123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2017 Nim Authors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements a series of low level methods for bit manipulation.
- ##
- ## By default, compiler intrinsics are used where possible to improve performance
- ## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`.
- ##
- ## The module will fallback to pure nim procs in case the backend is not supported.
- ## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
- ##
- ## This module is also compatible with other backends: `JavaScript`, `NimScript`
- ## as well as the `compiletime VM`.
- ##
- ## As a result of using optimized functions/intrinsics, some functions can return
- ## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
- ## to force predictable behaviour for all input, causing a small performance hit.
- ##
- ## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits`
- ## may return undefined and/or platform dependent values if given invalid input.
- import macros
- import std/private/since
- from std/private/bitops_utils import forwardImpl, castToUnsigned
- func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".}
- ## Computes the `bitwise complement` of the integer `x`.
- func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".}
- func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".}
- func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".}
- macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T =
- ## Computes the `bitwise and` of all arguments collectively.
- let fn = bindSym("internalBitand")
- result = newCall(fn, x, y)
- for extra in z:
- result = newCall(fn, result, extra)
- macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
- ## Computes the `bitwise or` of all arguments collectively.
- let fn = bindSym("internalBitor")
- result = newCall(fn, x, y)
- for extra in z:
- result = newCall(fn, result, extra)
- macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
- ## Computes the `bitwise xor` of all arguments collectively.
- let fn = bindSym("internalBitxor")
- result = newCall(fn, x, y)
- for extra in z:
- result = newCall(fn, result, extra)
- type BitsRange*[T] = range[0..sizeof(T)*8-1]
- ## A range with all bit positions for type `T`.
- func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Returns an extracted (and shifted) slice of bits from `v`.
- runnableExamples:
- doAssert 0b10111.bitsliced(2 .. 4) == 0b101
- doAssert 0b11100.bitsliced(0 .. 2) == 0b100
- doAssert 0b11100.bitsliced(0 ..< 3) == 0b100
- let
- upmost = sizeof(T) * 8 - 1
- uv = v.castToUnsigned
- (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T
- proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
- ## Mutates `v` into an extracted (and shifted) slice of bits from `v`.
- runnableExamples:
- var x = 0b101110
- x.bitslice(2 .. 4)
- doAssert x == 0b011
- let
- upmost = sizeof(T) * 8 - 1
- uv = v.castToUnsigned
- v = (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T
- func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Creates a bitmask based on a slice of bits.
- runnableExamples:
- doAssert toMask[int32](1 .. 3) == 0b1110'i32
- doAssert toMask[int32](0 .. 3) == 0b1111'i32
- let
- upmost = sizeof(T) * 8 - 1
- bitmask = bitnot(0.T).castToUnsigned
- (bitmask shl (upmost - slice.b + slice.a) shr (upmost - slice.b)).T
- proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
- ## Returns `v`, with only the `1` bits from `mask` matching those of
- ## `v` set to 1.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8
- bitand(v, mask)
- func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Returns `v`, with only the `1` bits in the range of `slice`
- ## matching those of `v` set to 1.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_1011'u8
- doAssert v.masked(1 .. 3) == 0b0000_1010'u8
- bitand(v, toMask[T](slice))
- proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} =
- ## Mutates `v`, with only the `1` bits from `mask` matching those of
- ## `v` set to 1.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.mask(0b0000_1010'u8)
- doAssert v == 0b0000_0010'u8
- v = bitand(v, mask)
- proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
- ## Mutates `v`, with only the `1` bits in the range of `slice`
- ## matching those of `v` set to 1.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_1011'u8
- v.mask(1 .. 3)
- doAssert v == 0b0000_1010'u8
- v = bitand(v, toMask[T](slice))
- func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits from `mask` set to 1.
- ##
- ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8
- bitor(v, mask)
- func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits in the range of `slice` set to 1.
- ##
- ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8
- bitor(v, toMask[T](slice))
- proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
- ## Mutates `v`, with all the `1` bits from `mask` set to 1.
- ##
- ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.setMask(0b0000_1010'u8)
- doAssert v == 0b0000_1011'u8
- v = bitor(v, mask)
- proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
- ## Mutates `v`, with all the `1` bits in the range of `slice` set to 1.
