of tyInt64: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32, tyInt, tyInt64}
- of tyUInt8: result = isIntLit(a) or a.kind in {tyUInt8}
- of tyUInt16: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16}
- of tyUInt32: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32}
- #of tyUInt: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt}
- #of tyUInt64: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt, tyUInt64}
- else: result = false
- elif f.kind in {tyFloat..tyFloat128}:
- # `isIntLit` is correct and should be used above as well, see PR:
- # https://github.com/nim-lang/Nim/pull/11197
- result = isIntLit(a) or a.kind in {tyFloat..tyFloat128}
- proc handleFloatRange(f, a: PType): TTypeRelation =
- if a.kind == f.kind:
- result = isEqual
- else:
- let ab = skipTypes(a, {tyRange})
- var k = ab.kind
- if k == f.kind: result = isSubrange
- elif isFloatLit(ab): result = isFromIntLit
- elif isIntLit(ab): result = isConvertible
- elif k >= tyFloat and k <= tyFloat128:
- # conversion to "float32" is not as good:
- if f.kind == tyFloat32: result = isConvertible
- else: result = isIntConv
- else: result = isNone
- proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) =
- if fGenericOrigin != nil and last.kind == tyGenericInst and
- last.len-1 == fGenericOrigin.len:
- for i in 1..<fGenericOrigin.len:
- let x = PType(idTableGet(c.bindings, fGenericOrigin[i]))
- if x == nil:
- put(c, fGenericOrigin[i], last[i])
- proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int =
- var t = a
- assert t.kind == tyObject
- var depth = 0
- var last = a
- while t != nil and not sameObjectTypes(f, t):
- assert t.kind == tyObject
- t = t[0]
- if t == nil: break
- last = t
- t = skipTypes(t, skipPtrs)
- inc depth
- if t != nil:
- genericParamPut(c, last, fGenericOrigin)
- result = depth
- else:
- result = -1
- type
- SkippedPtr = enum skippedNone, skippedRef, skippedPtr
- proc skipToObject(t: PType; skipped: var SkippedPtr): PType =
- var r = t
- # we're allowed to skip one level of ptr/ref:
- var ptrs = 0
- while r != nil:
- case r.kind
- of tyGenericInvocation:
- r = r[0]
- of tyRef:
- inc ptrs
- skipped = skippedRef
- r = r.lastSon
- of tyPtr:
- inc ptrs
- skipped = skippedPtr
- r = r.lastSon
- of tyGenericBody, tyGenericInst, tyAlias, tySink, tyOwned:
- r = r.lastSon
- else:
- break
- if r.kind == tyObject and ptrs <= 1: result = r
- proc isGenericSubtype(c: var TCandidate; a, f: PType, d: var int, fGenericOrigin: PType): bool =
- assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody}
- var askip = skippedNone
- var fskip = skippedNone
- var t = a.skipToObject(askip)
- let r = f.skipToObject(fskip)
- if r == nil: return false
- var depth = 0
- var last = a
- # XXX sameObjectType can return false here. Need to investigate
- # why that is but sameObjectType does way too much work here anyway.
- while t != nil and r.sym != t.sym and askip == fskip:
- t = t[0]
- if t == nil: break
- last = t
- t = t.skipToObject(askip)
- inc depth
- if t != nil and askip == fskip:
- genericParamPut(c, last, fGenericOrigin)
- d = depth
- result = true
- proc minRel(a, b: TTypeRelation): TTypeRelation =
- if a <= b: result = a
- else: result = b
- proc recordRel(c: var TCandidate, f, a: PType): TTypeRelation =
- result = isNone
- if sameType(f, a):
- result = isEqual
- elif a.len == f.len:
- result = isEqual
- let firstField = if f.kind == tyTuple: 0
- else: 1
- for i in firstField..<f.len:
- var m = typeRel(c, f[i], a[i])
- if m < isSubtype: return isNone
- result = minRel(result, m)
- if f.n != nil and a.n != nil:
- for i in 0..<f.n.len:
- # check field names:
- if f.n[i].kind != nkSym: return isNone
- elif a.n[i].kind != nkSym: return isNone
- else:
- var x = f.n[i].sym
- var y = a.n[i].sym
- if f.kind == tyObject and typeRel(c, x.typ, y.typ) < isSubtype:
- return isNone
- if x.name.id != y.name.id: return isNone
- proc allowsNil(f: PType): TTypeRelation {.inline.} =
- result = if tfNotNil notin f.flags: isSubtype else: isNone
- proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
- result = (f.kind != a.kind and
- (f.kind in {tyVar, tyLent, tySink} or a.kind in {tyVar, tyLent, tySink})) or
- isOutParam(f) != isOutParam(a)
- proc procParamTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
- ## For example we have:
- ## ```
- ## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
- ## proc innerProc[Q,W](q: Q): W = ...
- ## ```
- ## And we want to match: myMap(@[1,2,3], innerProc)
- ## This proc (procParamTypeRel) will do the following steps in
- ## three different calls:
- ## - matches f=T to a=Q. Since f is metatype, we resolve it
- ## to int (which is already known at this point). So in this case
- ## Q=int mapping will be saved to c.bindings.
- ## - matches f=S to a=W. Both of these metatypes are unknown, so we
- ## return with isBothMetaConvertible to ask for rerun.
- ## - matches f=S to a=W. At this point the return type of innerProc
- ## is known (we get it from c.bindings). We can use that value
- ## to match with f, and save back to c.bindings.
- var
- f = f
- a = a
- if a.isMetaType:
- let aResolved = PType(idTableGet(c.bindings, a))
- if aResolved != nil:
- a = aResolved
- if a.isMetaType:
- if f.isMetaType:
- # We are matching a generic proc (as proc param)
- # to another generic type appearing in the proc
- # signature. There is a chance that the target
- # type is already fully-determined, so we are
- # going to try resolve it
- if c.call != nil:
- f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
- else:
- f = nil
- if f == nil or f.isMetaType:
- # no luck resolving the type, so the inference fails
- return isBothMetaConvertible
- # Note that this typeRel call will save a's resolved type into c.bindings
- let reverseRel = typeRel(c, a, f)
- if reverseRel >= isGeneric:
- result = isInferred
- #inc c.genericMatches
- else:
- # Note that this typeRel call will save f's resolved type into c.bindings
- # if f is metatype.
- result = typeRel(c, f, a)
- if result <= isSubrange or inconsistentVarTypes(f, a):
- result = isNone
- #if result == isEqual:
- # inc c.exactMatches
- proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
- case a.kind
- of tyProc:
- if f.len != a.len: return
- result = isEqual # start with maximum; also correct for no
- # params at all
- template checkParam(f, a) =
- result = minRel(result, procParamTypeRel(c, f, a))
- if result == isNone: return
- # Note: We have to do unification for the parameters before the
- # return type!
- for i in 1..<f.len:
- checkParam(f[i], a[i])
- if f[0] != nil:
- if a[0] != nil:
- checkParam(f[0], a[0])
- else:
- return isNone
- elif a[0] != nil:
- return isNone
- result = getProcConvMismatch(c.c.config, f, a, result)[1]
- when useEffectSystem:
- if compatibleEffects(f, a) != efCompat: return isNone
- when defined(drnim):
- if not c.c.graph.compatibleProps(c.c.graph, f, a): return isNone
- of tyNil:
- result = f.allowsNil
- else: discard
- proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
- template checkRange[T](a0, a1, f0, f1: T): TTypeRelation =
- if a0 == f0 and a1 == f1:
- isEqual
- elif a0 >= f0 and a1 <= f1:
- isConvertible
- elif a0 <= f1 and f0 <= a1:
- # X..Y and C..D overlap iff (X <= D and C <= Y)
- isConvertible
- else:
- isNone
- if f.isOrdinalType:
- checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f))
- else:
- checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f))
- proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType =
- var
- c = m.c
- typeClass = ff.skipTypes({tyUserTypeClassInst})
- body = typeClass.n[3]
- matchedConceptContext: TMatchedConcept
- prevMatchedConcept = c.matchedConcept
- prevCandidateType = typeClass[0][0]
- if prevMatchedConcept != nil:
- matchedConceptContext.prev = prevMatchedConcept
- matchedConceptContext.depth = prevMatchedConcept.depth + 1
- if prevMatchedConcept.depth > 4:
- localError(m.c.graph.config, body.info, $body & " too nested for type matching")
- return nil
- openScope(c)
- matchedConceptContext.candidateType = a
- typeClass[0][0] = a
- c.matchedConcept = addr(matchedConceptContext)
- defer:
- c.matchedConcept = prevMatchedConcept
- typeClass[0][0] = prevCandidateType
- closeScope(c)
- var typeParams: seq[(PSym, PType)]
- if ff.kind == tyUserTypeClassInst:
- for i in 1..<(ff.len - 1):
- var
- typeParamName = ff.base[i-1].sym.name
- typ = ff[i]
- param: PSym
- alreadyBound = PType(idTableGet(m.bindings, typ))
- if alreadyBound != nil: typ = alreadyBound
- template paramSym(kind): untyped =
- newSym(kind, typeParamName, nextSymId(c.idgen), typeClass.sym, typeClass.sym.info, {})
- block addTypeParam:
- for prev in typeParams:
- if prev[1].id == typ.id:
- param = paramSym prev[0].kind
- param.typ = prev[0].typ
- break addTypeParam
- case typ.kind
- of tyStatic:
- param = paramSym skConst
- param.typ = typ.exactReplica
- #copyType(typ, nextTypeId(c.idgen), typ.owner)
- if typ.n == nil:
- param.typ.flags.incl tfInferrableStatic
- else:
- param.ast = typ.n
- of tyUnknown:
- param = paramSym skVar
- param.typ = typ.exactReplica
- #copyType(typ, nextTypeId(c.idgen), typ.owner)
- else:
- param = paramSym skType
- param.typ = if typ.isMetaType:
- c.newTypeWithSons(tyInferred, @[typ])
- else:
- makeTypeDesc(c, typ)
- typeParams.add((param, typ))
- addDecl(c, param)
- var
- oldWriteHook: typeof(m.c.config.writelnHook)
- diagnostics: seq[string]
- errorPrefix: string
- flags: TExprFlags = {}
- collectDiagnostics = m.diagnosticsEnabled or
- sfExplain in typeClass.sym.flags
- if collectDiagnostics:
- oldWriteHook = m.c.config.writelnHook
- # XXX: we can't write to m.diagnostics directly, because
- # Nim doesn't support capturing var params in closures
- diagnostics = @[]
- flags = {efExplain}
- m.c.config.writelnHook = proc (s: string) =
- if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":"
- let msg = s.replace("Error:", errorPrefix)
- if oldWriteHook != nil: oldWriteHook msg
- diagnostics.add msg
- var checkedBody = c.semTryExpr(c, body.copyTree, flags)
- if collectDiagnostics:
- m.c.config.writelnHook = oldWriteHook
- for msg in diagnostics:
- m.diagnostics.add msg
- m.diagnosticsEnabled = true
- if checkedBody == nil: return nil
- # The inferrable type params have been identified during the semTryExpr above.
