123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Nim Contributors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## [SHA-1 (Secure Hash Algorithm 1)](https://en.wikipedia.org/wiki/SHA-1)
- ## is a cryptographic hash function which takes an input and produces
- ## a 160-bit (20-byte) hash value known as a message digest.
- ##
- ## See also
- ## ========
- ## * `base64 module<base64.html>`_ for a Base64 encoder and decoder
- ## * `hashes module<hashes.html>`_ for efficient computations of hash values for diverse Nim types
- ## * `md5 module<md5.html>`_ for the MD5 checksum algorithm
- runnableExamples:
- let accessName = secureHash("John Doe")
- assert $accessName == "AE6E4D1209F17B460503904FAD297B31E9CF6362"
- runnableExamples("-r:off"):
- let
- a = secureHashFile("myFile.nim")
- b = parseSecureHash("10DFAEBF6BFDBC7939957068E2EFACEC4972933C")
- assert a == b, "files don't match"
- import strutils
- from endians import bigEndian32, bigEndian64
- when defined(nimPreviewSlimSystem):
- import std/syncio
- const Sha1DigestSize = 20
- type
- Sha1Digest* = array[0 .. Sha1DigestSize - 1, uint8]
- SecureHash* = distinct Sha1Digest
- type
- Sha1State* = object
- count: int
- state: array[5, uint32]
- buf: array[64, byte]
- # This implementation of the SHA-1 algorithm was ported from the Chromium OS one
- # with minor modifications that should not affect its functionality.
- proc newSha1State*(): Sha1State =
- ## Creates a `Sha1State`.
- ##
- ## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
- ## there's no need to call this function explicitly.
- result.count = 0
- result.state[0] = 0x67452301'u32
- result.state[1] = 0xEFCDAB89'u32
- result.state[2] = 0x98BADCFE'u32
- result.state[3] = 0x10325476'u32
- result.state[4] = 0xC3D2E1F0'u32
- template ror27(val: uint32): uint32 = (val shr 27) or (val shl 5)
- template ror2 (val: uint32): uint32 = (val shr 2) or (val shl 30)
- template ror31(val: uint32): uint32 = (val shr 31) or (val shl 1)
- proc transform(ctx: var Sha1State) =
- var w: array[80, uint32]
- var a, b, c, d, e: uint32
- var t = 0
- a = ctx.state[0]
- b = ctx.state[1]
- c = ctx.state[2]
- d = ctx.state[3]
- e = ctx.state[4]
- template shaF1(a, b, c, d, e, t: untyped) =
- bigEndian32(addr w[t], addr ctx.buf[t * 4])
- e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
- b = ror2(b)
- while t < 15:
- shaF1(a, b, c, d, e, t + 0)
- shaF1(e, a, b, c, d, t + 1)
- shaF1(d, e, a, b, c, t + 2)
- shaF1(c, d, e, a, b, t + 3)
- shaF1(b, c, d, e, a, t + 4)
- t += 5
- shaF1(a, b, c, d, e, t + 0) # 16th one, t == 15
- template shaF11(a, b, c, d, e, t: untyped) =
- w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
- e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
- b = ror2(b)
- shaF11(e, a, b, c, d, t + 1)
- shaF11(d, e, a, b, c, t + 2)
- shaF11(c, d, e, a, b, t + 3)
- shaF11(b, c, d, e, a, t + 4)
- template shaF2(a, b, c, d, e, t: untyped) =
- w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
- e += ror27(a) + w[t] + (b xor c xor d) + 0x6ED9EBA1'u32
- b = ror2(b)
- t = 20
- while t < 40:
- shaF2(a, b, c, d, e, t + 0)
- shaF2(e, a, b, c, d, t + 1)
- shaF2(d, e, a, b, c, t + 2)
- shaF2(c, d, e, a, b, t + 3)
- shaF2(b, c, d, e, a, t + 4)
- t += 5
- template shaF3(a, b, c, d, e, t: untyped) =
- w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
- e += ror27(a) + w[t] + ((b and c) or (d and (b or c))) + 0x8F1BBCDC'u32
- b = ror2(b)
- while t < 60:
- shaF3(a, b, c, d, e, t + 0)
- shaF3(e, a, b, c, d, t + 1)
- shaF3(d, e, a, b, c, t + 2)
- shaF3(c, d, e, a, b, t + 3)
- shaF3(b, c, d, e, a, t + 4)
- t += 5
- template shaF4(a, b, c, d, e, t: untyped) =
- w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
- e += ror27(a) + w[t] + (b xor c xor d) + 0xCA62C1D6'u32
- b = ror2(b)
- while t < 80:
- shaF4(a, b, c, d, e, t + 0)
- shaF4(e, a, b, c, d, t + 1)
- shaF4(d, e, a, b, c, t + 2)
- shaF4(c, d, e, a, b, t + 3)
- shaF4(b, c, d, e, a, t + 4)
- t += 5
- ctx.state[0] += a
- ctx.state[1] += b
- ctx.state[2] += c
- ctx.state[3] += d
- ctx.state[4] += e
- proc update*(ctx: var Sha1State, data: openArray[char]) =
- ## Updates the `Sha1State` with `data`.