- ##
- ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.setMask(2 .. 3)
- doAssert v == 0b0000_1111'u8
- v = bitor(v, toMask[T](slice))
- func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits from `mask` set to 0.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
- ## with an *inverted mask*.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8
- bitand(v, bitnot(mask))
- func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits in the range of `slice` set to 0.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
- ## with an *inverted mask*.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8
- bitand(v, bitnot(toMask[T](slice)))
- proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
- ## Mutates `v`, with all the `1` bits from `mask` set to 0.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
- ## with an *inverted mask*.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.clearMask(0b0000_1010'u8)
- doAssert v == 0b0000_0001'u8
- v = bitand(v, bitnot(mask))
- proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
- ## Mutates `v`, with all the `1` bits in the range of `slice` set to 0.
- ##
- ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
- ## with an *inverted mask*.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.clearMask(1 .. 3)
- doAssert v == 0b0000_0001'u8
- v = bitand(v, bitnot(toMask[T](slice)))
- func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits from `mask` flipped.
- ##
- ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8
- bitxor(v, mask)
- func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
- ## Returns `v`, with all the `1` bits in the range of `slice` flipped.
- ##
- ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- let v = 0b0000_0011'u8
- doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8
- bitxor(v, toMask[T](slice))
- proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
- ## Mutates `v`, with all the `1` bits from `mask` flipped.
- ##
- ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.flipMask(0b0000_1010'u8)
- doAssert v == 0b0000_1001'u8
- v = bitxor(v, mask)
- proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
- ## Mutates `v`, with all the `1` bits in the range of `slice` flipped.
- ##
- ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.flipMask(1 .. 3)
- doAssert v == 0b0000_1101'u8
- v = bitxor(v, toMask[T](slice))
- proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
- ## Mutates `v`, with the bit at position `bit` set to 1.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.setBit(5'u8)
- doAssert v == 0b0010_0011'u8
- v.setMask(1.T shl bit)
- proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
- ## Mutates `v`, with the bit at position `bit` set to 0.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.clearBit(1'u8)
- doAssert v == 0b0000_0001'u8
- v.clearMask(1.T shl bit)
- proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
- ## Mutates `v`, with the bit at position `bit` flipped.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.flipBit(1'u8)
- doAssert v == 0b0000_0001'u8
- v = 0b0000_0011'u8
- v.flipBit(2'u8)
- doAssert v == 0b0000_0111'u8
- v.flipMask(1.T shl bit)
- macro setBits*(v: typed; bits: varargs[typed]): untyped =
- ## Mutates `v`, with the bits at positions `bits` set to 1.
- runnableExamples:
- var v = 0b0000_0011'u8
- v.setBits(3, 5, 7)
- doAssert v == 0b1010_1011'u8
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("setBit", v, bit)
- macro clearBits*(v: typed; bits: varargs[typed]): untyped =
- ## Mutates `v`, with the bits at positions `bits` set to 0.
- runnableExamples:
- var v = 0b1111_1111'u8
- v.clearBits(1, 3, 5, 7)
- doAssert v == 0b0101_0101'u8
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("clearBit", v, bit)
- macro flipBits*(v: typed; bits: varargs[typed]): untyped =
- ## Mutates `v`, with the bits at positions `bits` set to 0.
- runnableExamples:
- var v = 0b0000_1111'u8
- v.flipBits(1, 3, 5, 7)
- doAssert v == 0b1010_0101'u8
- bits.expectKind(nnkBracket)
- result = newStmtList()
- for bit in bits:
- result.add newCall("flipBit", v, bit)
- proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} =
- ## Returns true if the bit in `v` at positions `bit` is set to 1.
- runnableExamples:
- let v = 0b0000_1111'u8
- doAssert v.testBit(0)
- doAssert not v.testBit(7)
- let mask = 1.T shl bit
- return (v and mask) == mask
- # #### Pure Nim version ####
- func firstSetBitNim(x: uint32): int {.inline.} =
- ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
- const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
- 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
- let v = x.uint32
- let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
- result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int
- func firstSetBitNim(x: uint64): int {.inline.} =
- ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
- let v = uint64(x)
- var k = uint32(v and 0xFFFFFFFF'u32)
- if k == 0:
- k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
- result = 32
- else:
- result = 0
- result += firstSetBitNim(k)
- func fastlog2Nim(x: uint32): int {.inline.} =
- ## Quickly find the log base 2 of a 32-bit or less integer.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
- # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
- const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
- 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
- var v = x.uint32
- v = v or v shr 1 # first round down to one less than a power of 2
- v = v or v shr 2
- v = v or v shr 4
- v = v or v shr 8
- v = v or v shr 16
- result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
- func fastlog2Nim(x: uint64): int {.inline.} =
- ## Quickly find the log base 2 of a 64-bit integer.
- # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
- # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
- const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
- 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
- 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
- 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
- var v = x.uint64
- v = v or v shr 1 # first round down to one less than a power of 2
- v = v or v shr 2
- v = v or v shr 4
- v = v or v shr 8
- v = v or v shr 16
- v = v or v shr 32
- result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
- import system/countbits_impl
- const useBuiltinsRotate = (defined(amd64) or defined(i386)) and
- (defined(gcc) or defined(clang) or defined(vcc) or
- (defined(icl) and not defined(cpp))) and useBuiltins
- template parityImpl[T](value: T): int =
- # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
- var v = value
- when sizeof(T) == 8:
- v = v xor (v shr 32)
- when sizeof(T) >= 4:
- v = v xor (v shr 16)
- when sizeof(T) >= 2:
- v = v xor (v shr 8)
- v = v xor (v shr 4)
- v = v and 0xf
- ((0x6996'u shr v) and 1).int
- when useGCC_builtins:
- # Returns the bit parity in value
- proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
- proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}
- # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
- proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
- proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}
- # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
- proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
- proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}
- # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
- proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
- proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}
- elif useVCC_builtins:
- # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
- func bitScanReverse(index: ptr culong, mask: culong): uint8 {.
- importc: "_BitScanReverse", header: "<intrin.h>".}
- func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {.
- importc: "_BitScanReverse64", header: "<intrin.h>".}
- # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
- func bitScanForward(index: ptr culong, mask: culong): uint8 {.
- importc: "_BitScanForward", header: "<intrin.h>".}
- func bitScanForward64(index: ptr culong, mask: uint64): uint8 {.
- importc: "_BitScanForward64", header: "<intrin.h>".}
- template vcc_scan_impl(fnc: untyped; v: untyped): int =
- var index: culong
- discard fnc(index.addr, v)
- index.int
- elif useICC_builtins:
- # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
- func bitScanForward(p: ptr uint32, b: uint32): uint8 {.
- importc: "_BitScanForward", header: "<immintrin.h>".}
- func bitScanForward64(p: ptr uint32, b: uint64): uint8 {.
- importc: "_BitScanForward64", header: "<immintrin.h>".}
- # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
- func bitScanReverse(p: ptr uint32, b: uint32): uint8 {.
- importc: "_BitScanReverse", header: "<immintrin.h>".}
- func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {.
- importc: "_BitScanReverse64", header: "<immintrin.h>".}
- template icc_scan_impl(fnc: untyped; v: untyped): int =
- var index: uint32
- discard fnc(index.addr, v)
- index.int
- func countSetBits*(x: SomeInteger): int {.inline.} =
- ## Counts the set bits in an integer (also called `Hamming weight`:idx:).
- runnableExamples:
- doAssert countSetBits(0b0000_0011'u8) == 2
- doAssert countSetBits(0b1010_1010'u8) == 4
- result = countSetBitsImpl(x)
- func popcount*(x: SomeInteger): int {.inline.} =
- ## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight).
- result = countSetBits(x)
- func parityBits*(x: SomeInteger): int {.inline.} =
- ## Calculate the bit parity in an integer. If the number of 1-bits
- ## is odd, the parity is 1, otherwise 0.
- runnableExamples:
- doAssert parityBits(0b0000_0000'u8) == 0
- doAssert parityBits(0b0101_0001'u8) == 1
- doAssert parityBits(0b0110_1001'u8) == 0
- doAssert parityBits(0b0111_1111'u8) == 1
- # Can be used a base if creating ASM version.
- # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
- let x = x.castToUnsigned
- when nimvm:
- result = forwardImpl(parityImpl, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
- else: result = builtin_parityll(x.uint64).int
- else:
- when sizeof(x) <= 4: result = parityImpl(x.uint32)
- else: result = parityImpl(x.uint64)
- func firstSetBit*(x: SomeInteger): int {.inline.} =
- ## Returns the 1-based index of the least significant set bit of `x`.
- ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
- ## otherwise the result is undefined.