- # We need to put them in the current sigmatch's binding table in order for them
- # to be resolvable while matching the rest of the parameters
- for p in typeParams:
- put(m, p[1], p[0].typ)
- if ff.kind == tyUserTypeClassInst:
- result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff)
- else:
- result = ff.exactReplica
- #copyType(ff, nextTypeId(c.idgen), ff.owner)
- result.n = checkedBody
- proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool =
- # XXX This is bad as 'considerQuotedIdent' can produce an error!
- if rules.kind == nkWith:
- for r in rules:
- if considerQuotedIdent(m.c, r) == callIdent: return true
- return false
- else:
- for r in rules:
- if considerQuotedIdent(m.c, r) == callIdent: return false
- return true
- proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType =
- if t != nil and t.kind == tyDistinct and t.n != nil and
- shouldSkipDistinct(m, t.n, callee.name):
- result = t.base
- else:
- result = t
- proc tryResolvingStaticExpr(c: var TCandidate, n: PNode,
- allowUnresolved = false): PNode =
- # Consider this example:
- # type Value[N: static[int]] = object
- # proc foo[N](a: Value[N], r: range[0..(N-1)])
- # Here, N-1 will be initially nkStaticExpr that can be evaluated only after
- # N is bound to a concrete value during the matching of the first param.
- # This proc is used to evaluate such static expressions.
- let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil,
- allowMetaTypes = allowUnresolved)
- result = c.c.semExpr(c.c, instantiated)
- proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool =
- # This is a simple integer arithimetic equation solver,
- # capable of deriving the value of a static parameter in
- # expressions such as (N + 5) / 2 = rhs
- #
- # Preconditions:
- #
- # * The input of this proc must be semantized
- # - all templates should be expanded
- # - aby constant folding possible should already be performed
- #
- # * There must be exactly one unresolved static parameter
- #
- # Result:
- #
- # The proc will return true if the static types was successfully
- # inferred. The result will be bound to the original static type
- # in the TCandidate.
- #
- if lhs.kind in nkCallKinds and lhs[0].kind == nkSym:
- case lhs[0].sym.magic
- of mAddI, mAddU, mInc, mSucc:
- if lhs[1].kind == nkIntLit:
- return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal)
- elif lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal)
- of mDec, mSubI, mSubU, mPred:
- if lhs[1].kind == nkIntLit:
- return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs)
- elif lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal)
- of mMulI, mMulU:
- if lhs[1].kind == nkIntLit:
- if rhs mod lhs[1].intVal == 0:
- return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal)
- elif lhs[2].kind == nkIntLit:
- if rhs mod lhs[2].intVal == 0:
- return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal)
- of mDivI, mDivU:
- if lhs[1].kind == nkIntLit:
- if lhs[1].intVal mod rhs == 0:
- return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs)
- elif lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs)
- of mShlI:
- if lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal)
- of mShrI:
- if lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal)
- of mAshrI:
- if lhs[2].kind == nkIntLit:
- return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal))
- of mUnaryMinusI:
- return inferStaticParam(c, lhs[1], -rhs)
- of mUnaryPlusI:
- return inferStaticParam(c, lhs[1], rhs)
- else: discard
- elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and lhs.typ.n == nil:
- var inferred = newTypeWithSons(c.c, tyStatic, lhs.typ.sons)
- inferred.n = newIntNode(nkIntLit, rhs)
- put(c, lhs.typ, inferred)
- if c.c.matchedConcept != nil:
- # inside concepts, binding is currently done with
- # direct mutation of the involved types:
- lhs.typ.n = inferred.n
- return true
- return false
- proc failureToInferStaticParam(conf: ConfigRef; n: PNode) =
- let staticParam = n.findUnresolvedStatic
- let name = if staticParam != nil: staticParam.sym.name.s
- else: "unknown"
- localError(conf, n.info, "cannot infer the value of the static param '" & name & "'")
- proc inferStaticsInRange(c: var TCandidate,
- inferred, concrete: PType): TTypeRelation =
- let lowerBound = tryResolvingStaticExpr(c, inferred.n[0],
- allowUnresolved = true)
- let upperBound = tryResolvingStaticExpr(c, inferred.n[1],
- allowUnresolved = true)
- template doInferStatic(e: PNode, r: Int128) =
- var exp = e
- var rhs = r
- if inferStaticParam(c, exp, toInt64(rhs)):
- return isGeneric
- else:
- failureToInferStaticParam(c.c.config, exp)
- if lowerBound.kind == nkIntLit:
- if upperBound.kind == nkIntLit:
- if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1:
- return isGeneric
- else:
- return isNone
- doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1)
- elif upperBound.kind == nkIntLit:
- doInferStatic(lowerBound, getInt(upperBound) + 1 - lengthOrd(c.c.config, concrete))
- template subtypeCheck() =
- if result <= isSubrange and f.lastSon.skipTypes(abstractInst).kind in {
- tyRef, tyPtr, tyVar, tyLent, tyOwned}:
- result = isNone
- proc isCovariantPtr(c: var TCandidate, f, a: PType): bool =
- # this proc is always called for a pair of matching types
- assert f.kind == a.kind
- template baseTypesCheck(lhs, rhs: PType): bool =
- lhs.kind notin {tyPtr, tyRef, tyVar, tyLent, tyOwned} and
- typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype
- case f.kind
- of tyRef, tyPtr, tyOwned:
- return baseTypesCheck(f.base, a.base)
- of tyGenericInst:
- let body = f.base
- return body == a.base and
- a.len == 3 and
- tfWeakCovariant notin body[0].flags and
- baseTypesCheck(f[1], a[1])
- else:
- return false
- when false:
- proc maxNumericType(prev, candidate: PType): PType =
- let c = candidate.skipTypes({tyRange})
- template greater(s) =
- if c.kind in s: result = c
- case prev.kind
- of tyInt: greater({tyInt64})
- of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64})
- of tyInt16: greater({tyInt, tyInt32, tyInt64})
- of tyInt32: greater({tyInt64})
- of tyUInt: greater({tyUInt64})
- of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64})
- of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64})
- of tyUInt32: greater({tyUInt64})
- of tyFloat32: greater({tyFloat64, tyFloat128})
- of tyFloat64: greater({tyFloat128})
- else: discard
- template skipOwned(a) =
- if a.kind == tyOwned: a = a.skipTypes({tyOwned, tyGenericInst})
- proc typeRel(c: var TCandidate, f, aOrig: PType,
- flags: TTypeRelFlags = {}): TTypeRelation =
- # typeRel can be used to establish various relationships between types:
- #
- # 1) When used with concrete types, it will check for type equivalence
- # or a subtype relationship.
- #
- # 2) When used with a concrete type against a type class (such as generic
- # signature of a proc), it will check whether the concrete type is a member
- # of the designated type class.
- #
- # 3) When used with two type classes, it will check whether the types
- # matching the first type class are a strict subset of the types matching
- # the other. This allows us to compare the signatures of generic procs in
- # order to give preferrence to the most specific one:
- #
- # seq[seq[any]] is a strict subset of seq[any] and hence more specific.
- result = isNone
- assert(f != nil)
- when declared(deallocatedRefId):
- let corrupt = deallocatedRefId(cast[pointer](f))
- if corrupt != 0:
- c.c.config.quitOrRaise "it's corrupt " & $corrupt
- if f.kind == tyUntyped:
- if aOrig != nil: put(c, f, aOrig)
- return isGeneric
- assert(aOrig != nil)
- var
- useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and
- not c.isNoCall and
- f.kind != tyTypeDesc and
- tfExplicit notin aOrig.flags and
- tfConceptMatchedTypeSym notin aOrig.flags
- aOrig = if useTypeLoweringRuleInTypeClass:
- aOrig.skipTypes({tyTypeDesc})
- else:
- aOrig
- if aOrig.kind == tyInferred:
- let prev = aOrig.previouslyInferred
- if prev != nil:
- return typeRel(c, f, prev, flags)
- else:
- var candidate = f
- case f.kind
- of tyGenericParam:
- var prev = PType(idTableGet(c.bindings, f))
- if prev != nil: candidate = prev
- of tyFromExpr:
- let computedType = tryResolvingStaticExpr(c, f.n).typ
- case computedType.kind
- of tyTypeDesc:
- candidate = computedType.base
- of tyStatic:
- candidate = computedType
- else:
- # XXX What is this non-sense? Error reporting in signature matching?
