123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2012 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # This module declares some helpers for the C code generator.
- import
- ast, types, msgs, wordrecg,
- platform, trees, options, cgendata, mangleutils
- import std/[hashes, strutils, formatfloat]
- when defined(nimPreviewSlimSystem):
- import std/assertions
- proc getPragmaStmt*(n: PNode, w: TSpecialWord): PNode =
- case n.kind
- of nkStmtList:
- result = nil
- for i in 0..<n.len:
- result = getPragmaStmt(n[i], w)
- if result != nil: break
- of nkPragma:
- result = nil
- for i in 0..<n.len:
- if whichPragma(n[i]) == w: return n[i]
- else:
- result = nil
- proc stmtsContainPragma*(n: PNode, w: TSpecialWord): bool =
- result = getPragmaStmt(n, w) != nil
- proc hashString*(conf: ConfigRef; s: string): BiggestInt =
- # has to be the same algorithm as strmantle.hashString!
- if CPU[conf.target.targetCPU].bit == 64:
- # we have to use the same bitwidth
- # as the target CPU
- var b = 0'u64
- for i in 0..<s.len:
- b = b + uint(s[i])
- b = b + (b shl 10)
- b = b xor (b shr 6)
- b = b + (b shl 3)
- b = b xor (b shr 11)
- b = b + (b shl 15)
- result = cast[Hash](b)
- else:
- var a = 0'u32
- for i in 0..<s.len:
- a = a + uint32(s[i])
- a = a + (a shl 10)
- a = a xor (a shr 6)
- a = a + (a shl 3)
- a = a xor (a shr 11)
- a = a + (a shl 15)
- result = cast[Hash](uint(a))
- template getUniqueType*(key: PType): PType = key
- proc makeSingleLineCString*(s: string): string =
- result = "\""
- for c in items(s):
- c.toCChar(result)
- result.add('\"')
- proc mapSetType(conf: ConfigRef; typ: PType): TCTypeKind =
- case int(getSize(conf, typ))
- of 1: result = ctInt8
- of 2: result = ctInt16
- of 4: result = ctInt32
- of 8: result = ctInt64
- else: result = ctArray
- proc ccgIntroducedPtr*(conf: ConfigRef; s: PSym, retType: PType): bool =
- var pt = skipTypes(s.typ, typedescInst)
- assert skResult != s.kind
- #note precedence: params override types
- if optByRef in s.options: return true
- elif sfByCopy in s.flags: return false
- elif tfByRef in pt.flags: return true
- elif tfByCopy in pt.flags: return false
- case pt.kind
- of tyObject:
- if s.typ.sym != nil and sfForward in s.typ.sym.flags:
- # forwarded objects are *always* passed by pointers for consistency!
- result = true
- elif (optByRef in s.options) or (getSize(conf, pt) > conf.target.floatSize * 3):
- result = true # requested anyway
- elif (tfFinal in pt.flags) and (pt[0] == nil):
- result = false # no need, because no subtyping possible
- else:
- result = true # ordinary objects are always passed by reference,
- # otherwise casting doesn't work
- of tyTuple:
- result = (getSize(conf, pt) > conf.target.floatSize*3) or (optByRef in s.options)
- else:
- result = false
- # first parameter and return type is 'lent T'? --> use pass by pointer
- if s.position == 0 and retType != nil and retType.kind == tyLent:
- result = not (pt.kind in {tyVar, tyArray, tyOpenArray, tyVarargs, tyRef, tyPtr, tyPointer} or
- pt.kind == tySet and mapSetType(conf, pt) == ctArray)
- proc encodeName*(name: string): string =
- result = mangle(name)
- result = $result.len & result
- proc makeUnique(m: BModule; s: PSym, name: string = ""): string =
- result = if name == "": s.name.s else: name
- result.add "__"
- result.add m.g.graph.ifaces[s.itemId.module].uniqueName
- result.add "_u"
- result.add $s.itemId.item
- proc encodeSym*(m: BModule; s: PSym; makeUnique: bool = false): string =
- #Module::Type
- var name = s.name.s
- if makeUnique:
- name = makeUnique(m, s, name)
- "N" & encodeName(s.owner.name.s) & encodeName(name) & "E"
- proc encodeType*(m: BModule; t: PType): string =
- result = ""
- var kindName = ($t.kind)[2..^1]
- kindName[0] = toLower($kindName[0])[0]
- case t.kind
- of tyObject, tyEnum, tyDistinct, tyUserTypeClass, tyGenericParam:
- result = encodeSym(m, t.sym)
- of tyGenericInst, tyUserTypeClassInst, tyGenericBody:
- result = encodeName(t[0].sym.name.s)
- result.add "I"
- for i in 1..<t.len - 1:
- result.add encodeType(m, t[i])
- result.add "E"
- of tySequence, tyOpenArray, tyArray, tyVarargs, tyTuple, tyProc, tySet, tyTypeDesc,
- tyPtr, tyRef, tyVar, tyLent, tySink, tyStatic, tyUncheckedArray, tyOr, tyAnd, tyBuiltInTypeClass:
- result =
- case t.kind:
- of tySequence: encodeName("seq")
- else: encodeName(kindName)
- result.add "I"
- for i in 0..<t.len:
- let s = t[i]
- if s.isNil: continue
- result.add encodeType(m, s)
- result.add "E"
- of tyRange:
- var val = "range_"
- if t.n[0].typ.kind in {tyFloat..tyFloat128}:
- val.addFloat t.n[0].floatVal
- val.add "_"
- val.addFloat t.n[1].floatVal
- else:
- val.add $t.n[0].intVal & "_" & $t.n[1].intVal
- result = encodeName(val)
- of tyString..tyUInt64, tyPointer, tyBool, tyChar, tyVoid, tyAnything, tyNil, tyEmpty:
- result = encodeName(kindName)
- of tyAlias, tyInferred, tyOwned:
- result = encodeType(m, t.elementType)
- else:
- assert false, "encodeType " & $t.kind
|