- runnableExamples:
- doAssert firstSetBit(0b0000_0001'u8) == 1
- doAssert firstSetBit(0b0000_0010'u8) == 2
- doAssert firstSetBit(0b0000_0100'u8) == 3
- doAssert firstSetBit(0b0000_1000'u8) == 4
- doAssert firstSetBit(0b0000_1111'u8) == 1
- # GCC builtin 'builtin_ffs' already handle zero input.
- let x = x.castToUnsigned
- when nimvm:
- when noUndefined:
- if x == 0:
- return 0
- result = forwardImpl(firstSetBitNim, x)
- else:
- when noUndefined and not useGCC_builtins:
- if x == 0:
- return 0
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
- else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
- elif useVCC_builtins:
- when sizeof(x) <= 4:
- result = 1 + vcc_scan_impl(bitScanForward, x.culong)
- elif arch64:
- result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
- else:
- result = firstSetBitNim(x.uint64)
- elif useICC_builtins:
- when sizeof(x) <= 4:
- result = 1 + icc_scan_impl(bitScanForward, x.uint32)
- elif arch64:
- result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
- else:
- result = firstSetBitNim(x.uint64)
- else:
- when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
- else: result = firstSetBitNim(x.uint64)
- func fastLog2*(x: SomeInteger): int {.inline.} =
- ## Quickly find the log base 2 of an integer.
- ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1,
- ## otherwise the result is undefined.
- runnableExamples:
- doAssert fastLog2(0b0000_0001'u8) == 0
- doAssert fastLog2(0b0000_0010'u8) == 1
- doAssert fastLog2(0b0000_0100'u8) == 2
- doAssert fastLog2(0b0000_1000'u8) == 3
- doAssert fastLog2(0b0000_1111'u8) == 3
- let x = x.castToUnsigned
- when noUndefined:
- if x == 0:
- return -1
- when nimvm:
- result = forwardImpl(fastlog2Nim, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
- else: result = 63 - builtin_clzll(x.uint64).int
- elif useVCC_builtins:
- when sizeof(x) <= 4:
- result = vcc_scan_impl(bitScanReverse, x.culong)
- elif arch64:
- result = vcc_scan_impl(bitScanReverse64, x.uint64)
- else:
- result = fastlog2Nim(x.uint64)
- elif useICC_builtins:
- when sizeof(x) <= 4:
- result = icc_scan_impl(bitScanReverse, x.uint32)
- elif arch64:
- result = icc_scan_impl(bitScanReverse64, x.uint64)
- else:
- result = fastlog2Nim(x.uint64)
- else:
- when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
- else: result = fastlog2Nim(x.uint64)
- func countLeadingZeroBits*(x: SomeInteger): int {.inline.} =
- ## Returns the number of leading zero bits in an integer.
- ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
- ## otherwise the result is undefined.
- ##
- ## **See also:**
- ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_
- runnableExamples:
- doAssert countLeadingZeroBits(0b0000_0001'u8) == 7
- doAssert countLeadingZeroBits(0b0000_0010'u8) == 6
- doAssert countLeadingZeroBits(0b0000_0100'u8) == 5
- doAssert countLeadingZeroBits(0b0000_1000'u8) == 4
- doAssert countLeadingZeroBits(0b0000_1111'u8) == 4
- let x = x.castToUnsigned
- when noUndefined:
- if x == 0:
- return 0
- when nimvm:
- result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
- else: result = builtin_clzll(x.uint64).int
- else:
- when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
- else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)
- func countTrailingZeroBits*(x: SomeInteger): int {.inline.} =
- ## Returns the number of trailing zeros in an integer.
- ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
- ## otherwise the result is undefined.
- ##
- ## **See also:**
- ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_
- runnableExamples:
- doAssert countTrailingZeroBits(0b0000_0001'u8) == 0
- doAssert countTrailingZeroBits(0b0000_0010'u8) == 1
- doAssert countTrailingZeroBits(0b0000_0100'u8) == 2
- doAssert countTrailingZeroBits(0b0000_1000'u8) == 3
- doAssert countTrailingZeroBits(0b0000_1111'u8) == 0
- let x = x.castToUnsigned
- when noUndefined:
- if x == 0:
- return 0
- when nimvm:
- result = firstSetBit(x) - 1
- else:
- when useGCC_builtins:
- when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
- else: result = builtin_ctzll(x.uint64).int
- else:
- result = firstSetBit(x) - 1
- when useBuiltinsRotate:
- when defined(gcc):
- # GCC was tested until version 4.8.1 and intrinsics were present. Not tested
- # in previous versions.
