123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## Floating-point environment. Handling of floating-point rounding and
- ## exceptions (overflow, division by zero, etc.).
- ## The types, vars and procs are bindings for the C standard library
- ## [<fenv.h>](https://en.cppreference.com/w/c/numeric/fenv) header.
- when defined(posix) and not defined(genode):
- {.passl: "-lm".}
- var
- FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
- ## division by zero
- FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
- ## inexact result
- FE_INVALID* {.importc, header: "<fenv.h>".}: cint
- ## invalid operation
- FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
- ## result not representable due to overflow
- FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
- ## result not representable due to underflow
- FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
- ## bitwise OR of all supported exceptions
- FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
- ## round toward -Inf
- FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
- ## round to nearest
- FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
- ## round toward 0
- FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
- ## round toward +Inf
- FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
- ## macro of type pointer to `fenv_t` to be used as the argument
- ## to functions taking an argument of type `fenv_t`; in this
- ## case the default environment will be used
- type
- Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
- object ## Represents the entire floating-point environment. The
- ## floating-point environment refers collectively to any
- ## floating-point status flags and control modes supported
- ## by the implementation.
- Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
- object ## Represents the floating-point status flags collectively,
- ## including any status the implementation associates with the
- ## flags. A floating-point status flag is a system variable
- ## whose value is set (but never cleared) when a floating-point
- ## exception is raised, which occurs as a side effect of
- ## exceptional floating-point arithmetic to provide auxiliary
- ## information. A floating-point control mode is a system variable
- ## whose value may be set by the user to affect the subsequent
- ## behavior of floating-point arithmetic.
- proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
- ## Clear the supported exceptions represented by `excepts`.
- proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
- importc, header: "<fenv.h>".}
- ## Store implementation-defined representation of the exception flags
- ## indicated by `excepts` in the object pointed to by `flagp`.
- proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
- ## Raise the supported exceptions represented by `excepts`.
- proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
- importc, header: "<fenv.h>".}
- ## Set complete status for exceptions indicated by `excepts` according to
- ## the representation in the object pointed to by `flagp`.
- proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
- ## Determine which of subset of the exceptions specified by `excepts` are
- ## currently set.
- proc fegetround*(): cint {.importc, header: "<fenv.h>".}
- ## Get current rounding direction.
- proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
- ## Establish the rounding direction represented by `roundingDirection`.
- proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
- ## Store the current floating-point environment in the object pointed
- ## to by `envp`.
- proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
- ## Save the current environment in the object pointed to by `envp`, clear
- ## exception flags and install a non-stop mode (if available) for all
- ## exceptions.
- proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
- ## Establish the floating-point environment represented by the object
- ## pointed to by `envp`.
- proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
- ## Save current exceptions in temporary storage, install environment
- ## represented by object pointed to by `envp` and raise exceptions
- ## according to saved exceptions.
- const
- FLT_RADIX = 2 ## the radix of the exponent representation
- FLT_MANT_DIG = 24 ## the number of base FLT_RADIX digits in the mantissa part of a float
- FLT_DIG = 6 ## the number of digits of precision of a float
- FLT_MIN_EXP = -125 ## the minimum value of base FLT_RADIX in the exponent part of a float
- FLT_MAX_EXP = 128 ## the maximum value of base FLT_RADIX in the exponent part of a float
- FLT_MIN_10_EXP = -37 ## the minimum value in base 10 of the exponent part of a float
- FLT_MAX_10_EXP = 38 ## the maximum value in base 10 of the exponent part of a float
- FLT_MIN = 1.17549435e-38'f32 ## the minimum value of a float
- FLT_MAX = 3.40282347e+38'f32 ## the maximum value of a float
- FLT_EPSILON = 1.19209290e-07'f32 ## the difference between 1 and the least value greater than 1 of a float
- DBL_MANT_DIG = 53 ## the number of base FLT_RADIX digits in the mantissa part of a double
- DBL_DIG = 15 ## the number of digits of precision of a double
- DBL_MIN_EXP = -1021 ## the minimum value of base FLT_RADIX in the exponent part of a double
- DBL_MAX_EXP = 1024 ## the maximum value of base FLT_RADIX in the exponent part of a double
- DBL_MIN_10_EXP = -307 ## the minimum value in base 10 of the exponent part of a double
- DBL_MAX_10_EXP = 308 ## the maximum value in base 10 of the exponent part of a double
- DBL_MIN = 2.2250738585072014E-308 ## the minimal value of a double
- DBL_MAX = 1.7976931348623157E+308 ## the minimal value of a double
- DBL_EPSILON = 2.2204460492503131E-16 ## the difference between 1 and the least value greater than 1 of a double
- template fpRadix*: int = FLT_RADIX
- ## The (integer) value of the radix used to represent any floating
- ## point type on the architecture used to build the program.