- ##
- ## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
- ## there's no need to call this function explicitly.
- var i = ctx.count mod 64
- var j = 0
- var len = data.len
- # Gather 64-bytes worth of data in order to perform a round with the leftover
- # data we had stored (but not processed yet)
- if len > 64 - i:
- copyMem(addr ctx.buf[i], unsafeAddr data[j], 64 - i)
- len -= 64 - i
- j += 64 - i
- transform(ctx)
- # Update the index since it's used in the while loop below _and_ we want to
- # keep its value if this code path isn't executed
- i = 0
- # Process the bulk of the payload
- while len >= 64:
- copyMem(addr ctx.buf[0], unsafeAddr data[j], 64)
- len -= 64
- j += 64
- transform(ctx)
- # Process the tail of the payload (len is < 64)
- while len > 0:
- dec len
- ctx.buf[i] = byte(data[j])
- inc i
- inc j
- if i == 64:
- transform(ctx)
- i = 0
- ctx.count += data.len
- proc finalize*(ctx: var Sha1State): Sha1Digest =
- ## Finalizes the `Sha1State` and returns a `Sha1Digest`.
- ##
- ## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
- ## there's no need to call this function explicitly.
- var cnt = uint64(ctx.count * 8)
- # a 1 bit
- update(ctx, "\x80")
- # Add padding until we reach a complexive size of 64 - 8 bytes
- while (ctx.count mod 64) != (64 - 8):
- update(ctx, "\x00")
- # The message length as a 64bit BE number completes the block
- var tmp: array[8, char]
- bigEndian64(addr tmp[0], addr cnt)
- update(ctx, tmp)
- # Turn the result into a single 160-bit number
- for i in 0 ..< 5:
- bigEndian32(addr ctx.state[i], addr ctx.state[i])
- copyMem(addr result[0], addr ctx.state[0], Sha1DigestSize)
- # Public API
- proc secureHash*(str: openArray[char]): SecureHash =
- ## Generates a `SecureHash` from `str`.
- ##
- ## **See also:**
- ## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
- ## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
- runnableExamples:
- let hash = secureHash("Hello World")
- assert hash == parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
- var state = newSha1State()
- state.update(str)
- SecureHash(state.finalize())
- proc secureHashFile*(filename: string): SecureHash =
- ## Generates a `SecureHash` from a file.
- ##
- ## **See also:**
- ## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
- ## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
- const BufferLength = 8192
- let f = open(filename)
- var state = newSha1State()
- var buffer = newString(BufferLength)
- while true:
- let length = readChars(f, buffer)
- if length == 0:
- break
- buffer.setLen(length)
- state.update(buffer)
- if length != BufferLength:
- break
- close(f)
- SecureHash(state.finalize())
- proc `$`*(self: SecureHash): string =
- ## Returns the string representation of a `SecureHash`.
- ##
- ## **See also:**
- ## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
- runnableExamples:
- let hash = secureHash("Hello World")
- assert $hash == "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
- result = ""
- for v in Sha1Digest(self):
- result.add(toHex(int(v), 2))
- proc parseSecureHash*(hash: string): SecureHash =
- ## Converts a string `hash` to a `SecureHash`.
- ##
- ## **See also:**
- ## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
- ## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
- runnableExamples:
- let
- hashStr = "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
- secureHash = secureHash("Hello World")
- assert secureHash == parseSecureHash(hashStr)
- for i in 0 ..< Sha1DigestSize:
- Sha1Digest(result)[i] = uint8(parseHexInt(hash[i*2] & hash[i*2 + 1]))
- proc `==`*(a, b: SecureHash): bool =
- ## Checks if two `SecureHash` values are identical.
- runnableExamples:
- let
- a = secureHash("Hello World")
- b = secureHash("Goodbye World")
- c = parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
- assert a != b
- assert a == c
- # Not a constant-time comparison, but that's acceptable in this context
- Sha1Digest(a) == Sha1Digest(b)
- proc isValidSha1Hash*(s: string): bool =
- ## Checks if a string is a valid sha1 hash sum.
- s.len == 40 and allCharsInSet(s, HexDigits)
|