- func builtin_rotl8(value: uint8, shift: cint): uint8
- {.importc: "__rolb", header: "<x86intrin.h>".}
- func builtin_rotl16(value: cushort, shift: cint): cushort
- {.importc: "__rolw", header: "<x86intrin.h>".}
- func builtin_rotl32(value: cuint, shift: cint): cuint
- {.importc: "__rold", header: "<x86intrin.h>".}
- when defined(amd64):
- func builtin_rotl64(value: culonglong, shift: cint): culonglong
- {.importc: "__rolq", header: "<x86intrin.h>".}
- func builtin_rotr8(value: uint8, shift: cint): uint8
- {.importc: "__rorb", header: "<x86intrin.h>".}
- func builtin_rotr16(value: cushort, shift: cint): cushort
- {.importc: "__rorw", header: "<x86intrin.h>".}
- func builtin_rotr32(value: cuint, shift: cint): cuint
- {.importc: "__rord", header: "<x86intrin.h>".}
- when defined(amd64):
- func builtin_rotr64(value: culonglong, shift: cint): culonglong
- {.importc: "__rorq", header: "<x86intrin.h>".}
- elif defined(clang):
- # In CLANG, builtins have been present since version 8.0.0 and intrinsics
- # since version 9.0.0. This implementation chose the builtins, as they have
- # been around for longer.
- # https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
- # https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft
- # source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def
- func builtin_rotl8(value: uint8, shift: uint8): uint8
- {.importc: "__builtin_rotateleft8", nodecl.}
- func builtin_rotl16(value: cushort, shift: cushort): cushort
- {.importc: "__builtin_rotateleft16", nodecl.}
- func builtin_rotl32(value: cuint, shift: cuint): cuint
- {.importc: "__builtin_rotateleft32", nodecl.}
- when defined(amd64):
- func builtin_rotl64(value: culonglong, shift: culonglong): culonglong
- {.importc: "__builtin_rotateleft64", nodecl.}
- func builtin_rotr8(value: uint8, shift: uint8): uint8
- {.importc: "__builtin_rotateright8", nodecl.}
- func builtin_rotr16(value: cushort, shift: cushort): cushort
- {.importc: "__builtin_rotateright16", nodecl.}
- func builtin_rotr32(value: cuint, shift: cuint): cuint
- {.importc: "__builtin_rotateright32", nodecl.}
- when defined(amd64):
- # shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d
- func builtin_rotr64(value: culonglong, shift: culonglong): culonglong
- {.importc: "__builtin_rotateright64", nodecl.}
- elif defined(vcc):
- # Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86.
- # Not tested in previous versions.
- # https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160
- # https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160
- # https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160
- func builtin_rotl8(value: uint8, shift: uint8): uint8
- {.importc: "_rotl8", header: "<intrin.h>".}
- func builtin_rotl16(value: cushort, shift: uint8): cushort
- {.importc: "_rotl16", header: "<intrin.h>".}
- func builtin_rotl32(value: cuint, shift: cint): cuint
- {.importc: "_rotl", header: "<stdlib.h>".}
- when defined(amd64):
- func builtin_rotl64(value: culonglong, shift: cint): culonglong
- {.importc: "_rotl64", header: "<stdlib.h>".}
- func builtin_rotr8(value: uint8, shift: uint8): uint8
- {.importc: "_rotr8", header: "<intrin.h>".}
- func builtin_rotr16(value: cushort, shift: uint8): cushort
- {.importc: "_rotr16", header: "<intrin.h>".}
- func builtin_rotr32(value: cuint, shift: cint): cuint
- {.importc: "_rotr", header: "<stdlib.h>".}
- when defined(amd64):
- func builtin_rotr64(value: culonglong, shift: cint): culonglong
- {.importc: "_rotr64", header: "<stdlib.h>".}
- elif defined(icl):
- # Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build
- # 20201208_000000 x64 and x86. Not tested in previous versions.