- discard "localError(f.n.info, errTypeExpected)"
- else:
- discard
- result = typeRel(c, aOrig.base, candidate, flags)
- if result != isNone:
- c.inferredTypes.add aOrig
- aOrig.add candidate
- result = isEqual
- return
- template doBind: bool = trDontBind notin flags
- # var, sink and static arguments match regular modifier-free types
- var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent, tySink}), c.calleeSym)
- # XXX: Theoretically, maybeSkipDistinct could be called before we even
- # start the param matching process. This could be done in `prepareOperand`
- # for example, but unfortunately `prepareOperand` is not called in certain
- # situation when nkDotExpr are rotated to nkDotCalls
- if aOrig.kind in {tyAlias, tySink}:
- return typeRel(c, f, lastSon(aOrig), flags)
- if a.kind == tyGenericInst and
- skipTypes(f, {tyStatic, tyVar, tyLent, tySink}).kind notin {
- tyGenericBody, tyGenericInvocation,
- tyGenericInst, tyGenericParam} + tyTypeClasses:
- return typeRel(c, f, lastSon(a), flags)
- if a.isResolvedUserTypeClass:
- return typeRel(c, f, a.lastSon, flags)
- template bindingRet(res) =
- if doBind:
- let bound = aOrig.skipTypes({tyRange}).skipIntLit(c.c.idgen)
- put(c, f, bound)
- return res
- template considerPreviousT(body: untyped) =
- var prev = PType(idTableGet(c.bindings, f))
- if prev == nil: body
- else: return typeRel(c, prev, a, flags)
- case a.kind
- of tyOr:
- # XXX: deal with the current dual meaning of tyGenericParam
- c.typedescMatched = true
- # seq[int|string] vs seq[number]
- # both int and string must match against number
- # but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
- result = isGeneric
- for branch in a.sons:
- let x = typeRel(c, f, branch, flags + {trDontBind})
- if x == isNone: return isNone
- if x < result: result = x
- return result
- of tyAnd:
- # XXX: deal with the current dual meaning of tyGenericParam
- c.typedescMatched = true
- # seq[Sortable and Iterable] vs seq[Sortable]
- # only one match is enough
- for branch in a.sons:
- let x = typeRel(c, f, branch, flags + {trDontBind})
- if x != isNone:
- return if x >= isGeneric: isGeneric else: x
- return isNone
- of tyIterable:
- if f.kind != tyIterable: return isNone
- of tyNot:
- case f.kind
- of tyNot:
- # seq[!int] vs seq[!number]
- # seq[float] matches the first, but not the second
- # we must turn the problem around:
- # is number a subset of int?
- return typeRel(c, a.lastSon, f.lastSon, flags)
- else:
- # negative type classes are essentially infinite,
- # so only the `any` type class is their superset
- return if f.kind == tyAnything: isGeneric
- else: isNone
- of tyAnything:
- if f.kind == tyAnything: return isGeneric
- else: return isNone
- of tyUserTypeClass, tyUserTypeClassInst:
- if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4:
- # consider this: 'var g: Node' *within* a concept where 'Node'
- # is a concept too (tgraph)
- inc c.c.matchedConcept.depth
- let x = typeRel(c, a, f, flags + {trDontBind})
- if x >= isGeneric:
- return isGeneric
- else: discard
- case f.kind
- of tyEnum:
- if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
- elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
- of tyBool, tyChar:
- if a.kind == f.kind: result = isEqual
- elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
- of tyRange:
- if a.kind == f.kind:
- if f.base.kind == tyNone: return isGeneric
- result = typeRel(c, base(f), base(a), flags)
- # bugfix: accept integer conversions here
- #if result < isGeneric: result = isNone
- if result notin {isNone, isGeneric}:
- # resolve any late-bound static expressions
- # that may appear in the range:
- for i in 0..1:
- if f.n[i].kind == nkStaticExpr:
- f.n[i] = tryResolvingStaticExpr(c, f.n[i])
- result = typeRangeRel(f, a)
- else:
- let f = skipTypes(f, {tyRange})
- if f.kind == a.kind and (f.kind != tyEnum or sameEnumTypes(f, a)):
- result = isIntConv
- elif isConvertibleToRange(f, a):
- result = isConvertible # a convertible to f
- of tyInt: result = handleRange(f, a, tyInt8, tyInt32)
- of tyInt8: result = handleRange(f, a, tyInt8, tyInt8)
- of tyInt16: result = handleRange(f, a, tyInt8, tyInt16)
- of tyInt32: result = handleRange(f, a, tyInt8, tyInt32)
- of tyInt64: result = handleRange(f, a, tyInt, tyInt64)
- of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32)
- of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8)
- of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16)
- of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32)
- of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64)
- of tyFloat: result = handleFloatRange(f, a)
- of tyFloat32: result = handleFloatRange(f, a)
- of tyFloat64: result = handleFloatRange(f, a)
- of tyFloat128: result = handleFloatRange(f, a)
- of tyVar:
- let flags = if isOutParam(f): flags + {trIsOutParam} else: flags
- if aOrig.kind == f.kind and (isOutParam(aOrig) == isOutParam(f)):
- result = typeRel(c, f.base, aOrig.base, flags)
- else:
- result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
- subtypeCheck()
- of tyLent:
- if aOrig.kind == f.kind:
- result = typeRel(c, f.base, aOrig.base, flags)
- else:
- result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
- subtypeCheck()
- of tyArray:
- case a.kind
- of tyArray:
- var fRange = f[0]
- var aRange = a[0]
- if fRange.kind == tyGenericParam:
- var prev = PType(idTableGet(c.bindings, fRange))
- if prev == nil:
- put(c, fRange, a[0])
- fRange = a
- else:
- fRange = prev
- let ff = f[1].skipTypes({tyTypeDesc})
- # This typeDesc rule is wrong, see bug #7331
- let aa = a[1] #.skipTypes({tyTypeDesc})
- if f[0].kind != tyGenericParam and aa.kind == tyEmpty:
- result = isGeneric
- else:
- result = typeRel(c, ff, aa, flags)
- if result < isGeneric:
- if nimEnableCovariance and
- trNoCovariance notin flags and
- ff.kind == aa.kind and
- isCovariantPtr(c, ff, aa):
- result = isSubtype
- else:
- return isNone
- if fRange.rangeHasUnresolvedStatic:
- return inferStaticsInRange(c, fRange, a)
- elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic:
- return inferStaticsInRange(c, aRange, f)
- else:
- if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange):
- result = isNone
- else: discard
- of tyUncheckedArray:
- if a.kind == tyUncheckedArray:
- result = typeRel(c, base(f), base(a), flags)
- if result < isGeneric: result = isNone
- else: discard
- of tyOpenArray, tyVarargs:
- # varargs[untyped] is special too but handled earlier. So we only need to
- # handle varargs[typed]:
- if f.kind == tyVarargs:
- if tfVarargs in a.flags:
- return typeRel(c, f.base, a.lastSon, flags)
- if f[0].kind == tyTyped: return
- template matchArrayOrSeq(aBase: PType) =
- let ff = f.base
- let aa = aBase
- let baseRel = typeRel(c, ff, aa, flags)
- if baseRel >= isGeneric:
- result = isConvertible
- elif nimEnableCovariance and
- trNoCovariance notin flags and
- ff.kind == aa.kind and
- isCovariantPtr(c, ff, aa):
- result = isConvertible
- case a.kind
- of tyOpenArray, tyVarargs:
- result = typeRel(c, base(f), base(a), flags)
- if result < isGeneric: result = isNone
- of tyArray:
- if (f[0].kind != tyGenericParam) and (a[1].kind == tyEmpty):
- return isSubtype
- matchArrayOrSeq(a[1])
- of tySequence:
- if (f[0].kind != tyGenericParam) and (a[0].kind == tyEmpty):
- return isConvertible
- matchArrayOrSeq(a[0])
- of tyString:
- if f.kind == tyOpenArray:
- if f[0].kind == tyChar:
- result = isConvertible
- elif f[0].kind == tyGenericParam and a.len > 0 and
- typeRel(c, base(f), base(a), flags) >= isGeneric:
- result = isConvertible
- else: discard
- of tySequence:
- case a.kind
- of tySequence:
- if (f[0].kind != tyGenericParam) and (a[0].kind == tyEmpty):
- result = isSubtype
- else:
- let ff = f[0]
- let aa = a[0]
- result = typeRel(c, ff, aa, flags)
- if result < isGeneric:
- if nimEnableCovariance and
- trNoCovariance notin flags and
- ff.kind == aa.kind and
- isCovariantPtr(c, ff, aa):
- result = isSubtype
- else:
- result = isNone
- elif tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- of tyNil: result = isNone
- else: discard
- of tyOrdinal:
- if isOrdinalType(a, allowEnumWithHoles = optNimV1Emulation in c.c.config.globalOptions):
- var x = if a.kind == tyOrdinal: a[0] else: a
- if f[0].kind == tyNone:
- result = isGeneric
- else:
- result = typeRel(c, f[0], x, flags)
- if result < isGeneric: result = isNone
- elif a.kind == tyGenericParam:
- result = isGeneric
- of tyForward:
- #internalError("forward type in typeRel()")
- result = isNone
- of tyNil:
- skipOwned(a)
- if a.kind == f.kind: result = isEqual
- of tyTuple:
- if a.kind == tyTuple: result = recordRel(c, f, a)
- of tyObject:
- if a.kind == tyObject:
- if sameObjectTypes(f, a):
- result = isEqual
- # elif tfHasMeta in f.flags: result = recordRel(c, f, a)
- elif trIsOutParam notin flags:
- var depth = isObjectSubtype(c, a, f, nil)
- if depth > 0:
- inc(c.inheritancePenalty, depth)
- result = isSubtype
- of tyDistinct:
- a = a.skipTypes({tyOwned, tyGenericInst, tyRange})
- if a.kind == tyDistinct:
- if sameDistinctTypes(f, a): result = isEqual
- #elif f.base.kind == tyAnything: result = isGeneric # issue 4435
- elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
- elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
- of tySet:
- if a.kind == tySet:
- if f[0].kind != tyGenericParam and a[0].kind == tyEmpty:
- result = isSubtype
- else:
- result = typeRel(c, f[0], a[0], flags)
- if result < isGeneric:
- if result <= isConvertible:
- result = isNone
- elif tfIsConstructor notin a.flags:
- # set constructors are a bit special...