- template mantissaDigits*(T: typedesc[float32]): int = FLT_MANT_DIG
- ## Number of digits (in base `floatingPointRadix`) in the mantissa
- ## of 32-bit floating-point numbers.
- template digits*(T: typedesc[float32]): int = FLT_DIG
- ## Number of decimal digits that can be represented in a
- ## 32-bit floating-point type without losing precision.
- template minExponent*(T: typedesc[float32]): int = FLT_MIN_EXP
- ## Minimum (negative) exponent for 32-bit floating-point numbers.
- template maxExponent*(T: typedesc[float32]): int = FLT_MAX_EXP
- ## Maximum (positive) exponent for 32-bit floating-point numbers.
- template min10Exponent*(T: typedesc[float32]): int = FLT_MIN_10_EXP
- ## Minimum (negative) exponent in base 10 for 32-bit floating-point
- ## numbers.
- template max10Exponent*(T: typedesc[float32]): int = FLT_MAX_10_EXP
- ## Maximum (positive) exponent in base 10 for 32-bit floating-point
- ## numbers.
- template minimumPositiveValue*(T: typedesc[float32]): float32 = FLT_MIN
- ## The smallest positive (nonzero) number that can be represented in a
- ## 32-bit floating-point type.
- template maximumPositiveValue*(T: typedesc[float32]): float32 = FLT_MAX
- ## The largest positive number that can be represented in a 32-bit
- ## floating-point type.
- template epsilon*(T: typedesc[float32]): float32 = FLT_EPSILON
- ## The difference between 1.0 and the smallest number greater than
- ## 1.0 that can be represented in a 32-bit floating-point type.
- template mantissaDigits*(T: typedesc[float64]): int = DBL_MANT_DIG
- ## Number of digits (in base `floatingPointRadix`) in the mantissa
- ## of 64-bit floating-point numbers.
- template digits*(T: typedesc[float64]): int = DBL_DIG
- ## Number of decimal digits that can be represented in a
- ## 64-bit floating-point type without losing precision.
- template minExponent*(T: typedesc[float64]): int = DBL_MIN_EXP
- ## Minimum (negative) exponent for 64-bit floating-point numbers.
- template maxExponent*(T: typedesc[float64]): int = DBL_MAX_EXP
- ## Maximum (positive) exponent for 64-bit floating-point numbers.
- template min10Exponent*(T: typedesc[float64]): int = DBL_MIN_10_EXP
- ## Minimum (negative) exponent in base 10 for 64-bit floating-point
- ## numbers.
- template max10Exponent*(T: typedesc[float64]): int = DBL_MAX_10_EXP
- ## Maximum (positive) exponent in base 10 for 64-bit floating-point
- ## numbers.
- template minimumPositiveValue*(T: typedesc[float64]): float64 = DBL_MIN
- ## The smallest positive (nonzero) number that can be represented in a
- ## 64-bit floating-point type.
- template maximumPositiveValue*(T: typedesc[float64]): float64 = DBL_MAX
- ## The largest positive number that can be represented in a 64-bit
- ## floating-point type.
- template epsilon*(T: typedesc[float64]): float64 = DBL_EPSILON
- ## The difference between 1.0 and the smallest number greater than
- ## 1.0 that can be represented in a 64-bit floating-point type.
|