- func builtin_rotl8(value: uint8, shift: cint): uint8
- {.importc: "__rolb", header: "<immintrin.h>".}
- func builtin_rotl16(value: cushort, shift: cint): cushort
- {.importc: "__rolw", header: "<immintrin.h>".}
- func builtin_rotl32(value: cuint, shift: cint): cuint
- {.importc: "__rold", header: "<immintrin.h>".}
- when defined(amd64):
- func builtin_rotl64(value: culonglong, shift: cint): culonglong
- {.importc: "__rolq", header: "<immintrin.h>".}
- func builtin_rotr8(value: uint8, shift: cint): uint8
- {.importc: "__rorb", header: "<immintrin.h>".}
- func builtin_rotr16(value: cushort, shift: cint): cushort
- {.importc: "__rorw", header: "<immintrin.h>".}
- func builtin_rotr32(value: cuint, shift: cint): cuint
- {.importc: "__rord", header: "<immintrin.h>".}
- when defined(amd64):
- func builtin_rotr64(value: culonglong, shift: cint): culonglong
- {.importc: "__rorq", header: "<immintrin.h>".}
- func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
- ## Left-rotate bits in a `value`.
- # https://stackoverflow.com/a/776523
- const mask = 8 * sizeof(value) - 1
- let rot = rot and mask
- (value shl rot) or (value shr ((-rot) and mask))
- func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
- ## Right-rotate bits in a `value`.
- const mask = 8 * sizeof(value) - 1
- let rot = rot and mask
- (value shr rot) or (value shl ((-rot) and mask))
- func shiftTypeTo(size: static int, shift: int): auto {.inline.} =
- ## Returns the `shift` for the rotation according to the compiler and the
- ## `size`.
- when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl):
- cint(shift)
- elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1):
- uint8(shift)
- elif defined(clang):
- when size == 2:
- cushort(shift)
- elif size == 4:
- cuint(shift)
- elif size == 8:
- culonglong(shift)
- func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
- ## Left-rotate bits in a `value`.
- runnableExamples:
- doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
- doAssert rotateLeftBits(0b00111100_11000011'u16, 8) ==
- 0b11000011_00111100'u16
- doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) ==
- 0b1111000000001111_0000111111110000'u32
- doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
- 0b11111111000000000000000011111111_00000000111111111111111100000000'u64
- when nimvm:
- rotl(value, shift.int32)
- else:
- when useBuiltinsRotate:
- const size = sizeof(T)
- when size == 1:
- builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T
- elif size == 2:
- builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T
- elif size == 4:
- builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T
- elif size == 8 and arch64:
- builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T
- else:
- rotl(value, shift.int32)
- else:
- rotl(value, shift.int32)
- func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
- ## Right-rotate bits in a `value`.
- runnableExamples:
- doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
- doAssert rotateRightBits(0b00111100_11000011'u16, 8) ==
- 0b11000011_00111100'u16
- doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) ==
- 0b1111000000001111_0000111111110000'u32
- doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
- 0b11111111000000000000000011111111_00000000111111111111111100000000'u64
- when nimvm:
- rotr(value, shift.int32)
- else:
- when useBuiltinsRotate:
- const size = sizeof(T)
- when size == 1:
- builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T
- elif size == 2:
- builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T
- elif size == 4:
- builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T
- elif size == 8 and arch64:
- builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T
- else:
- rotr(value, shift.int32)
- else:
- rotr(value, shift.int32)
- func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T =
- result = x
- var i = 1
- while i != (sizeof(T) div sizeof(x)):
- result = (result shl (sizeof(x)*8*i)) or result
- i *= 2
- func reverseBits*[T: SomeUnsignedInt](x: T): T =
- ## Return the bit reversal of x.
- runnableExamples:
- doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
- doAssert reverseBits(0xdd'u8) == 0xbb'u8
- doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
- doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32
- template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)
- result = x
- result =
- ((repeat(0x55u8) and result) shl 1) or
- ((repeat(0xaau8) and result) shr 1)
- result =
- ((repeat(0x33u8) and result) shl 2) or
- ((repeat(0xccu8) and result) shr 2)
- when sizeof(T) == 1:
- result = (result shl 4) or (result shr 4)
- when sizeof(T) >= 2:
- result =
- ((repeat(0x0fu8) and result) shl 4) or
- ((repeat(0xf0u8) and result) shr 4)
- when sizeof(T) == 2:
- result = (result shl 8) or (result shr 8)
- when sizeof(T) >= 4:
- result =
- ((repeat(0x00ffu16) and result) shl 8) or
- ((repeat(0xff00u16) and result) shr 8)
- when sizeof(T) == 4:
- result = (result shl 16) or (result shr 16)
- when sizeof(T) == 8:
- result =
- ((repeat(0x0000ffffu32) and result) shl 16) or
- ((repeat(0xffff0000u32) and result) shr 16)
- result = (result shl 32) or (result shr 32)
|