- result = isNone
- of tyPtr, tyRef:
- skipOwned(a)
- if a.kind == f.kind:
- # ptr[R, T] can be passed to ptr[T], but not the other way round:
- if a.len < f.len: return isNone
- for i in 0..<f.len-1:
- if typeRel(c, f[i], a[i], flags) == isNone: return isNone
- result = typeRel(c, f.lastSon, a.lastSon, flags + {trNoCovariance})
- subtypeCheck()
- if result <= isIntConv: result = isNone
- elif tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- elif a.kind == tyNil: result = f.allowsNil
- else: discard
- of tyProc:
- skipOwned(a)
- result = procTypeRel(c, f, a)
- if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- of tyOwned:
- case a.kind
- of tyOwned:
- result = typeRel(c, lastSon(f), lastSon(a), flags)
- of tyNil: result = f.allowsNil
- else: discard
- of tyPointer:
- skipOwned(a)
- case a.kind
- of tyPointer:
- if tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- else:
- result = isEqual
- of tyNil: result = f.allowsNil
- of tyProc:
- if a.callConv != ccClosure: result = isConvertible
- of tyPtr:
- # 'pointer' is NOT compatible to regionized pointers
- # so 'dealloc(regionPtr)' fails:
- if a.len == 1: result = isConvertible
- of tyCstring: result = isConvertible
- else: discard
- of tyString:
- case a.kind
- of tyString:
- if tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- else:
- result = isEqual
- of tyNil: result = isNone
- else: discard
- of tyCstring:
- # conversion from string to cstring is automatic:
- case a.kind
- of tyCstring:
- if tfNotNil in f.flags and tfNotNil notin a.flags:
- result = isNilConversion
- else:
- result = isEqual
- of tyNil: result = f.allowsNil
- of tyString: result = isConvertible
- of tyPtr:
- if isDefined(c.c.config, "nimPreviewCstringConversion"):
- result = isNone
- else:
- if a.len == 1:
- let pointsTo = a[0].skipTypes(abstractInst)
- if pointsTo.kind == tyChar: result = isConvertible
- elif pointsTo.kind == tyUncheckedArray and pointsTo[0].kind == tyChar:
- result = isConvertible
- elif pointsTo.kind == tyArray and firstOrd(nil, pointsTo[0]) == 0 and
- skipTypes(pointsTo[0], {tyRange}).kind in {tyInt..tyInt64} and
- pointsTo[1].kind == tyChar:
- result = isConvertible
- else: discard
- of tyEmpty, tyVoid:
- if a.kind == f.kind: result = isEqual
- of tyAlias, tySink:
- result = typeRel(c, lastSon(f), a, flags)
- of tyIterable:
- if a.kind == tyIterable:
- if f.len == 1:
- result = typeRel(c, lastSon(f), lastSon(a), flags)
- else:
- # f.len = 3, for some reason
- result = isGeneric
- else:
- result = isNone
- of tyGenericInst:
- var prev = PType(idTableGet(c.bindings, f))
- let origF = f
- var f = if prev == nil: f else: prev
- let roota = a.skipGenericAlias
- let rootf = f.skipGenericAlias
- if a.kind == tyGenericInst:
- if roota.base == rootf.base:
- let nextFlags = flags + {trNoCovariance}
- var hasCovariance = false
- # YYYY
- result = isEqual
- for i in 1..<rootf.len-1:
- let ff = rootf[i]
- let aa = roota[i]
- let res = typeRel(c, ff, aa, nextFlags)
- if res != isNone and res != isEqual: result = isGeneric
- if res notin {isEqual, isGeneric}:
- if trNoCovariance notin flags and ff.kind == aa.kind:
- let paramFlags = rootf.base[i-1].flags
- hasCovariance =
- if tfCovariant in paramFlags:
- if tfWeakCovariant in paramFlags:
- isCovariantPtr(c, ff, aa)
- else:
- ff.kind notin {tyRef, tyPtr} and res == isSubtype
- else:
- tfContravariant in paramFlags and
- typeRel(c, aa, ff, flags) == isSubtype
- if hasCovariance:
- continue
- return isNone
- if prev == nil: put(c, f, a)
- else:
- let fKind = rootf.lastSon.kind
- if fKind in {tyAnd, tyOr}:
- result = typeRel(c, lastSon(f), a, flags)
- if result != isNone: put(c, f, a)
- return
- var aAsObject = roota.lastSon
- if fKind in {tyRef, tyPtr}:
- if aAsObject.kind == tyObject:
- # bug #7600, tyObject cannot be passed
- # as argument to tyRef/tyPtr
- return isNone
- elif aAsObject.kind == fKind:
- aAsObject = aAsObject.base
- if aAsObject.kind == tyObject and trIsOutParam notin flags:
- let baseType = aAsObject.base
- if baseType != nil:
- c.inheritancePenalty += 1
- let ret = typeRel(c, f, baseType, flags)
- return if ret in {isEqual,isGeneric}: isSubtype else: ret
- result = isNone
- else:
- assert lastSon(origF) != nil
- result = typeRel(c, lastSon(origF), a, flags)
- if result != isNone and a.kind != tyNil:
- put(c, f, a)
- of tyGenericBody:
- considerPreviousT:
- if a == f or a.kind == tyGenericInst and a.skipGenericAlias[0] == f:
- bindingRet isGeneric
- let ff = lastSon(f)
- if ff != nil:
- result = typeRel(c, ff, a, flags)
- of tyGenericInvocation:
- var x = a.skipGenericAlias
- let concpt = f[0].skipTypes({tyGenericBody})
- var preventHack = concpt.kind == tyConcept
- if x.kind == tyOwned and f[0].kind != tyOwned:
- preventHack = true
- x = x.lastSon
- # XXX: This is very hacky. It should be moved back into liftTypeParam
- if x.kind in {tyGenericInst, tyArray} and
- c.calleeSym != nil and
- c.calleeSym.kind in {skProc, skFunc} and c.call != nil and not preventHack:
- let inst = prepareMetatypeForSigmatch(c.c, c.bindings, c.call.info, f)
- #echo "inferred ", typeToString(inst), " for ", f
- return typeRel(c, inst, a, flags)
- if x.kind == tyGenericInvocation:
- if f[0] == x[0]:
- for i in 1..<f.len:
- let tr = typeRel(c, f[i], x[i], flags)
- if tr <= isSubtype: return
- result = isGeneric
- elif x.kind == tyGenericInst and f[0] == x[0] and
- x.len - 1 == f.len:
- for i in 1..<f.len:
- if x[i].kind == tyGenericParam:
- internalError(c.c.graph.config, "wrong instantiated type!")
- elif typeRel(c, f[i], x[i], flags) <= isSubtype:
- # Workaround for regression #4589
- if f[i].kind != tyTypeDesc: return
- result = isGeneric
- elif x.kind == tyGenericInst and concpt.kind == tyConcept:
- result = if concepts.conceptMatch(c.c, concpt, x, c.bindings, f): isGeneric
- else: isNone
- else:
- let genericBody = f[0]
- var askip = skippedNone
- var fskip = skippedNone
- let aobj = x.skipToObject(askip)
- let fobj = genericBody.lastSon.skipToObject(fskip)
- var depth = -1
- if fobj != nil and aobj != nil and askip == fskip:
- depth = isObjectSubtype(c, aobj, fobj, f)
- result = typeRel(c, genericBody, x, flags)
- if result != isNone:
- # see tests/generics/tgeneric3.nim for an example that triggers this
- # piece of code:
- #
- # proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
- # proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
- # Oldvalue: var D): ref TNode[T,D]
- # var root = internalPut[int, int](nil, 312, 312, oldvalue)
- # var it1 = internalFind(root, 312) # cannot instantiate: 'D'
- #
- # we steal the generic parameters from the tyGenericBody:
- for i in 1..<f.len:
- let x = PType(idTableGet(c.bindings, genericBody[i-1]))
- if x == nil:
- discard "maybe fine (for e.g. a==tyNil)"
- elif x.kind in {tyGenericInvocation, tyGenericParam}:
- internalError(c.c.graph.config, "wrong instantiated type!")
- else:
- let key = f[i]
- let old = PType(idTableGet(c.bindings, key))
- if old == nil:
- put(c, key, x)
- elif typeRel(c, old, x, flags + {trDontBind}) == isNone:
- return isNone
- if result == isNone:
- # Here object inheriting from generic/specialized generic object
- # crossing path with metatypes/aliases, so we need to separate them
- # by checking sym.id
- let genericSubtype = isGenericSubtype(c, x, f, depth, f)
- if not (genericSubtype and aobj.sym.id != fobj.sym.id) and aOrig.kind != tyGenericBody:
- depth = -1
- if depth >= 0:
- c.inheritancePenalty += depth
- # bug #4863: We still need to bind generic alias crap, so
- # we cannot return immediately:
- result = if depth == 0: isGeneric else: isSubtype
- of tyAnd:
- considerPreviousT:
- result = isEqual
- for branch in f.sons:
- let x = typeRel(c, branch, aOrig, flags)
- if x < isSubtype: return isNone
- # 'and' implies minimum matching result:
- if x < result: result = x
- if result > isGeneric: result = isGeneric
- bindingRet result
- of tyOr:
- considerPreviousT:
- result = isNone
- let oldInheritancePenalty = c.inheritancePenalty
- var maxInheritance = 0
- for branch in f.sons:
- c.inheritancePenalty = 0
- let x = typeRel(c, branch, aOrig, flags)
- maxInheritance = max(maxInheritance, c.inheritancePenalty)
- # 'or' implies maximum matching result:
- if x > result: result = x
- if result >= isIntConv:
- if result > isGeneric: result = isGeneric
- bindingRet result
- else:
- result = isNone
- c.inheritancePenalty = oldInheritancePenalty + maxInheritance
- of tyNot:
- considerPreviousT:
- for branch in f.sons:
- if typeRel(c, branch, aOrig, flags) != isNone:
- return isNone
- bindingRet isGeneric
- of tyAnything:
- considerPreviousT:
- var concrete = concreteType(c, a)
- if concrete != nil and doBind:
- put(c, f, concrete)
- return isGeneric
- of tyBuiltInTypeClass:
- considerPreviousT:
- let targetKind = f[0].kind
- let effectiveArgType = a.skipTypes({tyRange, tyGenericInst,
- tyBuiltInTypeClass, tyAlias, tySink, tyOwned})
- let typeClassMatches = targetKind == effectiveArgType.kind and
- not effectiveArgType.isEmptyContainer
- if typeClassMatches or
- (targetKind in {tyProc, tyPointer} and effectiveArgType.kind == tyNil):
- put(c, f, a)
- return isGeneric
- else:
- return isNone
- of tyUserTypeClassInst, tyUserTypeClass:
- if f.isResolvedUserTypeClass:
- result = typeRel(c, f.lastSon, a, flags)
- else:
- considerPreviousT:
- if aOrig == f: return isEqual
- var matched = matchUserTypeClass(c, f, aOrig)
- if matched != nil:
- bindConcreteTypeToUserTypeClass(matched, a)
- if doBind: put(c, f, matched)
- result = isGeneric
- elif a.len > 0 and a.lastSon == f:
- # Needed for checking `Y` == `Addable` in the following
- #[
- type
- Addable = concept a, type A
- a + a is A
- MyType[T: Addable; Y: static T] = object
- ]#
- result = isGeneric
- else:
- result = isNone
- of tyConcept:
- result = if concepts.conceptMatch(c.c, f, a, c.bindings, nil): isGeneric
- else: isNone
- of tyCompositeTypeClass:
- considerPreviousT:
- let roota = a.skipGenericAlias
- let rootf = f.lastSon.skipGenericAlias
- if a.kind == tyGenericInst and roota.base == rootf.base:
- for i in 1..<rootf.len-1:
- let ff = rootf[i]
- let aa = roota[i]
- result = typeRel(c, ff, aa, flags)
- if result == isNone: return
- if ff.kind == tyRange and result != isEqual: return isNone
- else:
- result = typeRel(c, rootf.lastSon, a, flags)
- if result != isNone:
- put(c, f, a)
- result = isGeneric
- of tyGenericParam:
- let doBindGP = doBind or trBindGenericParam in flags
- var x = PType(idTableGet(c.bindings, f))
- if x == nil:
- if c.callee.kind == tyGenericBody and not c.typedescMatched:
- # XXX: The fact that generic types currently use tyGenericParam for
- # their parameters is really a misnomer. tyGenericParam means "match
- # any value" and what we need is "match any type", which can be encoded
- # by a tyTypeDesc params. Unfortunately, this requires more substantial
- # changes in semtypinst and elsewhere.
