123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103 |
- /*
- ===========================================================================
- Doom 3 GPL Source Code
- Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
- This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?).
- Doom 3 Source Code is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Doom 3 Source Code is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
- In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
- If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
- ===========================================================================
- */
- #include "../precompiled.h"
- #pragma hdrstop
- //===============================================================
- //
- // idMat2
- //
- //===============================================================
- idMat2 mat2_zero( idVec2( 0, 0 ), idVec2( 0, 0 ) );
- idMat2 mat2_identity( idVec2( 1, 0 ), idVec2( 0, 1 ) );
- /*
- ============
- idMat2::InverseSelf
- ============
- */
- bool idMat2::InverseSelf( void ) {
- // 2+4 = 6 multiplications
- // 1 division
- double det, invDet, a;
- det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- a = mat[0][0];
- mat[0][0] = mat[1][1] * invDet;
- mat[0][1] = - mat[0][1] * invDet;
- mat[1][0] = - mat[1][0] * invDet;
- mat[1][1] = a * invDet;
- return true;
- }
- /*
- ============
- idMat2::InverseFastSelf
- ============
- */
- bool idMat2::InverseFastSelf( void ) {
- #if 1
- // 2+4 = 6 multiplications
- // 1 division
- double det, invDet, a;
- det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- a = mat[0][0];
- mat[0][0] = mat[1][1] * invDet;
- mat[0][1] = - mat[0][1] * invDet;
- mat[1][0] = - mat[1][0] * invDet;
- mat[1][1] = a * invDet;
- return true;
- #else
- // 2*4 = 8 multiplications
- // 2 division
- float *mat = reinterpret_cast<float *>(this);
- double d, di;
- float s;
- di = mat[0];
- s = di;
- mat[0*2+0] = d = 1.0f / di;
- mat[0*2+1] *= d;
- d = -d;
- mat[1*2+0] *= d;
- d = mat[1*2+0] * di;
- mat[1*2+1] += mat[0*2+1] * d;
- di = mat[1*2+1];
- s *= di;
- mat[1*2+1] = d = 1.0f / di;
- mat[1*2+0] *= d;
- d = -d;
- mat[0*2+1] *= d;
- d = mat[0*2+1] * di;
- mat[0*2+0] += mat[1*2+0] * d;
- return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
- #endif
- }
- /*
- =============
- idMat2::ToString
- =============
- */
- const char *idMat2::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- //===============================================================
- //
- // idMat3
- //
- //===============================================================
- idMat3 mat3_zero( idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ) );
- idMat3 mat3_identity( idVec3( 1, 0, 0 ), idVec3( 0, 1, 0 ), idVec3( 0, 0, 1 ) );
- /*
- ============
- idMat3::ToAngles
- ============
- */
- idAngles idMat3::ToAngles( void ) const {
- idAngles angles;
- double theta;
- double cp;
- float sp;
- sp = mat[ 0 ][ 2 ];
- // cap off our sin value so that we don't get any NANs
- if ( sp > 1.0f ) {
- sp = 1.0f;
- } else if ( sp < -1.0f ) {
- sp = -1.0f;
- }
- theta = -asin( sp );
- cp = cos( theta );
- if ( cp > 8192.0f * idMath::FLT_EPSILON ) {
- angles.pitch = RAD2DEG( theta );
- angles.yaw = RAD2DEG( atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) );
- angles.roll = RAD2DEG( atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) );
- } else {
- angles.pitch = RAD2DEG( theta );
- angles.yaw = RAD2DEG( -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) );
- angles.roll = 0;
- }
- return angles;
- }
- /*
- ============
- idMat3::ToQuat
- ============
- */
- idQuat idMat3::ToQuat( void ) const {
- idQuat q;
- float trace;
- float s;
- float t;
- int i;
- int j;
- int k;
- static int next[ 3 ] = { 1, 2, 0 };
- trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
- if ( trace > 0.0f ) {
- t = trace + 1.0f;
- s = idMath::InvSqrt( t ) * 0.5f;
- q[3] = s * t;
- q[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s;
- q[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s;
- q[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s;
- } else {
- i = 0;
- if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) {
- i = 1;
- }
- if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) {
- i = 2;
- }
- j = next[ i ];
- k = next[ j ];
- t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f;
- s = idMath::InvSqrt( t ) * 0.5f;
- q[i] = s * t;
- q[3] = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s;
- q[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s;
- q[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s;
- }
- return q;
- }
- /*
- ============
- idMat3::ToCQuat
- ============
- */
- idCQuat idMat3::ToCQuat( void ) const {
- idQuat q = ToQuat();
- if ( q.w < 0.0f ) {
- return idCQuat( -q.x, -q.y, -q.z );
- }
- return idCQuat( q.x, q.y, q.z );
- }
- /*
- ============
- idMat3::ToRotation
- ============
- */
- idRotation idMat3::ToRotation( void ) const {
- idRotation r;
- float trace;
- float s;
- float t;
- int i;
- int j;
- int k;
- static int next[ 3 ] = { 1, 2, 0 };
- trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
- if ( trace > 0.0f ) {
- t = trace + 1.0f;
- s = idMath::InvSqrt( t ) * 0.5f;
-
- r.angle = s * t;
- r.vec[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s;
- r.vec[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s;
- r.vec[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s;
- } else {
- i = 0;
- if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) {
- i = 1;
- }
- if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) {
- i = 2;
- }
- j = next[ i ];
- k = next[ j ];
-
- t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f;
- s = idMath::InvSqrt( t ) * 0.5f;
-
- r.vec[i] = s * t;
- r.angle = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s;
- r.vec[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s;
- r.vec[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s;
- }
- r.angle = idMath::ACos( r.angle );
- if ( idMath::Fabs( r.angle ) < 1e-10f ) {
- r.vec.Set( 0.0f, 0.0f, 1.0f );
- r.angle = 0.0f;
- } else {
- //vec *= (1.0f / sin( angle ));
- r.vec.Normalize();
- r.vec.FixDegenerateNormal();
- r.angle *= 2.0f * idMath::M_RAD2DEG;
- }
- r.origin.Zero();
- r.axis = *this;
- r.axisValid = true;
- return r;
- }
- /*
- =================
- idMat3::ToAngularVelocity
- =================
- */
- idVec3 idMat3::ToAngularVelocity( void ) const {
- idRotation rotation = ToRotation();
- return rotation.GetVec() * DEG2RAD( rotation.GetAngle() );
- }
- /*
- ============
- idMat3::Determinant
- ============
- */
- float idMat3::Determinant( void ) const {
- float det2_12_01 = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
- float det2_12_02 = mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0];
- float det2_12_12 = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
- return mat[0][0] * det2_12_12 - mat[0][1] * det2_12_02 + mat[0][2] * det2_12_01;
- }
- /*
- ============
- idMat3::InverseSelf
- ============
- */
- bool idMat3::InverseSelf( void ) {
- // 18+3+9 = 30 multiplications
- // 1 division
- idMat3 inverse;
- double det, invDet;
- inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
- inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2];
- inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
- det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2];
- inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
- inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0];
- inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2];
- inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1];
- inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- mat[0][0] = inverse[0][0] * invDet;
- mat[0][1] = inverse[0][1] * invDet;
- mat[0][2] = inverse[0][2] * invDet;
- mat[1][0] = inverse[1][0] * invDet;
- mat[1][1] = inverse[1][1] * invDet;
- mat[1][2] = inverse[1][2] * invDet;
- mat[2][0] = inverse[2][0] * invDet;
- mat[2][1] = inverse[2][1] * invDet;
- mat[2][2] = inverse[2][2] * invDet;
- return true;
- }
- /*
- ============
- idMat3::InverseFastSelf
- ============
- */
- bool idMat3::InverseFastSelf( void ) {
- #if 1
- // 18+3+9 = 30 multiplications
- // 1 division
- idMat3 inverse;
- double det, invDet;
- inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
- inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2];
- inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
- det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2];
- inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
- inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0];
- inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2];
- inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1];
- inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- mat[0][0] = inverse[0][0] * invDet;
- mat[0][1] = inverse[0][1] * invDet;
- mat[0][2] = inverse[0][2] * invDet;
- mat[1][0] = inverse[1][0] * invDet;
- mat[1][1] = inverse[1][1] * invDet;
- mat[1][2] = inverse[1][2] * invDet;
- mat[2][0] = inverse[2][0] * invDet;
- mat[2][1] = inverse[2][1] * invDet;
- mat[2][2] = inverse[2][2] * invDet;
- return true;
- #elif 0
- // 3*10 = 30 multiplications
- // 3 divisions
- float *mat = reinterpret_cast<float *>(this);
- float s;
- double d, di;
- di = mat[0];
- s = di;
- mat[0] = d = 1.0f / di;
- mat[1] *= d;
- mat[2] *= d;
- d = -d;
- mat[3] *= d;
- mat[6] *= d;
- d = mat[3] * di;
- mat[4] += mat[1] * d;
- mat[5] += mat[2] * d;
- d = mat[6] * di;
- mat[7] += mat[1] * d;
- mat[8] += mat[2] * d;
- di = mat[4];
- s *= di;
- mat[4] = d = 1.0f / di;
- mat[3] *= d;
- mat[5] *= d;
- d = -d;
- mat[1] *= d;
- mat[7] *= d;
- d = mat[1] * di;
- mat[0] += mat[3] * d;
- mat[2] += mat[5] * d;
- d = mat[7] * di;
- mat[6] += mat[3] * d;
- mat[8] += mat[5] * d;
- di = mat[8];
- s *= di;
- mat[8] = d = 1.0f / di;
- mat[6] *= d;
- mat[7] *= d;
- d = -d;
- mat[2] *= d;
- mat[5] *= d;
- d = mat[2] * di;
- mat[0] += mat[6] * d;
- mat[1] += mat[7] * d;
- d = mat[5] * di;
- mat[3] += mat[6] * d;
- mat[4] += mat[7] * d;
- return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
- #else
- // 4*2+4*4 = 24 multiplications
- // 2*1 = 2 divisions
- idMat2 r0;
- float r1[2], r2[2], r3;
- float det, invDet;
- float *mat = reinterpret_cast<float *>(this);
- // r0 = m0.Inverse(); // 2x2
- det = mat[0*3+0] * mat[1*3+1] - mat[0*3+1] * mat[1*3+0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- r0[0][0] = mat[1*3+1] * invDet;
- r0[0][1] = - mat[0*3+1] * invDet;
- r0[1][0] = - mat[1*3+0] * invDet;
- r0[1][1] = mat[0*3+0] * invDet;
- // r1 = r0 * m1; // 2x1 = 2x2 * 2x1
- r1[0] = r0[0][0] * mat[0*3+2] + r0[0][1] * mat[1*3+2];
- r1[1] = r0[1][0] * mat[0*3+2] + r0[1][1] * mat[1*3+2];
- // r2 = m2 * r1; // 1x1 = 1x2 * 2x1
- r2[0] = mat[2*3+0] * r1[0] + mat[2*3+1] * r1[1];
- // r3 = r2 - m3; // 1x1 = 1x1 - 1x1
- r3 = r2[0] - mat[2*3+2];
- // r3.InverseSelf();
- if ( idMath::Fabs( r3 ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- r3 = 1.0f / r3;
- // r2 = m2 * r0; // 1x2 = 1x2 * 2x2
- r2[0] = mat[2*3+0] * r0[0][0] + mat[2*3+1] * r0[1][0];
- r2[1] = mat[2*3+0] * r0[0][1] + mat[2*3+1] * r0[1][1];
- // m2 = r3 * r2; // 1x2 = 1x1 * 1x2
- mat[2*3+0] = r3 * r2[0];
- mat[2*3+1] = r3 * r2[1];
- // m0 = r0 - r1 * m2; // 2x2 - 2x1 * 1x2
- mat[0*3+0] = r0[0][0] - r1[0] * mat[2*3+0];
- mat[0*3+1] = r0[0][1] - r1[0] * mat[2*3+1];
- mat[1*3+0] = r0[1][0] - r1[1] * mat[2*3+0];
- mat[1*3+1] = r0[1][1] - r1[1] * mat[2*3+1];
- // m1 = r1 * r3; // 2x1 = 2x1 * 1x1
- mat[0*3+2] = r1[0] * r3;
- mat[1*3+2] = r1[1] * r3;
- // m3 = -r3;
- mat[2*3+2] = -r3;
- return true;
- #endif
- }
- /*
- ============
- idMat3::InertiaTranslate
- ============
- */
- idMat3 idMat3::InertiaTranslate( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) const {
- idMat3 m;
- idVec3 newCenter;
- newCenter = centerOfMass + translation;
- m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] )
- - ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) );
- m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] )
- - ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) );
- m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] )
- - ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) );
- m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] );
- m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] );
- m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] );
- return (*this) + m;
- }
- /*
- ============
- idMat3::InertiaTranslateSelf
- ============
- */
- idMat3 &idMat3::InertiaTranslateSelf( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) {
- idMat3 m;
- idVec3 newCenter;
- newCenter = centerOfMass + translation;
- m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] )
- - ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) );
- m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] )
- - ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) );
- m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] )
- - ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) );
- m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] );
- m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] );
- m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] );
- (*this) += m;
- return (*this);
- }
- /*
- ============
- idMat3::InertiaRotate
- ============
- */
- idMat3 idMat3::InertiaRotate( const idMat3 &rotation ) const {
- // NOTE: the rotation matrix is stored column-major
- return rotation.Transpose() * (*this) * rotation;
- }
- /*
- ============
- idMat3::InertiaRotateSelf
- ============
- */
- idMat3 &idMat3::InertiaRotateSelf( const idMat3 &rotation ) {
- // NOTE: the rotation matrix is stored column-major
- *this = rotation.Transpose() * (*this) * rotation;
- return *this;
- }
- /*
- =============
- idMat3::ToString
- =============
- */
- const char *idMat3::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- //===============================================================
- //
- // idMat4
- //
- //===============================================================
- idMat4 mat4_zero( idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ) );
- idMat4 mat4_identity( idVec4( 1, 0, 0, 0 ), idVec4( 0, 1, 0, 0 ), idVec4( 0, 0, 1, 0 ), idVec4( 0, 0, 0, 1 ) );
- /*
- ============
- idMat4::Transpose
- ============
- */
- idMat4 idMat4::Transpose( void ) const {
- idMat4 transpose;
- int i, j;
-
- for( i = 0; i < 4; i++ ) {
- for( j = 0; j < 4; j++ ) {
- transpose[ i ][ j ] = mat[ j ][ i ];
- }
- }
- return transpose;
- }
- /*
- ============
- idMat4::TransposeSelf
- ============
- */
- idMat4 &idMat4::TransposeSelf( void ) {
- float temp;
- int i, j;
-
- for( i = 0; i < 4; i++ ) {
- for( j = i + 1; j < 4; j++ ) {
- temp = mat[ i ][ j ];
- mat[ i ][ j ] = mat[ j ][ i ];
- mat[ j ][ i ] = temp;
- }
- }
- return *this;
- }
- /*
- ============
- idMat4::Determinant
- ============
- */
- float idMat4::Determinant( void ) const {
- // 2x2 sub-determinants
- float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
- float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
- float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
- float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
- float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
- // 3x3 sub-determinants
- float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
- float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
- float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
- float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
- return ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
- }
- /*
- ============
- idMat4::InverseSelf
- ============
- */
- bool idMat4::InverseSelf( void ) {
- // 84+4+16 = 104 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 4x4 determinant
- float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
- float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
- float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
- float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
- float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
- // 3x3 sub-determinants required to calculate 4x4 determinant
- float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
- float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
- float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
- float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
- det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0];
- float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0];
- float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0];
- float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1];
- float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1];
- float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2];
- float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
- float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0];
- float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
- float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1];
- float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
- float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2];
- // remaining 3x3 sub-determinants
- float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01;
- float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01;
- float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02;
- float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12;
- float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01;
- float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01;
- float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02;
- float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12;
- float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01;
- float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01;
- float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02;
- float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12;
- mat[0][0] = - det3_213_123 * invDet;
- mat[1][0] = + det3_213_023 * invDet;
- mat[2][0] = - det3_213_013 * invDet;
- mat[3][0] = + det3_213_012 * invDet;
- mat[0][1] = + det3_203_123 * invDet;
- mat[1][1] = - det3_203_023 * invDet;
- mat[2][1] = + det3_203_013 * invDet;
- mat[3][1] = - det3_203_012 * invDet;
- mat[0][2] = + det3_301_123 * invDet;
- mat[1][2] = - det3_301_023 * invDet;
- mat[2][2] = + det3_301_013 * invDet;
- mat[3][2] = - det3_301_012 * invDet;
- mat[0][3] = - det3_201_123 * invDet;
- mat[1][3] = + det3_201_023 * invDet;
- mat[2][3] = - det3_201_013 * invDet;
- mat[3][3] = + det3_201_012 * invDet;
- return true;
- }
- /*
- ============
- idMat4::InverseFastSelf
- ============
- */
- bool idMat4::InverseFastSelf( void ) {
- #if 0
- // 84+4+16 = 104 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 4x4 determinant
- float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0];
- float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0];
- float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0];
- float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1];
- float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1];
- float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2];
- // 3x3 sub-determinants required to calculate 4x4 determinant
- float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01;
- float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01;
- float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02;
- float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12;
- det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] );
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0];
- float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0];
- float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0];
- float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1];
- float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1];
- float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2];
- float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
- float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0];
- float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
- float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1];
- float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
- float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2];
- // remaining 3x3 sub-determinants
- float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01;
- float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01;
- float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02;
- float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12;
- float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01;
- float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01;
- float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02;
- float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12;
- float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01;
- float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01;
- float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02;
- float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12;
- mat[0][0] = - det3_213_123 * invDet;
- mat[1][0] = + det3_213_023 * invDet;
- mat[2][0] = - det3_213_013 * invDet;
- mat[3][0] = + det3_213_012 * invDet;
- mat[0][1] = + det3_203_123 * invDet;
- mat[1][1] = - det3_203_023 * invDet;
- mat[2][1] = + det3_203_013 * invDet;
- mat[3][1] = - det3_203_012 * invDet;
- mat[0][2] = + det3_301_123 * invDet;
- mat[1][2] = - det3_301_023 * invDet;
- mat[2][2] = + det3_301_013 * invDet;
- mat[3][2] = - det3_301_012 * invDet;
- mat[0][3] = - det3_201_123 * invDet;
- mat[1][3] = + det3_201_023 * invDet;
- mat[2][3] = - det3_201_013 * invDet;
- mat[3][3] = + det3_201_012 * invDet;
- return true;
- #elif 0
- // 4*18 = 72 multiplications
- // 4 divisions
- float *mat = reinterpret_cast<float *>(this);
- float s;
- double d, di;
- di = mat[0];
- s = di;
- mat[0] = d = 1.0f / di;
- mat[1] *= d;
- mat[2] *= d;
- mat[3] *= d;
- d = -d;
- mat[4] *= d;
- mat[8] *= d;
- mat[12] *= d;
- d = mat[4] * di;
- mat[5] += mat[1] * d;
- mat[6] += mat[2] * d;
- mat[7] += mat[3] * d;
- d = mat[8] * di;
- mat[9] += mat[1] * d;
- mat[10] += mat[2] * d;
- mat[11] += mat[3] * d;
- d = mat[12] * di;
- mat[13] += mat[1] * d;
- mat[14] += mat[2] * d;
- mat[15] += mat[3] * d;
- di = mat[5];
- s *= di;
- mat[5] = d = 1.0f / di;
- mat[4] *= d;
- mat[6] *= d;
- mat[7] *= d;
- d = -d;
- mat[1] *= d;
- mat[9] *= d;
- mat[13] *= d;
- d = mat[1] * di;
- mat[0] += mat[4] * d;
- mat[2] += mat[6] * d;
- mat[3] += mat[7] * d;
- d = mat[9] * di;
- mat[8] += mat[4] * d;
- mat[10] += mat[6] * d;
- mat[11] += mat[7] * d;
- d = mat[13] * di;
- mat[12] += mat[4] * d;
- mat[14] += mat[6] * d;
- mat[15] += mat[7] * d;
- di = mat[10];
- s *= di;
- mat[10] = d = 1.0f / di;
- mat[8] *= d;
- mat[9] *= d;
- mat[11] *= d;
- d = -d;
- mat[2] *= d;
- mat[6] *= d;
- mat[14] *= d;
- d = mat[2] * di;
- mat[0] += mat[8] * d;
- mat[1] += mat[9] * d;
- mat[3] += mat[11] * d;
- d = mat[6] * di;
- mat[4] += mat[8] * d;
- mat[5] += mat[9] * d;
- mat[7] += mat[11] * d;
- d = mat[14] * di;
- mat[12] += mat[8] * d;
- mat[13] += mat[9] * d;
- mat[15] += mat[11] * d;
- di = mat[15];
- s *= di;
- mat[15] = d = 1.0f / di;
- mat[12] *= d;
- mat[13] *= d;
- mat[14] *= d;
- d = -d;
- mat[3] *= d;
- mat[7] *= d;
- mat[11] *= d;
- d = mat[3] * di;
- mat[0] += mat[12] * d;
- mat[1] += mat[13] * d;
- mat[2] += mat[14] * d;
- d = mat[7] * di;
- mat[4] += mat[12] * d;
- mat[5] += mat[13] * d;
- mat[6] += mat[14] * d;
- d = mat[11] * di;
- mat[8] += mat[12] * d;
- mat[9] += mat[13] * d;
- mat[10] += mat[14] * d;
- return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
- #else
- // 6*8+2*6 = 60 multiplications
- // 2*1 = 2 divisions
- idMat2 r0, r1, r2, r3;
- float a, det, invDet;
- float *mat = reinterpret_cast<float *>(this);
- // r0 = m0.Inverse();
- det = mat[0*4+0] * mat[1*4+1] - mat[0*4+1] * mat[1*4+0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- r0[0][0] = mat[1*4+1] * invDet;
- r0[0][1] = - mat[0*4+1] * invDet;
- r0[1][0] = - mat[1*4+0] * invDet;
- r0[1][1] = mat[0*4+0] * invDet;
- // r1 = r0 * m1;
- r1[0][0] = r0[0][0] * mat[0*4+2] + r0[0][1] * mat[1*4+2];
- r1[0][1] = r0[0][0] * mat[0*4+3] + r0[0][1] * mat[1*4+3];
- r1[1][0] = r0[1][0] * mat[0*4+2] + r0[1][1] * mat[1*4+2];
- r1[1][1] = r0[1][0] * mat[0*4+3] + r0[1][1] * mat[1*4+3];
- // r2 = m2 * r1;
- r2[0][0] = mat[2*4+0] * r1[0][0] + mat[2*4+1] * r1[1][0];
- r2[0][1] = mat[2*4+0] * r1[0][1] + mat[2*4+1] * r1[1][1];
- r2[1][0] = mat[3*4+0] * r1[0][0] + mat[3*4+1] * r1[1][0];
- r2[1][1] = mat[3*4+0] * r1[0][1] + mat[3*4+1] * r1[1][1];
- // r3 = r2 - m3;
- r3[0][0] = r2[0][0] - mat[2*4+2];
- r3[0][1] = r2[0][1] - mat[2*4+3];
- r3[1][0] = r2[1][0] - mat[3*4+2];
- r3[1][1] = r2[1][1] - mat[3*4+3];
- // r3.InverseSelf();
- det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- a = r3[0][0];
- r3[0][0] = r3[1][1] * invDet;
- r3[0][1] = - r3[0][1] * invDet;
- r3[1][0] = - r3[1][0] * invDet;
- r3[1][1] = a * invDet;
- // r2 = m2 * r0;
- r2[0][0] = mat[2*4+0] * r0[0][0] + mat[2*4+1] * r0[1][0];
- r2[0][1] = mat[2*4+0] * r0[0][1] + mat[2*4+1] * r0[1][1];
- r2[1][0] = mat[3*4+0] * r0[0][0] + mat[3*4+1] * r0[1][0];
- r2[1][1] = mat[3*4+0] * r0[0][1] + mat[3*4+1] * r0[1][1];
- // m2 = r3 * r2;
- mat[2*4+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0];
- mat[2*4+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1];
- mat[3*4+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0];
- mat[3*4+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1];
- // m0 = r0 - r1 * m2;
- mat[0*4+0] = r0[0][0] - r1[0][0] * mat[2*4+0] - r1[0][1] * mat[3*4+0];
- mat[0*4+1] = r0[0][1] - r1[0][0] * mat[2*4+1] - r1[0][1] * mat[3*4+1];
- mat[1*4+0] = r0[1][0] - r1[1][0] * mat[2*4+0] - r1[1][1] * mat[3*4+0];
- mat[1*4+1] = r0[1][1] - r1[1][0] * mat[2*4+1] - r1[1][1] * mat[3*4+1];
- // m1 = r1 * r3;
- mat[0*4+2] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0];
- mat[0*4+3] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1];
- mat[1*4+2] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0];
- mat[1*4+3] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1];
- // m3 = -r3;
- mat[2*4+2] = -r3[0][0];
- mat[2*4+3] = -r3[0][1];
- mat[3*4+2] = -r3[1][0];
- mat[3*4+3] = -r3[1][1];
- return true;
- #endif
- }
- /*
- =============
- idMat4::ToString
- =============
- */
- const char *idMat4::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- //===============================================================
- //
- // idMat5
- //
- //===============================================================
- idMat5 mat5_zero( idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ) );
- idMat5 mat5_identity( idVec5( 1, 0, 0, 0, 0 ), idVec5( 0, 1, 0, 0, 0 ), idVec5( 0, 0, 1, 0, 0 ), idVec5( 0, 0, 0, 1, 0 ), idVec5( 0, 0, 0, 0, 1 ) );
- /*
- ============
- idMat5::Transpose
- ============
- */
- idMat5 idMat5::Transpose( void ) const {
- idMat5 transpose;
- int i, j;
-
- for( i = 0; i < 5; i++ ) {
- for( j = 0; j < 5; j++ ) {
- transpose[ i ][ j ] = mat[ j ][ i ];
- }
- }
- return transpose;
- }
- /*
- ============
- idMat5::TransposeSelf
- ============
- */
- idMat5 &idMat5::TransposeSelf( void ) {
- float temp;
- int i, j;
-
- for( i = 0; i < 5; i++ ) {
- for( j = i + 1; j < 5; j++ ) {
- temp = mat[ i ][ j ];
- mat[ i ][ j ] = mat[ j ][ i ];
- mat[ j ][ i ] = temp;
- }
- }
- return *this;
- }
- /*
- ============
- idMat5::Determinant
- ============
- */
- float idMat5::Determinant( void ) const {
- // 2x2 sub-determinants required to calculate 5x5 determinant
- float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
- float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
- float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
- float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
- float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
- float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
- float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
- float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
- float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
- float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
- // 3x3 sub-determinants required to calculate 5x5 determinant
- float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
- float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
- float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
- float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
- float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
- float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
- float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
- float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
- float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
- float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
- // 4x4 sub-determinants required to calculate 5x5 determinant
- float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
- float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
- float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
- float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
- float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
- // determinant of 5x5 matrix
- return mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
- }
- /*
- ============
- idMat5::InverseSelf
- ============
- */
- bool idMat5::InverseSelf( void ) {
- // 280+5+25 = 310 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 5x5 determinant
- float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
- float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
- float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
- float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
- float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
- float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
- float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
- float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
- float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
- float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
- // 3x3 sub-determinants required to calculate 5x5 determinant
- float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
- float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
- float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
- float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
- float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
- float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
- float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
- float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
- float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
- float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
- // 4x4 sub-determinants required to calculate 5x5 determinant
- float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
- float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
- float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
- float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
- float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
- // determinant of 5x5 matrix
- det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
- if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
- float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
- float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
- float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0];
- float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
- float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
- float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1];
- float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
- float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2];
- float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3];
- float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0];
- float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0];
- float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0];
- float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0];
- float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1];
- float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1];
- float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1];
- float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2];
- float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2];
- float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3];
- // remaining 3x3 sub-determinants
- float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01;
- float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01;
- float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01;
- float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02;
- float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02;
- float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03;
- float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12;
- float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12;
- float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13;
- float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23;
- float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01;
- float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01;
- float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01;
- float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02;
- float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02;
- float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03;
- float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12;
- float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12;
- float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13;
- float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23;
- float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01;
- float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01;
- float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01;
- float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02;
- float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02;
- float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03;
- float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12;
- float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12;
- float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13;
- float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23;
- // remaining 4x4 sub-determinants
- float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012;
- float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012;
- float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013;
- float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023;
- float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123;
- float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012;
- float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012;
- float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013;
- float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023;
- float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123;
- float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012;
- float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012;
- float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013;
- float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023;
- float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123;
- float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012;
- float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012;
- float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013;
- float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023;
- float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123;
- mat[0][0] = det4_1234_1234 * invDet;
- mat[0][1] = -det4_0234_1234 * invDet;
- mat[0][2] = det4_0134_1234 * invDet;
- mat[0][3] = -det4_0124_1234 * invDet;
- mat[0][4] = det4_0123_1234 * invDet;
- mat[1][0] = -det4_1234_0234 * invDet;
- mat[1][1] = det4_0234_0234 * invDet;
- mat[1][2] = -det4_0134_0234 * invDet;
- mat[1][3] = det4_0124_0234 * invDet;
- mat[1][4] = -det4_0123_0234 * invDet;
- mat[2][0] = det4_1234_0134 * invDet;
- mat[2][1] = -det4_0234_0134 * invDet;
- mat[2][2] = det4_0134_0134 * invDet;
- mat[2][3] = -det4_0124_0134 * invDet;
- mat[2][4] = det4_0123_0134 * invDet;
- mat[3][0] = -det4_1234_0124 * invDet;
- mat[3][1] = det4_0234_0124 * invDet;
- mat[3][2] = -det4_0134_0124 * invDet;
- mat[3][3] = det4_0124_0124 * invDet;
- mat[3][4] = -det4_0123_0124 * invDet;
- mat[4][0] = det4_1234_0123 * invDet;
- mat[4][1] = -det4_0234_0123 * invDet;
- mat[4][2] = det4_0134_0123 * invDet;
- mat[4][3] = -det4_0124_0123 * invDet;
- mat[4][4] = det4_0123_0123 * invDet;
- return true;
- }
- /*
- ============
- idMat5::InverseFastSelf
- ============
- */
- bool idMat5::InverseFastSelf( void ) {
- #if 0
- // 280+5+25 = 310 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 5x5 determinant
- float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
- float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
- float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
- float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
- float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
- float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
- float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
- float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
- float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
- float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
- // 3x3 sub-determinants required to calculate 5x5 determinant
- float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
- float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
- float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
- float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
- float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
- float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
- float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
- float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
- float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
- float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
- // 4x4 sub-determinants required to calculate 5x5 determinant
- float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
- float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
- float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
- float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
- float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
- // determinant of 5x5 matrix
- det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
- if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
- float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
- float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
- float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0];
- float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
- float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
- float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1];
- float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
- float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2];
- float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3];
- float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0];
- float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0];
- float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0];
- float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0];
- float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1];
- float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1];
- float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1];
- float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2];
- float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2];
- float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3];
- // remaining 3x3 sub-determinants
- float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01;
- float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01;
- float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01;
- float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02;
- float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02;
- float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03;
- float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12;
- float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12;
- float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13;
- float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23;
- float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01;
- float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01;
- float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01;
- float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02;
- float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02;
- float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03;
- float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12;
- float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12;
- float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13;
- float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23;
- float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01;
- float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01;
- float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01;
- float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02;
- float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02;
- float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03;
- float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12;
- float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12;
- float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13;
- float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23;
- // remaining 4x4 sub-determinants
- float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012;
- float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012;
- float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013;
- float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023;
- float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123;
- float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012;
- float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012;
- float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013;
- float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023;
- float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123;
- float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012;
- float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012;
- float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013;
- float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023;
- float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123;
- float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012;
- float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012;
- float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013;
- float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023;
- float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123;
- mat[0][0] = det4_1234_1234 * invDet;
- mat[0][1] = -det4_0234_1234 * invDet;
- mat[0][2] = det4_0134_1234 * invDet;
- mat[0][3] = -det4_0124_1234 * invDet;
- mat[0][4] = det4_0123_1234 * invDet;
- mat[1][0] = -det4_1234_0234 * invDet;
- mat[1][1] = det4_0234_0234 * invDet;
- mat[1][2] = -det4_0134_0234 * invDet;
- mat[1][3] = det4_0124_0234 * invDet;
- mat[1][4] = -det4_0123_0234 * invDet;
- mat[2][0] = det4_1234_0134 * invDet;
- mat[2][1] = -det4_0234_0134 * invDet;
- mat[2][2] = det4_0134_0134 * invDet;
- mat[2][3] = -det4_0124_0134 * invDet;
- mat[2][4] = det4_0123_0134 * invDet;
- mat[3][0] = -det4_1234_0124 * invDet;
- mat[3][1] = det4_0234_0124 * invDet;
- mat[3][2] = -det4_0134_0124 * invDet;
- mat[3][3] = det4_0124_0124 * invDet;
- mat[3][4] = -det4_0123_0124 * invDet;
- mat[4][0] = det4_1234_0123 * invDet;
- mat[4][1] = -det4_0234_0123 * invDet;
- mat[4][2] = det4_0134_0123 * invDet;
- mat[4][3] = -det4_0124_0123 * invDet;
- mat[4][4] = det4_0123_0123 * invDet;
- return true;
- #elif 0
- // 5*28 = 140 multiplications
- // 5 divisions
- float *mat = reinterpret_cast<float *>(this);
- float s;
- double d, di;
- di = mat[0];
- s = di;
- mat[0] = d = 1.0f / di;
- mat[1] *= d;
- mat[2] *= d;
- mat[3] *= d;
- mat[4] *= d;
- d = -d;
- mat[5] *= d;
- mat[10] *= d;
- mat[15] *= d;
- mat[20] *= d;
- d = mat[5] * di;
- mat[6] += mat[1] * d;
- mat[7] += mat[2] * d;
- mat[8] += mat[3] * d;
- mat[9] += mat[4] * d;
- d = mat[10] * di;
- mat[11] += mat[1] * d;
- mat[12] += mat[2] * d;
- mat[13] += mat[3] * d;
- mat[14] += mat[4] * d;
- d = mat[15] * di;
- mat[16] += mat[1] * d;
- mat[17] += mat[2] * d;
- mat[18] += mat[3] * d;
- mat[19] += mat[4] * d;
- d = mat[20] * di;
- mat[21] += mat[1] * d;
- mat[22] += mat[2] * d;
- mat[23] += mat[3] * d;
- mat[24] += mat[4] * d;
- di = mat[6];
- s *= di;
- mat[6] = d = 1.0f / di;
- mat[5] *= d;
- mat[7] *= d;
- mat[8] *= d;
- mat[9] *= d;
- d = -d;
- mat[1] *= d;
- mat[11] *= d;
- mat[16] *= d;
- mat[21] *= d;
- d = mat[1] * di;
- mat[0] += mat[5] * d;
- mat[2] += mat[7] * d;
- mat[3] += mat[8] * d;
- mat[4] += mat[9] * d;
- d = mat[11] * di;
- mat[10] += mat[5] * d;
- mat[12] += mat[7] * d;
- mat[13] += mat[8] * d;
- mat[14] += mat[9] * d;
- d = mat[16] * di;
- mat[15] += mat[5] * d;
- mat[17] += mat[7] * d;
- mat[18] += mat[8] * d;
- mat[19] += mat[9] * d;
- d = mat[21] * di;
- mat[20] += mat[5] * d;
- mat[22] += mat[7] * d;
- mat[23] += mat[8] * d;
- mat[24] += mat[9] * d;
- di = mat[12];
- s *= di;
- mat[12] = d = 1.0f / di;
- mat[10] *= d;
- mat[11] *= d;
- mat[13] *= d;
- mat[14] *= d;
- d = -d;
- mat[2] *= d;
- mat[7] *= d;
- mat[17] *= d;
- mat[22] *= d;
- d = mat[2] * di;
- mat[0] += mat[10] * d;
- mat[1] += mat[11] * d;
- mat[3] += mat[13] * d;
- mat[4] += mat[14] * d;
- d = mat[7] * di;
- mat[5] += mat[10] * d;
- mat[6] += mat[11] * d;
- mat[8] += mat[13] * d;
- mat[9] += mat[14] * d;
- d = mat[17] * di;
- mat[15] += mat[10] * d;
- mat[16] += mat[11] * d;
- mat[18] += mat[13] * d;
- mat[19] += mat[14] * d;
- d = mat[22] * di;
- mat[20] += mat[10] * d;
- mat[21] += mat[11] * d;
- mat[23] += mat[13] * d;
- mat[24] += mat[14] * d;
- di = mat[18];
- s *= di;
- mat[18] = d = 1.0f / di;
- mat[15] *= d;
- mat[16] *= d;
- mat[17] *= d;
- mat[19] *= d;
- d = -d;
- mat[3] *= d;
- mat[8] *= d;
- mat[13] *= d;
- mat[23] *= d;
- d = mat[3] * di;
- mat[0] += mat[15] * d;
- mat[1] += mat[16] * d;
- mat[2] += mat[17] * d;
- mat[4] += mat[19] * d;
- d = mat[8] * di;
- mat[5] += mat[15] * d;
- mat[6] += mat[16] * d;
- mat[7] += mat[17] * d;
- mat[9] += mat[19] * d;
- d = mat[13] * di;
- mat[10] += mat[15] * d;
- mat[11] += mat[16] * d;
- mat[12] += mat[17] * d;
- mat[14] += mat[19] * d;
- d = mat[23] * di;
- mat[20] += mat[15] * d;
- mat[21] += mat[16] * d;
- mat[22] += mat[17] * d;
- mat[24] += mat[19] * d;
- di = mat[24];
- s *= di;
- mat[24] = d = 1.0f / di;
- mat[20] *= d;
- mat[21] *= d;
- mat[22] *= d;
- mat[23] *= d;
- d = -d;
- mat[4] *= d;
- mat[9] *= d;
- mat[14] *= d;
- mat[19] *= d;
- d = mat[4] * di;
- mat[0] += mat[20] * d;
- mat[1] += mat[21] * d;
- mat[2] += mat[22] * d;
- mat[3] += mat[23] * d;
- d = mat[9] * di;
- mat[5] += mat[20] * d;
- mat[6] += mat[21] * d;
- mat[7] += mat[22] * d;
- mat[8] += mat[23] * d;
- d = mat[14] * di;
- mat[10] += mat[20] * d;
- mat[11] += mat[21] * d;
- mat[12] += mat[22] * d;
- mat[13] += mat[23] * d;
- d = mat[19] * di;
- mat[15] += mat[20] * d;
- mat[16] += mat[21] * d;
- mat[17] += mat[22] * d;
- mat[18] += mat[23] * d;
- return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
- #else
- // 86+30+6 = 122 multiplications
- // 2*1 = 2 divisions
- idMat3 r0, r1, r2, r3;
- float c0, c1, c2, det, invDet;
- float *mat = reinterpret_cast<float *>(this);
- // r0 = m0.Inverse(); // 3x3
- c0 = mat[1*5+1] * mat[2*5+2] - mat[1*5+2] * mat[2*5+1];
- c1 = mat[1*5+2] * mat[2*5+0] - mat[1*5+0] * mat[2*5+2];
- c2 = mat[1*5+0] * mat[2*5+1] - mat[1*5+1] * mat[2*5+0];
- det = mat[0*5+0] * c0 + mat[0*5+1] * c1 + mat[0*5+2] * c2;
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- r0[0][0] = c0 * invDet;
- r0[0][1] = ( mat[0*5+2] * mat[2*5+1] - mat[0*5+1] * mat[2*5+2] ) * invDet;
- r0[0][2] = ( mat[0*5+1] * mat[1*5+2] - mat[0*5+2] * mat[1*5+1] ) * invDet;
- r0[1][0] = c1 * invDet;
- r0[1][1] = ( mat[0*5+0] * mat[2*5+2] - mat[0*5+2] * mat[2*5+0] ) * invDet;
- r0[1][2] = ( mat[0*5+2] * mat[1*5+0] - mat[0*5+0] * mat[1*5+2] ) * invDet;
- r0[2][0] = c2 * invDet;
- r0[2][1] = ( mat[0*5+1] * mat[2*5+0] - mat[0*5+0] * mat[2*5+1] ) * invDet;
- r0[2][2] = ( mat[0*5+0] * mat[1*5+1] - mat[0*5+1] * mat[1*5+0] ) * invDet;
- // r1 = r0 * m1; // 3x2 = 3x3 * 3x2
- r1[0][0] = r0[0][0] * mat[0*5+3] + r0[0][1] * mat[1*5+3] + r0[0][2] * mat[2*5+3];
- r1[0][1] = r0[0][0] * mat[0*5+4] + r0[0][1] * mat[1*5+4] + r0[0][2] * mat[2*5+4];
- r1[1][0] = r0[1][0] * mat[0*5+3] + r0[1][1] * mat[1*5+3] + r0[1][2] * mat[2*5+3];
- r1[1][1] = r0[1][0] * mat[0*5+4] + r0[1][1] * mat[1*5+4] + r0[1][2] * mat[2*5+4];
- r1[2][0] = r0[2][0] * mat[0*5+3] + r0[2][1] * mat[1*5+3] + r0[2][2] * mat[2*5+3];
- r1[2][1] = r0[2][0] * mat[0*5+4] + r0[2][1] * mat[1*5+4] + r0[2][2] * mat[2*5+4];
- // r2 = m2 * r1; // 2x2 = 2x3 * 3x2
- r2[0][0] = mat[3*5+0] * r1[0][0] + mat[3*5+1] * r1[1][0] + mat[3*5+2] * r1[2][0];
- r2[0][1] = mat[3*5+0] * r1[0][1] + mat[3*5+1] * r1[1][1] + mat[3*5+2] * r1[2][1];
- r2[1][0] = mat[4*5+0] * r1[0][0] + mat[4*5+1] * r1[1][0] + mat[4*5+2] * r1[2][0];
- r2[1][1] = mat[4*5+0] * r1[0][1] + mat[4*5+1] * r1[1][1] + mat[4*5+2] * r1[2][1];
- // r3 = r2 - m3; // 2x2 = 2x2 - 2x2
- r3[0][0] = r2[0][0] - mat[3*5+3];
- r3[0][1] = r2[0][1] - mat[3*5+4];
- r3[1][0] = r2[1][0] - mat[4*5+3];
- r3[1][1] = r2[1][1] - mat[4*5+4];
- // r3.InverseSelf(); // 2x2
- det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- c0 = r3[0][0];
- r3[0][0] = r3[1][1] * invDet;
- r3[0][1] = - r3[0][1] * invDet;
- r3[1][0] = - r3[1][0] * invDet;
- r3[1][1] = c0 * invDet;
- // r2 = m2 * r0; // 2x3 = 2x3 * 3x3
- r2[0][0] = mat[3*5+0] * r0[0][0] + mat[3*5+1] * r0[1][0] + mat[3*5+2] * r0[2][0];
- r2[0][1] = mat[3*5+0] * r0[0][1] + mat[3*5+1] * r0[1][1] + mat[3*5+2] * r0[2][1];
- r2[0][2] = mat[3*5+0] * r0[0][2] + mat[3*5+1] * r0[1][2] + mat[3*5+2] * r0[2][2];
- r2[1][0] = mat[4*5+0] * r0[0][0] + mat[4*5+1] * r0[1][0] + mat[4*5+2] * r0[2][0];
- r2[1][1] = mat[4*5+0] * r0[0][1] + mat[4*5+1] * r0[1][1] + mat[4*5+2] * r0[2][1];
- r2[1][2] = mat[4*5+0] * r0[0][2] + mat[4*5+1] * r0[1][2] + mat[4*5+2] * r0[2][2];
- // m2 = r3 * r2; // 2x3 = 2x2 * 2x3
- mat[3*5+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0];
- mat[3*5+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1];
- mat[3*5+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2];
- mat[4*5+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0];
- mat[4*5+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1];
- mat[4*5+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2];
- // m0 = r0 - r1 * m2; // 3x3 = 3x3 - 3x2 * 2x3
- mat[0*5+0] = r0[0][0] - r1[0][0] * mat[3*5+0] - r1[0][1] * mat[4*5+0];
- mat[0*5+1] = r0[0][1] - r1[0][0] * mat[3*5+1] - r1[0][1] * mat[4*5+1];
- mat[0*5+2] = r0[0][2] - r1[0][0] * mat[3*5+2] - r1[0][1] * mat[4*5+2];
- mat[1*5+0] = r0[1][0] - r1[1][0] * mat[3*5+0] - r1[1][1] * mat[4*5+0];
- mat[1*5+1] = r0[1][1] - r1[1][0] * mat[3*5+1] - r1[1][1] * mat[4*5+1];
- mat[1*5+2] = r0[1][2] - r1[1][0] * mat[3*5+2] - r1[1][1] * mat[4*5+2];
- mat[2*5+0] = r0[2][0] - r1[2][0] * mat[3*5+0] - r1[2][1] * mat[4*5+0];
- mat[2*5+1] = r0[2][1] - r1[2][0] * mat[3*5+1] - r1[2][1] * mat[4*5+1];
- mat[2*5+2] = r0[2][2] - r1[2][0] * mat[3*5+2] - r1[2][1] * mat[4*5+2];
- // m1 = r1 * r3; // 3x2 = 3x2 * 2x2
- mat[0*5+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0];
- mat[0*5+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1];
- mat[1*5+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0];
- mat[1*5+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1];
- mat[2*5+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0];
- mat[2*5+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1];
- // m3 = -r3; // 2x2 = - 2x2
- mat[3*5+3] = -r3[0][0];
- mat[3*5+4] = -r3[0][1];
- mat[4*5+3] = -r3[1][0];
- mat[4*5+4] = -r3[1][1];
- return true;
- #endif
- }
- /*
- =============
- idMat5::ToString
- =============
- */
- const char *idMat5::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- //===============================================================
- //
- // idMat6
- //
- //===============================================================
- idMat6 mat6_zero( idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ) );
- idMat6 mat6_identity( idVec6( 1, 0, 0, 0, 0, 0 ), idVec6( 0, 1, 0, 0, 0, 0 ), idVec6( 0, 0, 1, 0, 0, 0 ), idVec6( 0, 0, 0, 1, 0, 0 ), idVec6( 0, 0, 0, 0, 1, 0 ), idVec6( 0, 0, 0, 0, 0, 1 ) );
- /*
- ============
- idMat6::Transpose
- ============
- */
- idMat6 idMat6::Transpose( void ) const {
- idMat6 transpose;
- int i, j;
-
- for( i = 0; i < 6; i++ ) {
- for( j = 0; j < 6; j++ ) {
- transpose[ i ][ j ] = mat[ j ][ i ];
- }
- }
- return transpose;
- }
- /*
- ============
- idMat6::TransposeSelf
- ============
- */
- idMat6 &idMat6::TransposeSelf( void ) {
- float temp;
- int i, j;
-
- for( i = 0; i < 6; i++ ) {
- for( j = i + 1; j < 6; j++ ) {
- temp = mat[ i ][ j ];
- mat[ i ][ j ] = mat[ j ][ i ];
- mat[ j ][ i ] = temp;
- }
- }
- return *this;
- }
- /*
- ============
- idMat6::Determinant
- ============
- */
- float idMat6::Determinant( void ) const {
- // 2x2 sub-determinants required to calculate 6x6 determinant
- float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
- float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
- float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
- float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
- float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
- float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
- float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
- float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
- float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
- float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
- float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
- float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
- float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
- float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
- float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
- // 3x3 sub-determinants required to calculate 6x6 determinant
- float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
- float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
- float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
- float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
- float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
- float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
- float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
- float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
- float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
- float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
- float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
- float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
- float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
- float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
- float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
- float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
- float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
- float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
- float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
- float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
- // 4x4 sub-determinants required to calculate 6x6 determinant
- float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
- float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
- float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
- float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
- float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
- float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
- float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
- float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
- float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
- float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
- float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
- float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
- float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
- float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
- float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
- // 5x5 sub-determinants required to calculate 6x6 determinant
- float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
- float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
- float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
- float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
- float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
- float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
- // determinant of 6x6 matrix
- return mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
- mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
- }
- /*
- ============
- idMat6::InverseSelf
- ============
- */
- bool idMat6::InverseSelf( void ) {
- // 810+6+36 = 852 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 6x6 determinant
- float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
- float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
- float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
- float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
- float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
- float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
- float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
- float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
- float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
- float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
- float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
- float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
- float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
- float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
- float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
- // 3x3 sub-determinants required to calculate 6x6 determinant
- float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
- float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
- float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
- float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
- float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
- float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
- float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
- float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
- float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
- float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
- float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
- float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
- float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
- float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
- float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
- float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
- float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
- float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
- float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
- float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
- // 4x4 sub-determinants required to calculate 6x6 determinant
- float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
- float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
- float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
- float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
- float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
- float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
- float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
- float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
- float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
- float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
- float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
- float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
- float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
- float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
- float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
- // 5x5 sub-determinants required to calculate 6x6 determinant
- float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
- float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
- float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
- float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
- float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
- float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
- // determinant of 6x6 matrix
- det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
- mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
- float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
- float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
- float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
- float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0];
- float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
- float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
- float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
- float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1];
- float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
- float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
- float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2];
- float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
- float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3];
- float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4];
- float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0];
- float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0];
- float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0];
- float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0];
- float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0];
- float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1];
- float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1];
- float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1];
- float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1];
- float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2];
- float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2];
- float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2];
- float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3];
- float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3];
- float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4];
- // remaining 3x3 sub-determinants
- float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
- float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
- float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
- float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01;
- float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
- float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
- float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02;
- float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
- float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03;
- float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04;
- float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
- float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
- float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12;
- float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
- float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13;
- float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14;
- float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
- float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23;
- float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24;
- float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34;
- float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01;
- float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01;
- float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01;
- float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01;
- float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02;
- float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02;
- float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02;
- float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03;
- float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03;
- float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04;
- float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12;
- float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12;
- float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12;
- float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13;
- float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13;
- float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14;
- float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23;
- float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23;
- float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24;
- float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34;
- float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01;
- float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01;
- float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01;
- float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01;
- float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02;
- float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02;
- float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02;
- float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03;
- float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03;
- float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04;
- float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12;
- float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12;
- float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12;
- float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13;
- float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13;
- float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14;
- float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23;
- float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23;
- float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24;
- float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34;
- // remaining 4x4 sub-determinants
- float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
- float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
- float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012;
- float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
- float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013;
- float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014;
- float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
- float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023;
- float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024;
- float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034;
- float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
- float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123;
- float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124;
- float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134;
- float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234;
- float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012;
- float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012;
- float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012;
- float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013;
- float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013;
- float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014;
- float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023;
- float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023;
- float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024;
- float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034;
- float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123;
- float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123;
- float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124;
- float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134;
- float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234;
- float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012;
- float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012;
- float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012;
- float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013;
- float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013;
- float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014;
- float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023;
- float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023;
- float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024;
- float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034;
- float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123;
- float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123;
- float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124;
- float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134;
- float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234;
- float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012;
- float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012;
- float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012;
- float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013;
- float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013;
- float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014;
- float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023;
- float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023;
- float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024;
- float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034;
- float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123;
- float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123;
- float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124;
- float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134;
- float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234;
- // remaining 5x5 sub-determinants
- float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
- float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123;
- float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124;
- float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134;
- float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234;
- float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234;
- float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123;
- float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123;
- float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124;
- float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134;
- float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234;
- float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234;
- float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123;
- float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123;
- float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124;
- float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134;
- float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234;
- float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234;
- float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123;
- float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123;
- float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124;
- float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134;
- float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234;
- float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234;
- float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123;
- float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123;
- float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124;
- float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134;
- float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234;
- float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234;
- mat[0][0] = det5_12345_12345 * invDet;
- mat[0][1] = -det5_02345_12345 * invDet;
- mat[0][2] = det5_01345_12345 * invDet;
- mat[0][3] = -det5_01245_12345 * invDet;
- mat[0][4] = det5_01235_12345 * invDet;
- mat[0][5] = -det5_01234_12345 * invDet;
- mat[1][0] = -det5_12345_02345 * invDet;
- mat[1][1] = det5_02345_02345 * invDet;
- mat[1][2] = -det5_01345_02345 * invDet;
- mat[1][3] = det5_01245_02345 * invDet;
- mat[1][4] = -det5_01235_02345 * invDet;
- mat[1][5] = det5_01234_02345 * invDet;
- mat[2][0] = det5_12345_01345 * invDet;
- mat[2][1] = -det5_02345_01345 * invDet;
- mat[2][2] = det5_01345_01345 * invDet;
- mat[2][3] = -det5_01245_01345 * invDet;
- mat[2][4] = det5_01235_01345 * invDet;
- mat[2][5] = -det5_01234_01345 * invDet;
- mat[3][0] = -det5_12345_01245 * invDet;
- mat[3][1] = det5_02345_01245 * invDet;
- mat[3][2] = -det5_01345_01245 * invDet;
- mat[3][3] = det5_01245_01245 * invDet;
- mat[3][4] = -det5_01235_01245 * invDet;
- mat[3][5] = det5_01234_01245 * invDet;
- mat[4][0] = det5_12345_01235 * invDet;
- mat[4][1] = -det5_02345_01235 * invDet;
- mat[4][2] = det5_01345_01235 * invDet;
- mat[4][3] = -det5_01245_01235 * invDet;
- mat[4][4] = det5_01235_01235 * invDet;
- mat[4][5] = -det5_01234_01235 * invDet;
- mat[5][0] = -det5_12345_01234 * invDet;
- mat[5][1] = det5_02345_01234 * invDet;
- mat[5][2] = -det5_01345_01234 * invDet;
- mat[5][3] = det5_01245_01234 * invDet;
- mat[5][4] = -det5_01235_01234 * invDet;
- mat[5][5] = det5_01234_01234 * invDet;
- return true;
- }
- /*
- ============
- idMat6::InverseFastSelf
- ============
- */
- bool idMat6::InverseFastSelf( void ) {
- #if 0
- // 810+6+36 = 852 multiplications
- // 1 division
- double det, invDet;
- // 2x2 sub-determinants required to calculate 6x6 determinant
- float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0];
- float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0];
- float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0];
- float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0];
- float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0];
- float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1];
- float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1];
- float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1];
- float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1];
- float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2];
- float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2];
- float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2];
- float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3];
- float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3];
- float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4];
- // 3x3 sub-determinants required to calculate 6x6 determinant
- float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01;
- float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01;
- float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01;
- float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01;
- float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02;
- float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02;
- float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02;
- float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03;
- float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03;
- float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04;
- float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12;
- float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12;
- float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12;
- float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13;
- float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13;
- float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14;
- float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23;
- float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23;
- float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24;
- float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34;
- // 4x4 sub-determinants required to calculate 6x6 determinant
- float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012;
- float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012;
- float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012;
- float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013;
- float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013;
- float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014;
- float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023;
- float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023;
- float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024;
- float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034;
- float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123;
- float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123;
- float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124;
- float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134;
- float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234;
- // 5x5 sub-determinants required to calculate 6x6 determinant
- float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123;
- float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123;
- float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124;
- float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134;
- float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234;
- float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234;
- // determinant of 6x6 matrix
- det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 -
- mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234;
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- // remaining 2x2 sub-determinants
- float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0];
- float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0];
- float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0];
- float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0];
- float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0];
- float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1];
- float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1];
- float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1];
- float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1];
- float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2];
- float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2];
- float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2];
- float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3];
- float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3];
- float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4];
- float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0];
- float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0];
- float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0];
- float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0];
- float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0];
- float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1];
- float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1];
- float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1];
- float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1];
- float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2];
- float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2];
- float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2];
- float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3];
- float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3];
- float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4];
- // remaining 3x3 sub-determinants
- float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01;
- float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01;
- float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01;
- float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01;
- float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02;
- float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02;
- float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02;
- float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03;
- float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03;
- float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04;
- float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12;
- float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12;
- float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12;
- float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13;
- float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13;
- float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14;
- float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23;
- float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23;
- float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24;
- float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34;
- float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01;
- float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01;
- float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01;
- float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01;
- float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02;
- float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02;
- float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02;
- float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03;
- float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03;
- float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04;
- float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12;
- float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12;
- float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12;
- float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13;
- float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13;
- float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14;
- float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23;
- float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23;
- float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24;
- float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34;
- float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01;
- float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01;
- float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01;
- float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01;
- float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02;
- float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02;
- float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02;
- float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03;
- float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03;
- float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04;
- float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12;
- float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12;
- float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12;
- float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13;
- float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13;
- float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14;
- float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23;
- float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23;
- float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24;
- float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34;
- // remaining 4x4 sub-determinants
- float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012;
- float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012;
- float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012;
- float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013;
- float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013;
- float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014;
- float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023;
- float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023;
- float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024;
- float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034;
- float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123;
- float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123;
- float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124;
- float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134;
- float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234;
- float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012;
- float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012;
- float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012;
- float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013;
- float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013;
- float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014;
- float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023;
- float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023;
- float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024;
- float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034;
- float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123;
- float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123;
- float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124;
- float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134;
- float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234;
- float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012;
- float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012;
- float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012;
- float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013;
- float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013;
- float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014;
- float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023;
- float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023;
- float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024;
- float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034;
- float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123;
- float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123;
- float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124;
- float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134;
- float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234;
- float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012;
- float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012;
- float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012;
- float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013;
- float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013;
- float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014;
- float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023;
- float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023;
- float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024;
- float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034;
- float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123;
- float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123;
- float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124;
- float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134;
- float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234;
- // remaining 5x5 sub-determinants
- float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123;
- float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123;
- float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124;
- float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134;
- float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234;
- float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234;
- float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123;
- float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123;
- float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124;
- float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134;
- float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234;
- float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234;
- float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123;
- float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123;
- float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124;
- float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134;
- float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234;
- float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234;
- float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123;
- float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123;
- float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124;
- float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134;
- float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234;
- float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234;
- float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123;
- float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123;
- float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124;
- float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134;
- float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234;
- float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234;
- mat[0][0] = det5_12345_12345 * invDet;
- mat[0][1] = -det5_02345_12345 * invDet;
- mat[0][2] = det5_01345_12345 * invDet;
- mat[0][3] = -det5_01245_12345 * invDet;
- mat[0][4] = det5_01235_12345 * invDet;
- mat[0][5] = -det5_01234_12345 * invDet;
- mat[1][0] = -det5_12345_02345 * invDet;
- mat[1][1] = det5_02345_02345 * invDet;
- mat[1][2] = -det5_01345_02345 * invDet;
- mat[1][3] = det5_01245_02345 * invDet;
- mat[1][4] = -det5_01235_02345 * invDet;
- mat[1][5] = det5_01234_02345 * invDet;
- mat[2][0] = det5_12345_01345 * invDet;
- mat[2][1] = -det5_02345_01345 * invDet;
- mat[2][2] = det5_01345_01345 * invDet;
- mat[2][3] = -det5_01245_01345 * invDet;
- mat[2][4] = det5_01235_01345 * invDet;
- mat[2][5] = -det5_01234_01345 * invDet;
- mat[3][0] = -det5_12345_01245 * invDet;
- mat[3][1] = det5_02345_01245 * invDet;
- mat[3][2] = -det5_01345_01245 * invDet;
- mat[3][3] = det5_01245_01245 * invDet;
- mat[3][4] = -det5_01235_01245 * invDet;
- mat[3][5] = det5_01234_01245 * invDet;
- mat[4][0] = det5_12345_01235 * invDet;
- mat[4][1] = -det5_02345_01235 * invDet;
- mat[4][2] = det5_01345_01235 * invDet;
- mat[4][3] = -det5_01245_01235 * invDet;
- mat[4][4] = det5_01235_01235 * invDet;
- mat[4][5] = -det5_01234_01235 * invDet;
- mat[5][0] = -det5_12345_01234 * invDet;
- mat[5][1] = det5_02345_01234 * invDet;
- mat[5][2] = -det5_01345_01234 * invDet;
- mat[5][3] = det5_01245_01234 * invDet;
- mat[5][4] = -det5_01235_01234 * invDet;
- mat[5][5] = det5_01234_01234 * invDet;
- return true;
- #elif 0
- // 6*40 = 240 multiplications
- // 6 divisions
- float *mat = reinterpret_cast<float *>(this);
- float s;
- double d, di;
- di = mat[0];
- s = di;
- mat[0] = d = 1.0f / di;
- mat[1] *= d;
- mat[2] *= d;
- mat[3] *= d;
- mat[4] *= d;
- mat[5] *= d;
- d = -d;
- mat[6] *= d;
- mat[12] *= d;
- mat[18] *= d;
- mat[24] *= d;
- mat[30] *= d;
- d = mat[6] * di;
- mat[7] += mat[1] * d;
- mat[8] += mat[2] * d;
- mat[9] += mat[3] * d;
- mat[10] += mat[4] * d;
- mat[11] += mat[5] * d;
- d = mat[12] * di;
- mat[13] += mat[1] * d;
- mat[14] += mat[2] * d;
- mat[15] += mat[3] * d;
- mat[16] += mat[4] * d;
- mat[17] += mat[5] * d;
- d = mat[18] * di;
- mat[19] += mat[1] * d;
- mat[20] += mat[2] * d;
- mat[21] += mat[3] * d;
- mat[22] += mat[4] * d;
- mat[23] += mat[5] * d;
- d = mat[24] * di;
- mat[25] += mat[1] * d;
- mat[26] += mat[2] * d;
- mat[27] += mat[3] * d;
- mat[28] += mat[4] * d;
- mat[29] += mat[5] * d;
- d = mat[30] * di;
- mat[31] += mat[1] * d;
- mat[32] += mat[2] * d;
- mat[33] += mat[3] * d;
- mat[34] += mat[4] * d;
- mat[35] += mat[5] * d;
- di = mat[7];
- s *= di;
- mat[7] = d = 1.0f / di;
- mat[6] *= d;
- mat[8] *= d;
- mat[9] *= d;
- mat[10] *= d;
- mat[11] *= d;
- d = -d;
- mat[1] *= d;
- mat[13] *= d;
- mat[19] *= d;
- mat[25] *= d;
- mat[31] *= d;
- d = mat[1] * di;
- mat[0] += mat[6] * d;
- mat[2] += mat[8] * d;
- mat[3] += mat[9] * d;
- mat[4] += mat[10] * d;
- mat[5] += mat[11] * d;
- d = mat[13] * di;
- mat[12] += mat[6] * d;
- mat[14] += mat[8] * d;
- mat[15] += mat[9] * d;
- mat[16] += mat[10] * d;
- mat[17] += mat[11] * d;
- d = mat[19] * di;
- mat[18] += mat[6] * d;
- mat[20] += mat[8] * d;
- mat[21] += mat[9] * d;
- mat[22] += mat[10] * d;
- mat[23] += mat[11] * d;
- d = mat[25] * di;
- mat[24] += mat[6] * d;
- mat[26] += mat[8] * d;
- mat[27] += mat[9] * d;
- mat[28] += mat[10] * d;
- mat[29] += mat[11] * d;
- d = mat[31] * di;
- mat[30] += mat[6] * d;
- mat[32] += mat[8] * d;
- mat[33] += mat[9] * d;
- mat[34] += mat[10] * d;
- mat[35] += mat[11] * d;
- di = mat[14];
- s *= di;
- mat[14] = d = 1.0f / di;
- mat[12] *= d;
- mat[13] *= d;
- mat[15] *= d;
- mat[16] *= d;
- mat[17] *= d;
- d = -d;
- mat[2] *= d;
- mat[8] *= d;
- mat[20] *= d;
- mat[26] *= d;
- mat[32] *= d;
- d = mat[2] * di;
- mat[0] += mat[12] * d;
- mat[1] += mat[13] * d;
- mat[3] += mat[15] * d;
- mat[4] += mat[16] * d;
- mat[5] += mat[17] * d;
- d = mat[8] * di;
- mat[6] += mat[12] * d;
- mat[7] += mat[13] * d;
- mat[9] += mat[15] * d;
- mat[10] += mat[16] * d;
- mat[11] += mat[17] * d;
- d = mat[20] * di;
- mat[18] += mat[12] * d;
- mat[19] += mat[13] * d;
- mat[21] += mat[15] * d;
- mat[22] += mat[16] * d;
- mat[23] += mat[17] * d;
- d = mat[26] * di;
- mat[24] += mat[12] * d;
- mat[25] += mat[13] * d;
- mat[27] += mat[15] * d;
- mat[28] += mat[16] * d;
- mat[29] += mat[17] * d;
- d = mat[32] * di;
- mat[30] += mat[12] * d;
- mat[31] += mat[13] * d;
- mat[33] += mat[15] * d;
- mat[34] += mat[16] * d;
- mat[35] += mat[17] * d;
- di = mat[21];
- s *= di;
- mat[21] = d = 1.0f / di;
- mat[18] *= d;
- mat[19] *= d;
- mat[20] *= d;
- mat[22] *= d;
- mat[23] *= d;
- d = -d;
- mat[3] *= d;
- mat[9] *= d;
- mat[15] *= d;
- mat[27] *= d;
- mat[33] *= d;
- d = mat[3] * di;
- mat[0] += mat[18] * d;
- mat[1] += mat[19] * d;
- mat[2] += mat[20] * d;
- mat[4] += mat[22] * d;
- mat[5] += mat[23] * d;
- d = mat[9] * di;
- mat[6] += mat[18] * d;
- mat[7] += mat[19] * d;
- mat[8] += mat[20] * d;
- mat[10] += mat[22] * d;
- mat[11] += mat[23] * d;
- d = mat[15] * di;
- mat[12] += mat[18] * d;
- mat[13] += mat[19] * d;
- mat[14] += mat[20] * d;
- mat[16] += mat[22] * d;
- mat[17] += mat[23] * d;
- d = mat[27] * di;
- mat[24] += mat[18] * d;
- mat[25] += mat[19] * d;
- mat[26] += mat[20] * d;
- mat[28] += mat[22] * d;
- mat[29] += mat[23] * d;
- d = mat[33] * di;
- mat[30] += mat[18] * d;
- mat[31] += mat[19] * d;
- mat[32] += mat[20] * d;
- mat[34] += mat[22] * d;
- mat[35] += mat[23] * d;
- di = mat[28];
- s *= di;
- mat[28] = d = 1.0f / di;
- mat[24] *= d;
- mat[25] *= d;
- mat[26] *= d;
- mat[27] *= d;
- mat[29] *= d;
- d = -d;
- mat[4] *= d;
- mat[10] *= d;
- mat[16] *= d;
- mat[22] *= d;
- mat[34] *= d;
- d = mat[4] * di;
- mat[0] += mat[24] * d;
- mat[1] += mat[25] * d;
- mat[2] += mat[26] * d;
- mat[3] += mat[27] * d;
- mat[5] += mat[29] * d;
- d = mat[10] * di;
- mat[6] += mat[24] * d;
- mat[7] += mat[25] * d;
- mat[8] += mat[26] * d;
- mat[9] += mat[27] * d;
- mat[11] += mat[29] * d;
- d = mat[16] * di;
- mat[12] += mat[24] * d;
- mat[13] += mat[25] * d;
- mat[14] += mat[26] * d;
- mat[15] += mat[27] * d;
- mat[17] += mat[29] * d;
- d = mat[22] * di;
- mat[18] += mat[24] * d;
- mat[19] += mat[25] * d;
- mat[20] += mat[26] * d;
- mat[21] += mat[27] * d;
- mat[23] += mat[29] * d;
- d = mat[34] * di;
- mat[30] += mat[24] * d;
- mat[31] += mat[25] * d;
- mat[32] += mat[26] * d;
- mat[33] += mat[27] * d;
- mat[35] += mat[29] * d;
- di = mat[35];
- s *= di;
- mat[35] = d = 1.0f / di;
- mat[30] *= d;
- mat[31] *= d;
- mat[32] *= d;
- mat[33] *= d;
- mat[34] *= d;
- d = -d;
- mat[5] *= d;
- mat[11] *= d;
- mat[17] *= d;
- mat[23] *= d;
- mat[29] *= d;
- d = mat[5] * di;
- mat[0] += mat[30] * d;
- mat[1] += mat[31] * d;
- mat[2] += mat[32] * d;
- mat[3] += mat[33] * d;
- mat[4] += mat[34] * d;
- d = mat[11] * di;
- mat[6] += mat[30] * d;
- mat[7] += mat[31] * d;
- mat[8] += mat[32] * d;
- mat[9] += mat[33] * d;
- mat[10] += mat[34] * d;
- d = mat[17] * di;
- mat[12] += mat[30] * d;
- mat[13] += mat[31] * d;
- mat[14] += mat[32] * d;
- mat[15] += mat[33] * d;
- mat[16] += mat[34] * d;
- d = mat[23] * di;
- mat[18] += mat[30] * d;
- mat[19] += mat[31] * d;
- mat[20] += mat[32] * d;
- mat[21] += mat[33] * d;
- mat[22] += mat[34] * d;
- d = mat[29] * di;
- mat[24] += mat[30] * d;
- mat[25] += mat[31] * d;
- mat[26] += mat[32] * d;
- mat[27] += mat[33] * d;
- mat[28] += mat[34] * d;
- return ( s != 0.0f && !FLOAT_IS_NAN( s ) );
- #else
- // 6*27+2*30 = 222 multiplications
- // 2*1 = 2 divisions
- idMat3 r0, r1, r2, r3;
- float c0, c1, c2, det, invDet;
- float *mat = reinterpret_cast<float *>(this);
- // r0 = m0.Inverse();
- c0 = mat[1*6+1] * mat[2*6+2] - mat[1*6+2] * mat[2*6+1];
- c1 = mat[1*6+2] * mat[2*6+0] - mat[1*6+0] * mat[2*6+2];
- c2 = mat[1*6+0] * mat[2*6+1] - mat[1*6+1] * mat[2*6+0];
- det = mat[0*6+0] * c0 + mat[0*6+1] * c1 + mat[0*6+2] * c2;
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- r0[0][0] = c0 * invDet;
- r0[0][1] = ( mat[0*6+2] * mat[2*6+1] - mat[0*6+1] * mat[2*6+2] ) * invDet;
- r0[0][2] = ( mat[0*6+1] * mat[1*6+2] - mat[0*6+2] * mat[1*6+1] ) * invDet;
- r0[1][0] = c1 * invDet;
- r0[1][1] = ( mat[0*6+0] * mat[2*6+2] - mat[0*6+2] * mat[2*6+0] ) * invDet;
- r0[1][2] = ( mat[0*6+2] * mat[1*6+0] - mat[0*6+0] * mat[1*6+2] ) * invDet;
- r0[2][0] = c2 * invDet;
- r0[2][1] = ( mat[0*6+1] * mat[2*6+0] - mat[0*6+0] * mat[2*6+1] ) * invDet;
- r0[2][2] = ( mat[0*6+0] * mat[1*6+1] - mat[0*6+1] * mat[1*6+0] ) * invDet;
- // r1 = r0 * m1;
- r1[0][0] = r0[0][0] * mat[0*6+3] + r0[0][1] * mat[1*6+3] + r0[0][2] * mat[2*6+3];
- r1[0][1] = r0[0][0] * mat[0*6+4] + r0[0][1] * mat[1*6+4] + r0[0][2] * mat[2*6+4];
- r1[0][2] = r0[0][0] * mat[0*6+5] + r0[0][1] * mat[1*6+5] + r0[0][2] * mat[2*6+5];
- r1[1][0] = r0[1][0] * mat[0*6+3] + r0[1][1] * mat[1*6+3] + r0[1][2] * mat[2*6+3];
- r1[1][1] = r0[1][0] * mat[0*6+4] + r0[1][1] * mat[1*6+4] + r0[1][2] * mat[2*6+4];
- r1[1][2] = r0[1][0] * mat[0*6+5] + r0[1][1] * mat[1*6+5] + r0[1][2] * mat[2*6+5];
- r1[2][0] = r0[2][0] * mat[0*6+3] + r0[2][1] * mat[1*6+3] + r0[2][2] * mat[2*6+3];
- r1[2][1] = r0[2][0] * mat[0*6+4] + r0[2][1] * mat[1*6+4] + r0[2][2] * mat[2*6+4];
- r1[2][2] = r0[2][0] * mat[0*6+5] + r0[2][1] * mat[1*6+5] + r0[2][2] * mat[2*6+5];
- // r2 = m2 * r1;
- r2[0][0] = mat[3*6+0] * r1[0][0] + mat[3*6+1] * r1[1][0] + mat[3*6+2] * r1[2][0];
- r2[0][1] = mat[3*6+0] * r1[0][1] + mat[3*6+1] * r1[1][1] + mat[3*6+2] * r1[2][1];
- r2[0][2] = mat[3*6+0] * r1[0][2] + mat[3*6+1] * r1[1][2] + mat[3*6+2] * r1[2][2];
- r2[1][0] = mat[4*6+0] * r1[0][0] + mat[4*6+1] * r1[1][0] + mat[4*6+2] * r1[2][0];
- r2[1][1] = mat[4*6+0] * r1[0][1] + mat[4*6+1] * r1[1][1] + mat[4*6+2] * r1[2][1];
- r2[1][2] = mat[4*6+0] * r1[0][2] + mat[4*6+1] * r1[1][2] + mat[4*6+2] * r1[2][2];
- r2[2][0] = mat[5*6+0] * r1[0][0] + mat[5*6+1] * r1[1][0] + mat[5*6+2] * r1[2][0];
- r2[2][1] = mat[5*6+0] * r1[0][1] + mat[5*6+1] * r1[1][1] + mat[5*6+2] * r1[2][1];
- r2[2][2] = mat[5*6+0] * r1[0][2] + mat[5*6+1] * r1[1][2] + mat[5*6+2] * r1[2][2];
- // r3 = r2 - m3;
- r3[0][0] = r2[0][0] - mat[3*6+3];
- r3[0][1] = r2[0][1] - mat[3*6+4];
- r3[0][2] = r2[0][2] - mat[3*6+5];
- r3[1][0] = r2[1][0] - mat[4*6+3];
- r3[1][1] = r2[1][1] - mat[4*6+4];
- r3[1][2] = r2[1][2] - mat[4*6+5];
- r3[2][0] = r2[2][0] - mat[5*6+3];
- r3[2][1] = r2[2][1] - mat[5*6+4];
- r3[2][2] = r2[2][2] - mat[5*6+5];
- // r3.InverseSelf();
- r2[0][0] = r3[1][1] * r3[2][2] - r3[1][2] * r3[2][1];
- r2[1][0] = r3[1][2] * r3[2][0] - r3[1][0] * r3[2][2];
- r2[2][0] = r3[1][0] * r3[2][1] - r3[1][1] * r3[2][0];
- det = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0];
- if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) {
- return false;
- }
- invDet = 1.0f / det;
- r2[0][1] = r3[0][2] * r3[2][1] - r3[0][1] * r3[2][2];
- r2[0][2] = r3[0][1] * r3[1][2] - r3[0][2] * r3[1][1];
- r2[1][1] = r3[0][0] * r3[2][2] - r3[0][2] * r3[2][0];
- r2[1][2] = r3[0][2] * r3[1][0] - r3[0][0] * r3[1][2];
- r2[2][1] = r3[0][1] * r3[2][0] - r3[0][0] * r3[2][1];
- r2[2][2] = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0];
- r3[0][0] = r2[0][0] * invDet;
- r3[0][1] = r2[0][1] * invDet;
- r3[0][2] = r2[0][2] * invDet;
- r3[1][0] = r2[1][0] * invDet;
- r3[1][1] = r2[1][1] * invDet;
- r3[1][2] = r2[1][2] * invDet;
- r3[2][0] = r2[2][0] * invDet;
- r3[2][1] = r2[2][1] * invDet;
- r3[2][2] = r2[2][2] * invDet;
- // r2 = m2 * r0;
- r2[0][0] = mat[3*6+0] * r0[0][0] + mat[3*6+1] * r0[1][0] + mat[3*6+2] * r0[2][0];
- r2[0][1] = mat[3*6+0] * r0[0][1] + mat[3*6+1] * r0[1][1] + mat[3*6+2] * r0[2][1];
- r2[0][2] = mat[3*6+0] * r0[0][2] + mat[3*6+1] * r0[1][2] + mat[3*6+2] * r0[2][2];
- r2[1][0] = mat[4*6+0] * r0[0][0] + mat[4*6+1] * r0[1][0] + mat[4*6+2] * r0[2][0];
- r2[1][1] = mat[4*6+0] * r0[0][1] + mat[4*6+1] * r0[1][1] + mat[4*6+2] * r0[2][1];
- r2[1][2] = mat[4*6+0] * r0[0][2] + mat[4*6+1] * r0[1][2] + mat[4*6+2] * r0[2][2];
- r2[2][0] = mat[5*6+0] * r0[0][0] + mat[5*6+1] * r0[1][0] + mat[5*6+2] * r0[2][0];
- r2[2][1] = mat[5*6+0] * r0[0][1] + mat[5*6+1] * r0[1][1] + mat[5*6+2] * r0[2][1];
- r2[2][2] = mat[5*6+0] * r0[0][2] + mat[5*6+1] * r0[1][2] + mat[5*6+2] * r0[2][2];
- // m2 = r3 * r2;
- mat[3*6+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0];
- mat[3*6+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1] + r3[0][2] * r2[2][1];
- mat[3*6+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2] + r3[0][2] * r2[2][2];
- mat[4*6+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0] + r3[1][2] * r2[2][0];
- mat[4*6+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1] + r3[1][2] * r2[2][1];
- mat[4*6+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2] + r3[1][2] * r2[2][2];
- mat[5*6+0] = r3[2][0] * r2[0][0] + r3[2][1] * r2[1][0] + r3[2][2] * r2[2][0];
- mat[5*6+1] = r3[2][0] * r2[0][1] + r3[2][1] * r2[1][1] + r3[2][2] * r2[2][1];
- mat[5*6+2] = r3[2][0] * r2[0][2] + r3[2][1] * r2[1][2] + r3[2][2] * r2[2][2];
- // m0 = r0 - r1 * m2;
- mat[0*6+0] = r0[0][0] - r1[0][0] * mat[3*6+0] - r1[0][1] * mat[4*6+0] - r1[0][2] * mat[5*6+0];
- mat[0*6+1] = r0[0][1] - r1[0][0] * mat[3*6+1] - r1[0][1] * mat[4*6+1] - r1[0][2] * mat[5*6+1];
- mat[0*6+2] = r0[0][2] - r1[0][0] * mat[3*6+2] - r1[0][1] * mat[4*6+2] - r1[0][2] * mat[5*6+2];
- mat[1*6+0] = r0[1][0] - r1[1][0] * mat[3*6+0] - r1[1][1] * mat[4*6+0] - r1[1][2] * mat[5*6+0];
- mat[1*6+1] = r0[1][1] - r1[1][0] * mat[3*6+1] - r1[1][1] * mat[4*6+1] - r1[1][2] * mat[5*6+1];
- mat[1*6+2] = r0[1][2] - r1[1][0] * mat[3*6+2] - r1[1][1] * mat[4*6+2] - r1[1][2] * mat[5*6+2];
- mat[2*6+0] = r0[2][0] - r1[2][0] * mat[3*6+0] - r1[2][1] * mat[4*6+0] - r1[2][2] * mat[5*6+0];
- mat[2*6+1] = r0[2][1] - r1[2][0] * mat[3*6+1] - r1[2][1] * mat[4*6+1] - r1[2][2] * mat[5*6+1];
- mat[2*6+2] = r0[2][2] - r1[2][0] * mat[3*6+2] - r1[2][1] * mat[4*6+2] - r1[2][2] * mat[5*6+2];
- // m1 = r1 * r3;
- mat[0*6+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0] + r1[0][2] * r3[2][0];
- mat[0*6+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1] + r1[0][2] * r3[2][1];
- mat[0*6+5] = r1[0][0] * r3[0][2] + r1[0][1] * r3[1][2] + r1[0][2] * r3[2][2];
- mat[1*6+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0] + r1[1][2] * r3[2][0];
- mat[1*6+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1] + r1[1][2] * r3[2][1];
- mat[1*6+5] = r1[1][0] * r3[0][2] + r1[1][1] * r3[1][2] + r1[1][2] * r3[2][2];
- mat[2*6+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0] + r1[2][2] * r3[2][0];
- mat[2*6+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1] + r1[2][2] * r3[2][1];
- mat[2*6+5] = r1[2][0] * r3[0][2] + r1[2][1] * r3[1][2] + r1[2][2] * r3[2][2];
- // m3 = -r3;
- mat[3*6+3] = -r3[0][0];
- mat[3*6+4] = -r3[0][1];
- mat[3*6+5] = -r3[0][2];
- mat[4*6+3] = -r3[1][0];
- mat[4*6+4] = -r3[1][1];
- mat[4*6+5] = -r3[1][2];
- mat[5*6+3] = -r3[2][0];
- mat[5*6+4] = -r3[2][1];
- mat[5*6+5] = -r3[2][2];
- return true;
- #endif
- }
- /*
- =============
- idMat6::ToString
- =============
- */
- const char *idMat6::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- //===============================================================
- //
- // idMatX
- //
- //===============================================================
- float idMatX::temp[MATX_MAX_TEMP+4];
- float * idMatX::tempPtr = (float *) ( ( (int) idMatX::temp + 15 ) & ~15 );
- int idMatX::tempIndex = 0;
- /*
- ============
- idMatX::ChangeSize
- ============
- */
- void idMatX::ChangeSize( int rows, int columns, bool makeZero ) {
- int alloc = ( rows * columns + 3 ) & ~3;
- if ( alloc > alloced && alloced != -1 ) {
- float *oldMat = mat;
- mat = (float *) Mem_Alloc16( alloc * sizeof( float ) );
- if ( makeZero ) {
- memset( mat, 0, alloc * sizeof( float ) );
- }
- alloced = alloc;
- if ( oldMat ) {
- int minRow = Min( numRows, rows );
- int minColumn = Min( numColumns, columns );
- for ( int i = 0; i < minRow; i++ ) {
- for ( int j = 0; j < minColumn; j++ ) {
- mat[ i * columns + j ] = oldMat[ i * numColumns + j ];
- }
- }
- Mem_Free16( oldMat );
- }
- } else {
- if ( columns < numColumns ) {
- int minRow = