123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # This include file implements the semantic checking for magics.
- # included from sem.nim
- proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode
- proc addDefaultFieldForNew(c: PContext, n: PNode): PNode =
- result = n
- let typ = result[1].typ # new(x)
- if typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyRef and typ.skipTypes({tyGenericInst, tyAlias, tySink})[0].kind == tyObject:
- var asgnExpr = newTree(nkObjConstr, newNodeIT(nkType, result[1].info, typ))
- asgnExpr.typ = typ
- var t = typ.skipTypes({tyGenericInst, tyAlias, tySink})[0]
- var id = initIntSet()
- while true:
- asgnExpr.sons.add defaultFieldsForTheUninitialized(c, t.n, id)
- let base = t[0]
- if base == nil:
- break
- t = skipTypes(base, skipPtrs)
- if asgnExpr.sons.len > 1:
- result = newTree(nkAsgn, result[1], asgnExpr)
- proc semAddrArg(c: PContext; n: PNode): PNode =
- let x = semExprWithType(c, n)
- if x.kind == nkSym:
- x.sym.flags.incl(sfAddrTaken)
- if isAssignable(c, x) notin {arLValue, arLocalLValue, arAddressableConst, arLentValue}:
- localError(c.config, n.info, errExprHasNoAddress)
- result = x
- proc semTypeOf(c: PContext; n: PNode): PNode =
- var m = BiggestInt 1 # typeOfIter
- if n.len == 3:
- let mode = semConstExpr(c, n[2])
- if mode.kind != nkIntLit:
- localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
- else:
- m = mode.intVal
- result = newNodeI(nkTypeOfExpr, n.info)
- let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
- result.add typExpr
- result.typ = makeTypeDesc(c, typExpr.typ)
- type
- SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn
- proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode
- proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode
- proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode =
- result = newNodeI(nkBracketExpr, n.info)
- for i in 1..<n.len: result.add(n[i])
- result = semSubscript(c, result, flags)
- if result.isNil:
- let x = copyTree(n)
- x[0] = newIdentNode(getIdent(c.cache, "[]"), n.info)
- bracketNotFoundError(c, x)
- #localError(c.config, n.info, "could not resolve: " & $n)
- result = n
- proc semArrPut(c: PContext; n: PNode; flags: TExprFlags): PNode =
- # rewrite `[]=`(a, i, x) back to ``a[i] = x``.
- let b = newNodeI(nkBracketExpr, n.info)
- b.add(n[1].skipAddr)
- for i in 2..<n.len-1: b.add(n[i])
- result = newNodeI(nkAsgn, n.info, 2)
- result[0] = b
- result[1] = n.lastSon
- result = semAsgn(c, result, noOverloadedSubscript)
- proc semAsgnOpr(c: PContext; n: PNode; k: TNodeKind): PNode =
- result = newNodeI(k, n.info, 2)
- result[0] = n[1]
- result[1] = n[2]
- result = semAsgn(c, result, noOverloadedAsgn)
- proc semIsPartOf(c: PContext, n: PNode, flags: TExprFlags): PNode =
- var r = isPartOf(n[1], n[2])
- result = newIntNodeT(toInt128(ord(r)), n, c.idgen, c.graph)
- proc expectIntLit(c: PContext, n: PNode): int =
- let x = c.semConstExpr(c, n)
- case x.kind
- of nkIntLit..nkInt64Lit: result = int(x.intVal)
- else: localError(c.config, n.info, errIntLiteralExpected)
- proc semInstantiationInfo(c: PContext, n: PNode): PNode =
- result = newNodeIT(nkTupleConstr, n.info, n.typ)
- let idx = expectIntLit(c, n[1])
- let useFullPaths = expectIntLit(c, n[2])
- let info = getInfoContext(c.config, idx)
- var filename = newNodeIT(nkStrLit, n.info, getSysType(c.graph, n.info, tyString))
- filename.strVal = if useFullPaths != 0: toFullPath(c.config, info) else: toFilename(c.config, info)
- var line = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
- line.intVal = toLinenumber(info)
- var column = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
- column.intVal = toColumn(info)
- # filename: string, line: int, column: int
- result.add(newTree(nkExprColonExpr, n.typ.n[0], filename))
- result.add(newTree(nkExprColonExpr, n.typ.n[1], line))
- result.add(newTree(nkExprColonExpr, n.typ.n[2], column))
- proc toNode(t: PType, i: TLineInfo): PNode =
- result = newNodeIT(nkType, i, t)
- const
- # these are types that use the bracket syntax for instantiation
- # they can be subjected to the type traits `genericHead` and
- # `Uninstantiated`
- tyUserDefinedGenerics* = {tyGenericInst, tyGenericInvocation,
- tyUserTypeClassInst}
- tyMagicGenerics* = {tySet, tySequence, tyArray, tyOpenArray}
- tyGenericLike* = tyUserDefinedGenerics +
- tyMagicGenerics +
- {tyCompositeTypeClass}
- proc uninstantiate(t: PType): PType =
- result = case t.kind
- of tyMagicGenerics: t
- of tyUserDefinedGenerics: t.base
- of tyCompositeTypeClass: uninstantiate t[1]
- else: t
- proc getTypeDescNode(c: PContext; typ: PType, sym: PSym, info: TLineInfo): PNode =
- var resType = newType(tyTypeDesc, nextTypeId c.idgen, sym)
- rawAddSon(resType, typ)
- result = toNode(resType, info)
- proc evalTypeTrait(c: PContext; traitCall: PNode, operand: PType, context: PSym): PNode =
- const skippedTypes = {tyTypeDesc, tyAlias, tySink}
- let trait = traitCall[0]
- internalAssert c.config, trait.kind == nkSym
- var operand = operand.skipTypes(skippedTypes)
- template operand2: PType =
- traitCall[2].typ.skipTypes({tyTypeDesc})
- template typeWithSonsResult(kind, sons): PNode =
- newTypeWithSons(context, kind, sons, c.idgen).toNode(traitCall.info)
- if operand.kind == tyGenericParam or (traitCall.len > 2 and operand2.kind == tyGenericParam):
- return traitCall ## too early to evaluate
- let s = trait.sym.name.s
- case s
- of "or", "|":
- return typeWithSonsResult(tyOr, @[operand, operand2])
- of "and":
- return typeWithSonsResult(tyAnd, @[operand, operand2])
- of "not":
- return typeWithSonsResult(tyNot, @[operand])
- of "typeToString":
- var prefer = preferTypeName
- if traitCall.len >= 2:
- let preferStr = traitCall[2].strVal
- prefer = parseEnum[TPreferedDesc](preferStr)
- result = newStrNode(nkStrLit, operand.typeToString(prefer))
- result.typ = getSysType(c.graph, traitCall[1].info, tyString)
- result.info = traitCall.info
- of "name", "$":
- result = newStrNode(nkStrLit, operand.typeToString(preferTypeName))
- result.typ = getSysType(c.graph, traitCall[1].info, tyString)
- result.info = traitCall.info
- of "arity":
- result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc))
- result.typ = newType(tyInt, nextTypeId c.idgen, context)
- result.info = traitCall.info
- of "genericHead":
- var arg = operand
- case arg.kind
- of tyGenericInst:
- result = getTypeDescNode(c, arg.base, operand.owner, traitCall.info)
- # of tySequence: # this doesn't work
- # var resType = newType(tySequence, operand.owner)
- # result = toNode(resType, traitCall.info) # doesn't work yet
- else:
- localError(c.config, traitCall.info, "expected generic type, got: type $2 of kind $1" % [arg.kind.toHumanStr, typeToString(operand)])
- result = newType(tyError, nextTypeId c.idgen, context).toNode(traitCall.info)
- of "stripGenericParams":
- result = uninstantiate(operand).toNode(traitCall.info)
- of "supportsCopyMem":
- let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
- let complexObj = containsGarbageCollectedRef(t) or
- hasDestructor(t)
- result = newIntNodeT(toInt128(ord(not complexObj)), traitCall, c.idgen, c.graph)
- of "isNamedTuple":
- var operand = operand.skipTypes({tyGenericInst})
- let cond = operand.kind == tyTuple and operand.n != nil
- result = newIntNodeT(toInt128(ord(cond)), traitCall, c.idgen, c.graph)
- of "tupleLen":
- var operand = operand.skipTypes({tyGenericInst})
- assert operand.kind == tyTuple, $operand.kind
- result = newIntNodeT(toInt128(operand.len), traitCall, c.idgen, c.graph)
- of "distinctBase":
- var arg = operand.skipTypes({tyGenericInst})
- let rec = semConstExpr(c, traitCall[2]).intVal != 0
- while arg.kind == tyDistinct:
- arg = arg.base.skipTypes(skippedTypes + {tyGenericInst})
- if not rec: break
- result = getTypeDescNode(c, arg, operand.owner, traitCall.info)
- else:
- localError(c.config, traitCall.info, "unknown trait: " & s)
- result = newNodeI(nkEmpty, traitCall.info)
- proc semTypeTraits(c: PContext, n: PNode): PNode =
- checkMinSonsLen(n, 2, c.config)
- let t = n[1].typ
- internalAssert c.config, t != nil and t.kind == tyTypeDesc
- if t.len > 0:
- # This is either a type known to sem or a typedesc
- # param to a regular proc (again, known at instantiation)
- result = evalTypeTrait(c, n, t, getCurrOwner(c))
- else:
- # a typedesc variable, pass unmodified to evals
- result = n
- proc semOrd(c: PContext, n: PNode): PNode =
- result = n
- let parType = n[1].typ
- if isOrdinalType(parType, allowEnumWithHoles=true):
- discard
- else:
- localError(c.config, n.info, errOrdinalTypeExpected % typeToString(parType, preferDesc))
- result.typ = errorType(c)
- proc semBindSym(c: PContext, n: PNode): PNode =
- result = copyNode(n)
- result.add(n[0])
- let sl = semConstExpr(c, n[1])
- if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}:
- return localErrorNode(c, n, n[1].info, errStringLiteralExpected)
- let isMixin = semConstExpr(c, n[2])
- if isMixin.kind != nkIntLit or isMixin.intVal < 0 or
- isMixin.intVal > high(TSymChoiceRule).int:
- return localErrorNode(c, n, n[2].info, errConstExprExpected)
- let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info)
- let s = qualifiedLookUp(c, id, {checkUndeclared})
- if s != nil:
- # we need to mark all symbols:
- var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal))
- if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
- # inside regular code, bindSym resolves to the sym-choice
- # nodes (see tinspectsymbol)
- return sc
- result.add(sc)
- else:
- errorUndeclaredIdentifier(c, n[1].info, sl.strVal)
- proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode =
- if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}:
- return localErrorNode(c, n, info.info, errStringOrIdentNodeExpected)
- if isMixin < 0 or isMixin > high(TSymChoiceRule).int:
- return localErrorNode(c, n, info.info, errConstExprExpected)
- let id = if n.kind == nkIdent: n
- else: newIdentNode(getIdent(c.cache, n.strVal), info.info)
- let tmpScope = c.currentScope
- c.currentScope = scope
- let s = qualifiedLookUp(c, id, {checkUndeclared})
- if s != nil:
- # we need to mark all symbols:
- result = symChoice(c, id, s, TSymChoiceRule(isMixin))
- else:
- errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s
- else: n.strVal)
- c.currentScope = tmpScope
- proc semDynamicBindSym(c: PContext, n: PNode): PNode =
- # inside regular code, bindSym resolves to the sym-choice
- # nodes (see tinspectsymbol)
- if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
- return semBindSym(c, n)
- if c.graph.vm.isNil:
- setupGlobalCtx(c.module, c.graph, c.idgen)
- let
- vm = PCtx c.graph.vm
- # cache the current scope to
- # prevent it lost into oblivion
- scope = c.currentScope
- # cannot use this
- # vm.config.features.incl dynamicBindSym
- proc bindSymWrapper(a: VmArgs) =
- # capture PContext and currentScope
- # param description:
- # 0. ident, a string literal / computed string / or ident node
- # 1. bindSym rule
- # 2. info node
- a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2))
- let
- # although we use VM callback here, it is not
- # executed like 'normal' VM callback
- idx = vm.registerCallback("bindSymImpl", bindSymWrapper)
- # dummy node to carry idx information to VM
- idxNode = newIntTypeNode(idx, c.graph.getSysType(TLineInfo(), tyInt))
- result = copyNode(n)
- for x in n: result.add x
- result.add n # info node
- result.add idxNode
- proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode
- proc semOf(c: PContext, n: PNode): PNode =
- if n.len == 3:
- n[1] = semExprWithType(c, n[1])
- n[2] = semExprWithType(c, n[2], {efDetermineType})
- #restoreOldStyleType(n[1])
- #restoreOldStyleType(n[2])
- let a = skipTypes(n[1].typ, abstractPtrs)
- let b = skipTypes(n[2].typ, abstractPtrs)
- let x = skipTypes(n[1].typ, abstractPtrs-{tyTypeDesc})
- let y = skipTypes(n[2].typ, abstractPtrs-{tyTypeDesc})
- if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
- localError(c.config, n.info, "'of' takes object types")
- elif b.kind != tyObject or a.kind != tyObject:
- localError(c.config, n.info, "'of' takes object types")
- else:
- let diff = inheritanceDiff(a, b)
- # | returns: 0 iff `a` == `b`
- # | returns: -x iff `a` is the x'th direct superclass of `b`
- # | returns: +x iff `a` is the x'th direct subclass of `b`
- # | returns: `maxint` iff `a` and `b` are not compatible at all
- if diff <= 0:
- # optimize to true:
- message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n))
- result = newIntNode(nkIntLit, 1)
- result.info = n.info
- result.typ = getSysType(c.graph, n.info, tyBool)
- return result
- elif diff == high(int):
- if commonSuperclass(a, b) == nil:
- localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a))
- else:
- message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n))
- result = newIntNode(nkIntLit, 0)
- result.info = n.info
- result.typ = getSysType(c.graph, n.info, tyBool)
- else:
- localError(c.config, n.info, "'of' takes 2 arguments")
- n.typ = getSysType(c.graph, n.info, tyBool)
- result = n
- proc semUnown(c: PContext; n: PNode): PNode =
- proc unownedType(c: PContext; t: PType): PType =
- case t.kind
- of tyTuple:
- var elems = newSeq[PType](t.len)
- var someChange = false
- for i in 0..<t.len:
- elems[i] = unownedType(c, t[i])
- if elems[i] != t[i]: someChange = true
- if someChange:
- result = newType(tyTuple, nextTypeId c.idgen, t.owner)
- # we have to use 'rawAddSon' here so that type flags are
- # properly computed:
- for e in elems: result.rawAddSon(e)
- else:
- result = t
- of tyOwned: result = t[0]
- of tySequence, tyOpenArray, tyArray, tyVarargs, tyVar, tyLent,
- tyGenericInst, tyAlias:
- let b = unownedType(c, t[^1])
- if b != t[^1]:
- result = copyType(t, nextTypeId c.idgen, t.owner)
- copyTypeProps(c.graph, c.idgen.module, result, t)
- result[^1] = b
- result.flags.excl tfHasOwned
- else:
- result = t
- else:
- result = t
- result = copyTree(n[1])
- result.typ = unownedType(c, result.typ)
- # little hack for injectdestructors.nim (see bug #11350):
- #result[0].typ = nil
- proc turnFinalizerIntoDestructor(c: PContext; orig: PSym; info: TLineInfo): PSym =
- # We need to do 2 things: Replace n.typ which is a 'ref T' by a 'var T' type.
- # Replace nkDerefExpr by nkHiddenDeref
- # nkDeref is for 'ref T': x[].field
- # nkHiddenDeref is for 'var T': x<hidden deref [] here>.field
- proc transform(c: PContext; n: PNode; old, fresh: PType; oldParam, newParam: PSym): PNode =
- result = shallowCopy(n)
- if sameTypeOrNil(n.typ, old):
- result.typ = fresh
- if n.kind == nkSym and n.sym == oldParam:
- result.sym = newParam
- for i in 0 ..< safeLen(n):
- result[i] = transform(c, n[i], old, fresh, oldParam, newParam)
- #if n.kind == nkDerefExpr and sameType(n[0].typ, old):
- # result =
- result = copySym(orig, nextSymId c.idgen)
- result.info = info
- result.flags.incl sfFromGeneric
- result.owner = orig
- let origParamType = orig.typ[1]
- let newParamType = makeVarType(result, origParamType.skipTypes(abstractPtrs), c.idgen)
- let oldParam = orig.typ.n[1].sym
- let newParam = newSym(skParam, oldParam.name, nextSymId c.idgen, result, result.info)
- newParam.typ = newParamType
- # proc body:
- result.ast = transform(c, orig.ast, origParamType, newParamType, oldParam, newParam)
- # proc signature:
- result.typ = newProcType(result.info, nextTypeId c.idgen, result)
- result.typ.addParam newParam
- proc semQuantifier(c: PContext; n: PNode): PNode =
- checkSonsLen(n, 2, c.config)
- openScope(c)
- result = newNodeIT(n.kind, n.info, n.typ)
- result.add n[0]
- let args = n[1]
- assert args.kind == nkArgList
- for i in 0..args.len-2:
- let it = args[i]
- var valid = false
- if it.kind == nkInfix:
- let op = considerQuotedIdent(c, it[0])
- if op.id == ord(wIn):
- let v = newSymS(skForVar, it[1], c)
- styleCheckDef(c, v)
- onDef(it[1].info, v)
- let domain = semExprWithType(c, it[2], {efWantIterator})
- v.typ = domain.typ
- valid = true
- addDecl(c, v)
- result.add newTree(nkInfix, it[0], newSymNode(v), domain)
- if not valid:
- localError(c.config, n.info, "<quantifier> 'in' <range> expected")
- result.add forceBool(c, semExprWithType(c, args[^1]))
- closeScope(c)
- proc semOld(c: PContext; n: PNode): PNode =
- if n[1].kind == nkHiddenDeref:
- n[1] = n[1][0]
- if n[1].kind != nkSym or n[1].sym.kind != skParam:
- localError(c.config, n[1].info, "'old' takes a parameter name")
- elif n[1].sym.owner != getCurrOwner(c):
- localError(c.config, n[1].info, n[1].sym.name.s & " does not belong to " & getCurrOwner(c).name.s)
- result = n
- proc semNewFinalize(c: PContext; n: PNode): PNode =
- # Make sure the finalizer procedure refers to a procedure
- if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}:
- localError(c.config, n.info, "finalizer must be a direct reference to a proc")
- elif optTinyRtti in c.config.globalOptions:
- let nfin = skipConvCastAndClosure(n[^1])
- let fin = case nfin.kind
- of nkSym: nfin.sym
- of nkLambda, nkDo: nfin[namePos].sym
- else:
- localError(c.config, n.info, "finalizer must be a direct reference to a proc")
- nil
- if fin != nil:
- if fin.kind notin {skProc, skFunc}:
- # calling convention is checked in codegen
- localError(c.config, n.info, "finalizer must be a direct reference to a proc")
- # check if we converted this finalizer into a destructor already:
- let t = whereToBindTypeHook(c, fin.typ[1].skipTypes(abstractInst+{tyRef}))
- if t != nil and getAttachedOp(c.graph, t, attachedDestructor) != nil and
- getAttachedOp(c.graph, t, attachedDestructor).owner == fin:
- discard "already turned this one into a finalizer"
- else:
- let wrapperSym = newSym(skProc, getIdent(c.graph.cache, fin.name.s & "FinalizerWrapper"), nextSymId c.idgen, fin.owner, fin.info)
- let selfSymNode = newSymNode(copySym(fin.ast[paramsPos][1][0].sym, nextSymId c.idgen))
- selfSymNode.typ = fin.typ[1]
- wrapperSym.flags.incl sfUsed
- let wrapper = c.semExpr(c, newProcNode(nkProcDef, fin.info, body = newTree(nkCall, newSymNode(fin), selfSymNode),
- params = nkFormalParams.newTree(c.graph.emptyNode,
- newTree(nkIdentDefs, selfSymNode, newNodeIT(nkType,
- fin.ast[paramsPos][1][1].info, fin.typ[1]), c.graph.emptyNode)
- ),
- name = newSymNode(wrapperSym), pattern = fin.ast[patternPos],
- genericParams = fin.ast[genericParamsPos], pragmas = fin.ast[pragmasPos], exceptions = fin.ast[miscPos]), {})
- var transFormedSym = turnFinalizerIntoDestructor(c, wrapperSym, wrapper.info)
- transFormedSym.owner = fin
- if c.config.backend == backendCpp or sfCompileToCpp in c.module.flags:
- let origParamType = transFormedSym.ast[bodyPos][1].typ
- let selfSymbolType = makePtrType(c, origParamType.skipTypes(abstractPtrs))
- let selfPtr = newNodeI(nkHiddenAddr, transFormedSym.ast[bodyPos][1].info)
- selfPtr.add transFormedSym.ast[bodyPos][1]
- selfPtr.typ = selfSymbolType
- transFormedSym.ast[bodyPos][1] = c.semExpr(c, selfPtr)
- bindTypeHook(c, transFormedSym, n, attachedDestructor)
- result = addDefaultFieldForNew(c, n)
- proc semPrivateAccess(c: PContext, n: PNode): PNode =
- let t = n[1].typ[0].toObjectFromRefPtrGeneric
- c.currentScope.allowPrivateAccess.add t.sym
- result = newNodeIT(nkEmpty, n.info, getSysType(c.graph, n.info, tyVoid))
- proc checkDefault(c: PContext, n: PNode): PNode =
- result = n
- c.config.internalAssert result[1].typ.kind == tyTypeDesc
- let constructed = result[1].typ.base
- if constructed.requiresInit:
- message(c.config, n.info, warnUnsafeDefault, typeToString(constructed))
- proc magicsAfterOverloadResolution(c: PContext, n: PNode,
- flags: TExprFlags): PNode =
- ## This is the preferred code point to implement magics.
- ## ``c`` the current module, a symbol table to a very good approximation
- ## ``n`` the ast like it would be passed to a real macro
- ## ``flags`` Some flags for more contextual information on how the
- ## "macro" is calld.
- case n[0].sym.magic
- of mAddr:
- checkSonsLen(n, 2, c.config)
- result = n
- result[1] = semAddrArg(c, n[1])
- result.typ = makePtrType(c, result[1].typ)
- of mTypeOf:
- result = semTypeOf(c, n)
- of mSizeOf:
- result = foldSizeOf(c.config, n, n)
- of mAlignOf:
- result = foldAlignOf(c.config, n, n)
- of mOffsetOf:
- result = foldOffsetOf(c.config, n, n)
- of mArrGet:
- result = semArrGet(c, n, flags)
- of mArrPut:
- result = semArrPut(c, n, flags)
- of mAsgn:
- if n[0].sym.name.s == "=":
- result = semAsgnOpr(c, n, nkAsgn)
- elif n[0].sym.name.s == "=sink":
- result = semAsgnOpr(c, n, nkSinkAsgn)
- else:
- result = semShallowCopy(c, n, flags)
- of mIsPartOf: result = semIsPartOf(c, n, flags)
- of mTypeTrait: result = semTypeTraits(c, n)
- of mAstToStr:
- result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
- result.typ = getSysType(c.graph, n.info, tyString)
- of mInstantiationInfo: result = semInstantiationInfo(c, n)
- of mOrd: result = semOrd(c, n)
- of mOf: result = semOf(c, n)
- of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic)
- of mShallowCopy: result = semShallowCopy(c, n, flags)
- of mNBindSym:
- if dynamicBindSym notin c.features:
- result = semBindSym(c, n)
- else:
- result = semDynamicBindSym(c, n)
- of mProcCall:
- result = n
- result.typ = n[1].typ
- of mDotDot:
- result = n
- of mPlugin:
- let plugin = getPlugin(c.cache, n[0].sym)
- if plugin.isNil:
- localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s)
- result = n
- else:
- result = plugin(c, n)
- of mNew:
- if n[0].sym.name.s == "unsafeNew": # special case for unsafeNew
- result = n
- else:
- result = addDefaultFieldForNew(c, n)
- of mNewFinalize:
- result = semNewFinalize(c, n)
- of mDestroy:
- result = n
- let t = n[1].typ.skipTypes(abstractVar)
- let op = getAttachedOp(c.graph, t, attachedDestructor)
- if op != nil:
- result[0] = newSymNode(op)
- of mTrace:
- result = n
- let t = n[1].typ.skipTypes(abstractVar)
- let op = getAttachedOp(c.graph, t, attachedTrace)
- if op != nil:
- result[0] = newSymNode(op)
- of mUnown:
- result = semUnown(c, n)
- of mExists, mForall:
- result = semQuantifier(c, n)
- of mOld:
- result = semOld(c, n)
- of mSetLengthSeq:
- result = n
- let seqType = result[1].typ.skipTypes({tyPtr, tyRef, # in case we had auto-dereferencing
- tyVar, tyGenericInst, tyOwned, tySink,
- tyAlias, tyUserTypeClassInst})
- if seqType.kind == tySequence and seqType.base.requiresInit:
- message(c.config, n.info, warnUnsafeSetLen, typeToString(seqType.base))
- of mDefault:
- result = checkDefault(c, n)
- let typ = result[^1].typ.skipTypes({tyTypeDesc})
- let defaultExpr = defaultNodeField(c, result[^1], typ)
- if defaultExpr != nil:
- result = defaultExpr
- of mZeroDefault:
- result = checkDefault(c, n)
- of mIsolate:
- if not checkIsolate(n[1]):
- localError(c.config, n.info, "expression cannot be isolated: " & $n[1])
- result = n
- of mPred:
- if n[1].typ.skipTypes(abstractInst).kind in {tyUInt..tyUInt64}:
- n[0].sym.magic = mSubU
- result = n
- of mPrivateAccess:
- result = semPrivateAccess(c, n)
- else:
- result = n
|