- if tfWildcard in a.flags:
- result = isGeneric
- elif a.kind == tyTypeDesc:
- if f.len == 0:
- result = isGeneric
- else:
- internalAssert c.c.graph.config, a.len > 0
- c.typedescMatched = true
- var aa = a
- while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0:
- aa = lastSon(aa)
- if aa.kind in {tyGenericParam} + tyTypeClasses:
- # If the constraint is a genericParam or typeClass this isGeneric
- return isGeneric
- result = typeRel(c, f.base, aa, flags)
- if result > isGeneric: result = isGeneric
- elif c.isNoCall:
- if doBindGP:
- let concrete = concreteType(c, a, f)
- if concrete == nil: return isNone
- put(c, f, concrete)
- result = isGeneric
- else:
- result = isNone
- else:
- # check if 'T' has a constraint as in 'proc p[T: Constraint](x: T)'
- if f.len > 0 and f[0].kind != tyNone:
- let oldInheritancePenalty = c.inheritancePenalty
- result = typeRel(c, f[0], a, flags + {trDontBind,trBindGenericParam})
- if doBindGP and result notin {isNone, isGeneric}:
- let concrete = concreteType(c, a, f)
- if concrete == nil: return isNone
- put(c, f, concrete)
- # bug #6526
- if result in {isEqual, isSubtype}:
- # 'T: Class' is a *better* match than just 'T'
- # but 'T: Subclass' is even better:
- c.inheritancePenalty = oldInheritancePenalty - c.inheritancePenalty -
- 100 * ord(result == isEqual)
- result = isGeneric
- elif a.kind == tyTypeDesc:
- # somewhat special typing rule, the following is illegal:
- # proc p[T](x: T)
- # p(int)
- result = isNone
- else:
- result = isGeneric
- if result == isGeneric:
- var concrete = a
- if tfWildcard in a.flags:
- a.sym.transitionGenericParamToType()
- a.flags.excl tfWildcard
- else:
- concrete = concreteType(c, a, f)
- if concrete == nil:
- return isNone
- if doBindGP:
- put(c, f, concrete)
- elif result > isGeneric:
- result = isGeneric
- elif a.kind == tyEmpty:
- result = isGeneric
- elif x.kind == tyGenericParam:
- result = isGeneric
- else:
- result = typeRel(c, x, a, flags) # check if it fits
- if result > isGeneric: result = isGeneric
- of tyStatic:
- let prev = PType(idTableGet(c.bindings, f))
- if prev == nil:
- if aOrig.kind == tyStatic:
- if f.base.kind notin {tyNone, tyGenericParam}:
- result = typeRel(c, f.base, a, flags)
- if result != isNone and f.n != nil:
- if not exprStructuralEquivalent(f.n, aOrig.n):
- result = isNone
- elif f.base.kind == tyGenericParam:
- # Handling things like `type A[T; Y: static T] = object`
- if f.base.len > 0: # There is a constraint, handle it
- result = typeRel(c, f.base.lastSon, a, flags)
- else:
- # No constraint
- if tfGenericTypeParam in f.flags:
- result = isGeneric
- else:
- # for things like `proc fun[T](a: static[T])`
- result = typeRel(c, f.base, a, flags)
- else:
- result = isGeneric
- if result != isNone: put(c, f, aOrig)
- elif aOrig.n != nil and aOrig.n.typ != nil:
- result = if f.base.kind != tyNone:
- typeRel(c, f.lastSon, aOrig.n.typ, flags)
- else: isGeneric
- if result != isNone:
- var boundType = newTypeWithSons(c.c, tyStatic, @[aOrig.n.typ])
- boundType.n = aOrig.n
- put(c, f, boundType)
- else:
- result = isNone
- elif prev.kind == tyStatic:
- if aOrig.kind == tyStatic:
- result = typeRel(c, prev.lastSon, a, flags)
- if result != isNone and prev.n != nil:
- if not exprStructuralEquivalent(prev.n, aOrig.n):
- result = isNone
- else: result = isNone
- else:
- # XXX endless recursion?
- #result = typeRel(c, prev, aOrig, flags)
- result = isNone
- of tyInferred:
- let prev = f.previouslyInferred
- if prev != nil:
- result = typeRel(c, prev, a, flags)
- else:
- result = typeRel(c, f.base, a, flags)
- if result != isNone:
- c.inferredTypes.add f
- f.add a
- of tyTypeDesc:
- var prev = PType(idTableGet(c.bindings, f))
- if prev == nil:
- # proc foo(T: typedesc, x: T)
- # when `f` is an unresolved typedesc, `a` could be any
- # type, so we should not perform this check earlier
- if a.kind != tyTypeDesc:
- if a.kind == tyGenericParam and tfWildcard in a.flags:
- # TODO: prevent `a` from matching as a wildcard again
- result = isGeneric
- else:
- result = isNone
- elif f.base.kind == tyNone:
- result = isGeneric
- else:
- result = typeRel(c, f.base, a.base, flags)
- if result != isNone:
- put(c, f, a)
- else:
- if tfUnresolved in f.flags:
- result = typeRel(c, prev.base, a, flags)
- elif a.kind == tyTypeDesc:
- result = typeRel(c, prev.base, a.base, flags)
- else:
- result = isNone
- of tyTyped:
- if aOrig != nil:
- put(c, f, aOrig)
- result = isGeneric
- of tyProxy:
- result = isEqual
- of tyFromExpr:
- # fix the expression, so it contains the already instantiated types
- if f.n == nil or f.n.kind == nkEmpty: return isGeneric
- let reevaluated = tryResolvingStaticExpr(c, f.n)
- case reevaluated.typ.kind
- of tyTypeDesc:
- result = typeRel(c, a, reevaluated.typ.base, flags)
- of tyStatic:
- result = typeRel(c, a, reevaluated.typ.base, flags)
- if result != isNone and reevaluated.typ.n != nil:
- if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
- result = isNone
- else:
- # bug #14136: other types are just like 'tyStatic' here:
- result = typeRel(c, a, reevaluated.typ, flags)
- if result != isNone and reevaluated.typ.n != nil:
- if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
- result = isNone
- of tyNone:
- if a.kind == tyNone: result = isEqual
- else:
- internalError c.c.graph.config, " unknown type kind " & $f.kind
- when false:
- var nowDebug = false
- var dbgCount = 0
- proc typeRel(c: var TCandidate, f, aOrig: PType,
- flags: TTypeRelFlags = {}): TTypeRelation =
- if nowDebug:
- echo f, " <- ", aOrig
- inc dbgCount
- if dbgCount == 2:
- writeStackTrace()
- result = typeRelImpl(c, f, aOrig, flags)
- if nowDebug:
- echo f, " <- ", aOrig, " res ", result
- proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
- var m = newCandidate(c, f)
- result = typeRel(m, f, a)
- proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
- f: PType): PType =
- result = PType(idTableGet(m.bindings, f))
- if result == nil:
- result = generateTypeInstance(c, m.bindings, arg, f)
- if result == nil:
- internalError(c.graph.config, arg.info, "getInstantiatedType")
- result = errorType(c)
- proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
- c: PContext): PNode =
- result = newNodeI(kind, arg.info)
- if containsGenericType(f):
- if not m.hasFauxMatch:
- result.typ = getInstantiatedType(c, arg, m, f).skipTypes({tySink})
- else:
- result.typ = errorType(c)
- else:
- result.typ = f.skipTypes({tySink, tyVar})
- if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv")
- result.add c.graph.emptyNode
- result.add arg
- proc isLValue(c: PContext; n: PNode): bool {.inline.} =
- let aa = isAssignable(nil, n)
- case aa
- of arLValue, arLocalLValue, arStrange:
- result = true
- of arDiscriminant:
- result = c.inUncheckedAssignSection > 0
- else:
- result = false
- proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
- arg: PNode): PNode =
- result = nil
- for i in 0..<c.converters.len:
- var src = c.converters[i].typ[1]
- var dest = c.converters[i].typ[0]
- # for generic type converters we need to check 'src <- a' before
- # 'f <- dest' in order to not break the unification:
- # see tests/tgenericconverter:
- let srca = typeRel(m, src, a)
- if srca notin {isEqual, isGeneric, isSubtype}: continue
- # What's done below matches the logic in ``matchesAux``
- let constraint = c.converters[i].typ.n[1].sym.constraint
- if not constraint.isNil and not matchNodeKinds(constraint, arg):
- continue
- if src.kind in {tyVar, tyLent} and not isLValue(c, arg):
- continue
- let destIsGeneric = containsGenericType(dest)
- if destIsGeneric:
- dest = generateTypeInstance(c, m.bindings, arg, dest)
- let fdest = typeRel(m, f, dest)
- if fdest in {isEqual, isGeneric} and not (dest.kind == tyLent and f.kind in {tyVar}):
- markUsed(c, arg.info, c.converters[i])
- var s = newSymNode(c.converters[i])
- s.typ = c.converters[i].typ
- s.info = arg.info
- result = newNodeIT(nkHiddenCallConv, arg.info, dest)
- result.add s
- # We build the call expression by ourselves in order to avoid passing this
- # expression trough the semantic check phase once again so let's make sure
- # it is correct
- var param: PNode = nil
- if srca == isSubtype:
- param = implicitConv(nkHiddenSubConv, src, copyTree(arg), m, c)
- elif src.kind in {tyVar}:
- # Analyse the converter return type
- param = newNodeIT(nkHiddenAddr, arg.info, s.typ[1])
- param.add copyTree(arg)
- else:
- param = copyTree(arg)
- result.add param
- if dest.kind in {tyVar, tyLent}:
- dest.flags.incl tfVarIsPtr
- result = newDeref(result)
- inc(m.convMatches)
- if not m.genericConverter:
- m.genericConverter = srca == isGeneric or destIsGeneric
- return result
- proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
- arg: PNode): PNode =
- # arg.typ can be nil in 'suggest':
- if isNil(arg.typ): return nil
- # sem'checking for 'echo' needs to be re-entrant:
- # XXX we will revisit this issue after 0.10.2 is released
- if f == arg.typ and arg.kind == nkHiddenStdConv: return arg
- var call = newNodeI(nkCall, arg.info)
- call.add(f.n.copyTree)
- call.add(arg.copyTree)
- # XXX: This would be much nicer if we don't use `semTryExpr` and
- # instead we directly search for overloads with `resolveOverloads`:
- result = c.semTryExpr(c, call, {efNoSem2Check})
- if result != nil:
- if result.typ == nil: return nil
- # bug #13378, ensure we produce a real generic instantiation:
- result = c.semExpr(c, call)
- # resulting type must be consistent with the other arguments:
- var r = typeRel(m, f[0], result.typ)
- if r < isGeneric: return nil
- if result.kind == nkCall: result.transitionSonsKind(nkHiddenCallConv)
- inc(m.convMatches)
- if r == isGeneric:
- result.typ = getInstantiatedType(c, arg, m, base(f))
- m.baseTypeMatch = true
- proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
- case r
- of isConvertible, isIntConv: inc(m.convMatches, convMatch)
- of isSubtype, isSubrange: inc(m.subtypeMatches)
- of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
- of isFromIntLit: inc(m.intConvMatches, 256)
- of isInferredConvertible:
- inc(m.convMatches)
- of isEqual: inc(m.exactMatches)
- of isNone: discard
- template matchesVoidProc(t: PType): bool =
- (t.kind == tyProc and t.len == 1 and t[0] == nil) or
- (t.kind == tyBuiltInTypeClass and t[0].kind == tyProc)
- proc paramTypesMatchAux(m: var TCandidate, f, a: PType,
- argSemantized, argOrig: PNode): PNode =
- var
- fMaybeStatic = f.skipTypes({tyDistinct})
- arg = argSemantized
- a = a
- c = m.c
- if tfHasStatic in fMaybeStatic.flags:
- # XXX: When implicit statics are the default
- # this will be done earlier - we just have to
- # make sure that static types enter here
- # Zahary: weaken tyGenericParam and call it tyGenericPlaceholder
- # and finally start using tyTypedesc for generic types properly.
- # Araq: This would only shift the problems around, in 'proc p[T](x: T)'
- # the T is NOT a typedesc.
- if a.kind == tyGenericParam and tfWildcard in a.flags:
- a.assignType(f)
- # put(m.bindings, f, a)
- return argSemantized
- if a.kind == tyStatic:
- if m.callee.kind == tyGenericBody and
- a.n == nil and
- tfGenericTypeParam notin a.flags:
- return newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
- else:
- var evaluated = c.semTryConstExpr(c, arg)
- if evaluated != nil:
- # Don't build the type in-place because `evaluated` and `arg` may point
- # to the same object and we'd end up creating recursive types (#9255)
- let typ = newTypeS(tyStatic, c)
- typ.sons = @[evaluated.typ]
- typ.n = evaluated
- arg = copyTree(arg) # fix #12864
- arg.typ = typ
- a = typ
- else:
- if m.callee.kind == tyGenericBody:
- if f.kind == tyStatic and typeRel(m, f.base, a) != isNone:
- result = makeStaticExpr(m.c, arg)
- result.typ.flags.incl tfUnresolved
- result.typ.n = arg
- return
- let oldInheritancePenalty = m.inheritancePenalty
- var r = typeRel(m, f, a)
- # This special typing rule for macros and templates is not documented
- # anywhere and breaks symmetry. It's hard to get rid of though, my
- # custom seqs example fails to compile without this:
- if r != isNone and m.calleeSym != nil and
- m.calleeSym.kind in {skMacro, skTemplate}:
- # XXX: duplicating this is ugly, but we cannot (!) move this
- # directly into typeRel using return-like templates
- incMatches(m, r)
- if f.kind == tyTyped:
- return arg
- elif f.kind == tyTypeDesc:
- return arg
- elif f.kind == tyStatic and arg.typ.n != nil:
- return arg.typ.n
- else:
- return argSemantized # argOrig
- # If r == isBothMetaConvertible then we rerun typeRel.
- # bothMetaCounter is for safety to avoid any infinite loop,
- # I don't have any example when it is needed.
- # lastBindingsLenth is used to check whether m.bindings remains the same,
- # because in that case there is no point in continuing.
- var bothMetaCounter = 0
- var lastBindingsLength = -1
- while r == isBothMetaConvertible and
- lastBindingsLength != m.bindings.counter and
- bothMetaCounter < 100:
- lastBindingsLength = m.bindings.counter
- inc(bothMetaCounter)
- if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds:
- result = c.semInferredLambda(c, m.bindings, arg)
- elif arg.kind != nkSym:
- return nil
- else:
- let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
- result = newSymNode(inferred, arg.info)
- inc(m.convMatches)
- arg = result
- r = typeRel(m, f, arg.typ)
- case r
- of isConvertible:
- inc(m.convMatches)
- result = implicitConv(nkHiddenStdConv, f, arg, m, c)
- of isIntConv:
- # I'm too lazy to introduce another ``*matches`` field, so we conflate
- # ``isIntConv`` and ``isIntLit`` here:
- inc(m.intConvMatches)
- result = implicitConv(nkHiddenStdConv, f, arg, m, c)
- of isSubtype:
- inc(m.subtypeMatches)
- if f.kind == tyTypeDesc:
- result = arg
- else:
- result = implicitConv(nkHiddenSubConv, f, arg, m, c)
- of isSubrange:
- inc(m.subtypeMatches)
- if f.kind in {tyVar}:
- result = arg
- else:
- result = implicitConv(nkHiddenStdConv, f, arg, m, c)
- of isInferred, isInferredConvertible:
- if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds:
- result = c.semInferredLambda(c, m.bindings, arg)
- elif arg.kind != nkSym:
- return nil
- elif arg.sym.kind in {skMacro, skTemplate}:
- return nil
- else:
- let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
- result = newSymNode(inferred, arg.info)
- if r == isInferredConvertible:
- inc(m.convMatches)
- result = implicitConv(nkHiddenStdConv, f, result, m, c)
- else:
- inc(m.genericMatches)
- of isGeneric:
- inc(m.genericMatches)
- if arg.typ == nil:
- result = arg
- elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple or
- m.inheritancePenalty > oldInheritancePenalty:
- result = implicitConv(nkHiddenSubConv, f, arg, m, c)
- elif arg.typ.isEmptyContainer:
- result = arg.copyTree
- result.typ = getInstantiatedType(c, arg, m, f)
- else:
- result = arg
- of isBothMetaConvertible:
- # This is the result for the 101th time.
- result = nil
- of isFromIntLit:
- # too lazy to introduce another ``*matches`` field, so we conflate
- # ``isIntConv`` and ``isIntLit`` here:
- inc(m.intConvMatches, 256)
- result = implicitConv(nkHiddenStdConv, f, arg, m, c)
- of isEqual:
- inc(m.exactMatches)
- result = arg
- let ff = skipTypes(f, abstractVar-{tyTypeDesc})
- if ff.kind == tyTuple or
- (arg.typ != nil and skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple):
- result = implicitConv(nkHiddenSubConv, f, arg, m, c)
- of isNone:
- # do not do this in ``typeRel`` as it then can't infer T in ``ref T``:
- if a.kind in {tyProxy, tyUnknown}:
- inc(m.genericMatches)
- m.fauxMatch = a.kind
- return arg
- elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList:
- # lift do blocks without params to lambdas
- let p = c.graph
- let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig,
- params = nkFormalParams.newTree(p.emptyNode), name = p.emptyNode, pattern = p.emptyNode,
- genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {})
- if f.kind == tyBuiltInTypeClass:
- inc m.genericMatches
- put(m, f, lifted.typ)
- inc m.convMatches
- return implicitConv(nkHiddenStdConv, f, lifted, m, c)
- result = userConvMatch(c, m, f, a, arg)
- # check for a base type match, which supports varargs[T] without []
- # constructor in a call:
- if result == nil and f.kind == tyVarargs:
- if f.n != nil:
- # Forward to the varargs converter
- result = localConvMatch(c, m, f, a, arg)
- else:
- r = typeRel(m, base(f), a)
- case r
- of isGeneric:
- inc(m.convMatches)
- result = copyTree(arg)
- result.typ = getInstantiatedType(c, arg, m, base(f))
- m.baseTypeMatch = true
- of isFromIntLit:
- inc(m.intConvMatches, 256)
- result = implicitConv(nkHiddenStdConv, f[0], arg, m, c)
- m.baseTypeMatch = true
- of isEqual:
- inc(m.convMatches)
- result = copyTree(arg)
- m.baseTypeMatch = true
- of isSubtype: # bug #4799, varargs accepting subtype relation object
- inc(m.subtypeMatches)
- if base(f).kind == tyTypeDesc:
- result = arg
- else:
- result = implicitConv(nkHiddenSubConv, base(f), arg, m, c)
- m.baseTypeMatch = true
- else:
- result = userConvMatch(c, m, base(f), a, arg)
- if result != nil: m.baseTypeMatch = true
- proc paramTypesMatch*(m: var TCandidate, f, a: PType,
- arg, argOrig: PNode): PNode =
- if arg == nil or arg.kind notin nkSymChoices:
- result = paramTypesMatchAux(m, f, a, arg, argOrig)
- else:
- # CAUTION: The order depends on the used hashing scheme. Thus it is
- # incorrect to simply use the first fitting match. However, to implement
- # this correctly is inefficient. We have to copy `m` here to be able to
- # roll back the side effects of the unification algorithm.
- let c = m.c
- var
- x = newCandidate(c, m.callee)
- y = newCandidate(c, m.callee)
- z = newCandidate(c, m.callee)
- x.calleeSym = m.calleeSym
- y.calleeSym = m.calleeSym
- z.calleeSym = m.calleeSym
- var best = -1
- for i in 0..<arg.len:
- if arg[i].sym.kind in {skProc, skFunc, skMethod, skConverter,
- skIterator, skMacro, skTemplate, skEnumField}:
- copyCandidate(z, m)
- z.callee = arg[i].typ
- if tfUnresolved in z.callee.flags: continue
- z.calleeSym = arg[i].sym
- # XXX this is still all wrong: (T, T) should be 2 generic matches
- # and (int, int) 2 exact matches, etc. Essentially you cannot call
- # typeRel here and expect things to work!
- let r = typeRel(z, f, arg[i].typ)
- incMatches(z, r, 2)
- if r != isNone:
- z.state = csMatch
- case x.state
- of csEmpty, csNoMatch:
- x = z
- best = i
- of csMatch:
- let cmp = cmpCandidates(x, z)
- if cmp < 0:
- best = i
- x = z
- elif cmp == 0:
- y = z # z is as good as x
- if x.state == csEmpty:
- result = nil
- elif y.state == csMatch and cmpCandidates(x, y) == 0:
- if x.state != csMatch:
- internalError(m.c.graph.config, arg.info, "x.state is not csMatch")
- # ambiguous: more than one symbol fits!
- # See tsymchoice_for_expr as an example. 'f.kind == tyUntyped' should match
- # anyway:
- if f.kind in {tyUntyped, tyTyped}: result = arg
- else: result = nil
- else:
- # only one valid interpretation found:
- markUsed(m.c, arg.info, arg[best].sym)
- onUse(arg.info, arg[best].sym)
- result = paramTypesMatchAux(m, f, arg[best].typ, arg[best], argOrig)
- when false:
- if m.calleeSym != nil and m.calleeSym.name.s == "[]":
- echo m.c.config $ arg.info, " for ", m.calleeSym.name.s, " ", m.c.config $ m.calleeSym.info
- writeMatches(m)
- proc setSon(father: PNode, at: int, son: PNode) =
- let oldLen = father.len
- if oldLen <= at:
- setLen(father.sons, at + 1)
- father[at] = son
- # insert potential 'void' parameters:
- #for i in oldLen..<at:
- # father[i] = newNodeIT(nkEmpty, son.info, getSysType(tyVoid))
- # we are allowed to modify the calling node in the 'prepare*' procs:
- proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
- if formal.kind == tyUntyped and formal.len != 1:
- # {tyTypeDesc, tyUntyped, tyTyped, tyProxy}:
- # a.typ == nil is valid
- result = a
- elif a.typ.isNil:
- if formal.kind == tyIterable:
- let flags = {efDetermineType, efAllowStmt, efWantIterator, efWantIterable}
- result = c.semOperand(c, a, flags)
- else:
- # XXX This is unsound! 'formal' can differ from overloaded routine to
- # overloaded routine!
- let flags = {efDetermineType, efAllowStmt}
- #if formal.kind == tyIterable: {efDetermineType, efWantIterator}
- #else: {efDetermineType, efAllowStmt}
- #elif formal.kind == tyTyped: {efDetermineType, efWantStmt}
- #else: {efDetermineType}
- result = c.semOperand(c, a, flags)
- else:
- result = a
- considerGenSyms(c, result)
- if result.kind != nkHiddenDeref and result.typ.kind in {tyVar, tyLent} and c.matchedConcept == nil:
- result = newDeref(result)
- proc prepareOperand(c: PContext; a: PNode): PNode =
- if a.typ.isNil:
- result = c.semOperand(c, a, {efDetermineType})
- else:
- result = a
- considerGenSyms(c, result)
- proc prepareNamedParam(a: PNode; c: PContext) =
- if a[0].kind != nkIdent:
- var info = a[0].info
- a[0] = newIdentNode(considerQuotedIdent(c, a[0]), info)
- proc arrayConstr(c: PContext, n: PNode): PType =
- result = newTypeS(tyArray, c)
- rawAddSon(result, makeRangeType(c, 0, 0, n.info))
- addSonSkipIntLit(result, skipTypes(n.typ,
- {tyGenericInst, tyVar, tyLent, tyOrdinal}), c.idgen)
- proc arrayConstr(c: PContext, info: TLineInfo): PType =
- result = newTypeS(tyArray, c)
- rawAddSon(result, makeRangeType(c, 0, -1, info))
- rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
- proc incrIndexType(t: PType) =
- assert t.kind == tyArray
- inc t[0].n[1].intVal
- template isVarargsUntyped(x): untyped =
- x.kind == tyVarargs and x[0].kind == tyUntyped
- proc findFirstArgBlock(m: var TCandidate, n: PNode): int =
- # see https://github.com/nim-lang/RFCs/issues/405
- result = int.high
- for a2 in countdown(n.len-1, 0):
- # checking `nfBlockArg in n[a2].flags` wouldn't work inside templates
- if n[a2].kind != nkStmtList: break
- let formalLast = m.callee.n[m.callee.n.len - (n.len - a2)]
- if formalLast.kind == nkSym and formalLast.sym.ast == nil:
- result = a2
- else: break
- proc matchesAux(c: PContext, n, nOrig: PNode, m: var TCandidate, marker: var IntSet) =
- template noMatch() =
- c.mergeShadowScope #merge so that we don't have to resem for later overloads
- m.state = csNoMatch
- m.firstMismatch.arg = a
- m.firstMismatch.formal = formal
- return
- template checkConstraint(n: untyped) {.dirty.} =
- if not formal.constraint.isNil:
- if matchNodeKinds(formal.constraint, n):
- # better match over other routines with no such restriction:
- inc(m.genericMatches, 100)
- else:
- noMatch()
- if formal.typ.kind in {tyVar}:
- let argConverter = if arg.kind == nkHiddenDeref: arg[0] else: arg
- if argConverter.kind == nkHiddenCallConv:
- if argConverter.typ.kind notin {tyVar}:
- m.firstMismatch.kind = kVarNeeded
- noMatch()
- elif not isLValue(c, n):
- m.firstMismatch.kind = kVarNeeded
- noMatch()
- m.state = csMatch # until proven otherwise
- m.firstMismatch = MismatchInfo()
- m.call = newNodeIT(n.kind, n.info, m.callee.base)
- m.call.add n[0]
- var
- a = 1 # iterates over the actual given arguments
- f = if m.callee.kind != tyGenericBody: 1
- else: 0 # iterates over formal parameters
- arg: PNode # current prepared argument
- formalLen = m.callee.n.len
- formal = if formalLen > 1: m.callee.n[1].sym else: nil # current routine parameter
- container: PNode = nil # constructed container
- let firstArgBlock = findFirstArgBlock(m, n)
- while a < n.len:
- c.openShadowScope
- if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped:
- formal = m.callee.n[f].sym
- incl(marker, formal.position)
- if n[a].kind == nkHiddenStdConv:
- doAssert n[a][0].kind == nkEmpty and
- n[a][1].kind in {nkBracket, nkArgList}
- # Steal the container and pass it along
- setSon(m.call, formal.position + 1, n[a][1])
- else:
- if container.isNil:
- container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
- setSon(m.call, formal.position + 1, container)
- else:
- incrIndexType(container.typ)
- container.add n[a]
- elif n[a].kind == nkExprEqExpr:
- # named param
- m.firstMismatch.kind = kUnknownNamedParam
- # check if m.callee has such a param:
- prepareNamedParam(n[a], c)
- if n[a][0].kind != nkIdent:
- localError(c.config, n[a].info, "named parameter has to be an identifier")
- noMatch()
- formal = getNamedParamFromList(m.callee.n, n[a][0].ident)
- if formal == nil:
- # no error message!
- noMatch()
- if containsOrIncl(marker, formal.position):
- m.firstMismatch.kind = kAlreadyGiven
- # already in namedParams, so no match
- # we used to produce 'errCannotBindXTwice' here but see
- # bug #3836 of why that is not sound (other overload with
- # different parameter names could match later on):
- when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
- noMatch()
- m.baseTypeMatch = false
- m.typedescMatched = false
- n[a][1] = prepareOperand(c, formal.typ, n[a][1])
- n[a].typ = n[a][1].typ
- arg = paramTypesMatch(m, formal.typ, n[a].typ,
- n[a][1], n[a][1])
- m.firstMismatch.kind = kTypeMismatch
- if arg == nil:
- noMatch()
- checkConstraint(n[a][1])
- if m.baseTypeMatch:
- #assert(container == nil)
- container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
- container.add arg
- setSon(m.call, formal.position + 1, container)
- if f != formalLen - 1: container = nil
- else:
- setSon(m.call, formal.position + 1, arg)
- inc f
- else:
- # unnamed param
- if f >= formalLen:
- # too many arguments?
- if tfVarargs in m.callee.flags:
- # is ok... but don't increment any counters...
- # we have no formal here to snoop at:
- n[a] = prepareOperand(c, n[a])
- if skipTypes(n[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
- m.call.add implicitConv(nkHiddenStdConv,
- getSysType(c.graph, n[a].info, tyCstring),
- copyTree(n[a]), m, c)
- else:
- m.call.add copyTree(n[a])
- elif formal != nil and formal.typ.kind == tyVarargs:
- m.firstMismatch.kind = kTypeMismatch
- # beware of the side-effects in 'prepareOperand'! So only do it for
- # varargs matching. See tests/metatype/tstatic_overloading.
- m.baseTypeMatch = false
- m.typedescMatched = false
- incl(marker, formal.position)
- n[a] = prepareOperand(c, formal.typ, n[a])
- arg = paramTypesMatch(m, formal.typ, n[a].typ,
- n[a], nOrig[a])
- if arg != nil and m.baseTypeMatch and container != nil:
- container.add arg
- incrIndexType(container.typ)
- checkConstraint(n[a])
- else:
- noMatch()
- else:
- m.firstMismatch.kind = kExtraArg
- noMatch()
- else:
- if m.callee.n[f].kind != nkSym:
- internalError(c.config, n[a].info, "matches")
- noMatch()
- if flexibleOptionalParams in c.features and a >= firstArgBlock:
- f = max(f, m.callee.n.len - (n.len - a))
- formal = m.callee.n[f].sym
- m.firstMismatch.kind = kTypeMismatch
- if containsOrIncl(marker, formal.position) and container.isNil:
- m.firstMismatch.kind = kPositionalAlreadyGiven
- # positional param already in namedParams: (see above remark)
- when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
- noMatch()
- if formal.typ.isVarargsUntyped:
- if container.isNil:
- container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
- setSon(m.call, formal.position + 1, container)
- else:
- incrIndexType(container.typ)
- container.add n[a]
- else:
- m.baseTypeMatch = false
- m.typedescMatched = false
- n[a] = prepareOperand(c, formal.typ, n[a])
- arg = paramTypesMatch(m, formal.typ, n[a].typ,
- n[a], nOrig[a])
- if arg == nil:
- noMatch()
- if m.baseTypeMatch:
- assert formal.typ.kind == tyVarargs
- #assert(container == nil)
- if container.isNil:
- container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
- container.typ.flags.incl tfVarargs
- else:
- incrIndexType(container.typ)
- container.add arg
- setSon(m.call, formal.position + 1,
- implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
- #if f != formalLen - 1: container = nil
- # pick the formal from the end, so that 'x, y, varargs, z' works:
- f = max(f, formalLen - n.len + a + 1)
- elif formal.typ.kind != tyVarargs or container == nil:
- setSon(m.call, formal.position + 1, arg)
- inc f
- container = nil
- else:
- # we end up here if the argument can be converted into the varargs
- # formal (e.g. seq[T] -> varargs[T]) but we have already instantiated
- # a container
- #assert arg.kind == nkHiddenStdConv # for 'nim check'
- # this assertion can be off
- localError(c.config, n[a].info, "cannot convert $1 to $2" % [
- typeToString(n[a].typ), typeToString(formal.typ) ])
- noMatch()
- checkConstraint(n[a])
- if m.state == csMatch and not (m.calleeSym != nil and m.calleeSym.kind in {skTemplate, skMacro}):
- c.mergeShadowScope
- else:
- c.closeShadowScope
- inc a
- # for some edge cases (see tdont_return_unowned_from_owned test case)
- m.firstMismatch.arg = a
- m.firstMismatch.formal = formal
- proc semFinishOperands*(c: PContext, n: PNode) =
- # this needs to be called to ensure that after overloading resolution every
- # argument has been sem'checked:
- for i in 1..<n.len:
- n[i] = prepareOperand(c, n[i])
- proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
- # for 'suggest' support:
- var marker = initIntSet()
- matchesAux(c, n, nOrig, m, marker)
- proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
- if m.magic in {mArrGet, mArrPut}:
- m.state = csMatch
- m.call = n
- # Note the following doesn't work as it would produce ambiguities.
- # Instead we patch system.nim, see bug #8049.
- when false:
- inc m.genericMatches
- inc m.exactMatches
- return
- var marker = initIntSet()
- matchesAux(c, n, nOrig, m, marker)
- if m.state == csNoMatch: return
- # check that every formal parameter got a value:
- for f in 1..<m.callee.n.len:
- let formal = m.callee.n[f].sym
- if not containsOrIncl(marker, formal.position):
- if formal.ast == nil:
- if formal.typ.kind == tyVarargs:
- # For consistency with what happens in `matchesAux` select the
- # container node kind accordingly
- let cnKind = if formal.typ.isVarargsUntyped: nkArgList else: nkBracket
- var container = newNodeIT(cnKind, n.info, arrayConstr(c, n.info))
- setSon(m.call, formal.position + 1,
- implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
- else:
- # no default value
- m.state = csNoMatch
- m.firstMismatch.kind = kMissingParam
- m.firstMismatch.formal = formal
- break
- else:
- if formal.ast.kind == nkEmpty:
- # The default param value is set to empty in `instantiateProcType`
- # when the type of the default expression doesn't match the type
- # of the instantiated proc param:
- localError(c.config, m.call.info,
- ("The default parameter '$1' has incompatible type " &
- "with the explicitly requested proc instantiation") %
- formal.name.s)
- if nfDefaultRefsParam in formal.ast.flags:
- m.call.flags.incl nfDefaultRefsParam
- var defaultValue = copyTree(formal.ast)
- if defaultValue.kind == nkNilLit:
- defaultValue = implicitConv(nkHiddenStdConv, formal.typ, defaultValue, m, c)
- # proc foo(x: T = 0.0)
- # foo()
- if {tfImplicitTypeParam, tfGenericTypeParam} * formal.typ.flags != {}:
- let existing = PType(idTableGet(m.bindings, formal.typ))
- if existing == nil or existing.kind == tyTypeDesc:
- # see bug #11600:
- put(m, formal.typ, defaultValue.typ)
- defaultValue.flags.incl nfDefaultParam
- setSon(m.call, formal.position + 1, defaultValue)
- # forget all inferred types if the overload matching failed
- if m.state == csNoMatch:
- for t in m.inferredTypes:
- if t.len > 1: t.sons.setLen 1
- proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool =
- var m = newCandidate(c, f)
- let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil)
- #instantiateGenericConverters(c, res, m)
- # XXX this is used by patterns.nim too; I think it's better to not
- # instantiate generic converters for that
- if not fromHlo:
- res != nil
- else:
- # pattern templates do not allow for conversions except from int literal
- res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256]
- when not defined(nimHasSinkInference):
- {.pragma: nosinks.}
- proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
- op: TTypeAttachedOp; col: int): PSym {.nosinks.} =
- var m = newCandidate(c, dc.typ)
- if col >= dc.typ.len:
- localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
- return nil
- var f = dc.typ[col]
- if op == attachedDeepCopy:
- if f.kind in {tyRef, tyPtr}: f = f.lastSon
- else:
- if f.kind in {tyVar}: f = f.lastSon
- if typeRel(m, f, t) == isNone:
- localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
- else:
- result = c.semGenerateInstance(c, dc, m.bindings, info)
- if op == attachedDeepCopy:
- assert sfFromGeneric in result.flags
- include suggest
- when not declared(tests):
- template tests(s: untyped) = discard
- tests:
- var dummyOwner = newSym(skModule, getIdent("test_module"), nil, unknownLineInfo)
- proc `|` (t1, t2: PType): PType =
- result = newType(tyOr, dummyOwner)
- result.rawAddSon(t1)
- result.rawAddSon(t2)
- proc `&` (t1, t2: PType): PType =
- result = newType(tyAnd, dummyOwner)
- result.rawAddSon(t1)
- result.rawAddSon(t2)
- proc `!` (t: PType): PType =
- result = newType(tyNot, dummyOwner)
- result.rawAddSon(t)
- proc seq(t: PType): PType =
- result = newType(tySequence, dummyOwner)
- result.rawAddSon(t)
- proc array(x: int, t: PType): PType =
- result = newType(tyArray, dummyOwner)
- var n = newNodeI(nkRange, unknownLineInfo)
- n.add newIntNode(nkIntLit, 0)
- n.add newIntNode(nkIntLit, x)
- let range = newType(tyRange, dummyOwner)
- result.rawAddSon(range)
- result.rawAddSon(t)
- suite "type classes":
- let
- int = newType(tyInt, dummyOwner)
- float = newType(tyFloat, dummyOwner)
- string = newType(tyString, dummyOwner)
- ordinal = newType(tyOrdinal, dummyOwner)
- any = newType(tyAnything, dummyOwner)
- number = int | float
- var TFoo = newType(tyObject, dummyOwner)
- TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, unknownLineInfo)
- var T1 = newType(tyGenericParam, dummyOwner)
- T1.sym = newSym(skType, getIdent"T1", dummyOwner, unknownLineInfo)
- T1.sym.position = 0
- var T2 = newType(tyGenericParam, dummyOwner)
- T2.sym = newSym(skType, getIdent"T2", dummyOwner, unknownLineInfo)
- T2.sym.position = 1
- setup:
- var c = newCandidate(nil, nil)
- template yes(x, y) =
- test astToStr(x) & " is " & astToStr(y):
- check typeRel(c, y, x) == isGeneric
- template no(x, y) =
- test astToStr(x) & " is not " & astToStr(y):
- check typeRel(c, y, x) == isNone
- yes seq(any), array(10, int) | seq(any)
- # Sure, seq[any] is directly included
- yes seq(int), seq(any)
- yes seq(int), seq(number)
- # Sure, the int sequence is certainly
- # part of the number sequences (and all sequences)
- no seq(any), seq(float)
- # Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
- yes seq(int|string), seq(any)
- # Sure
- yes seq(int&string), seq(any)
- # Again
- yes seq(int&string), seq(int)
- # A bit more complicated
- # seq[int&string] is not a real type, but it's analogous to
- # seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
- no seq(int|string), seq(int|float)
- # Nope, seq[string] is not included in not included in
- # the seq[int|float] set
- no seq(!(int|string)), seq(string)
- # A sequence that is neither seq[int] or seq[string]
- # is obviously not seq[string]
- no seq(!int), seq(number)
- # Now your head should start to hurt a bit
- # A sequence that is not seq[int] is not necessarily a number sequence
- # it could well be seq[string] for example
- yes seq(!(int|string)), seq(!string)
- # all sequnece types besides seq[int] and seq[string]
- # are subset of all sequence types that are not seq[string]
- no seq(!(int|string)), seq(!(string|TFoo))
- # Nope, seq[TFoo] is included in the first set, but not in the second
- no seq(!string), seq(!number)
- # Nope, seq[int] in included in the first set, but not in the second
- yes seq(!number), seq(any)
- yes seq(!int), seq(any)
- no seq(any), seq(!any)
- no seq(!int), seq(!any)
- yes int, ordinal
- no string, ordinal
|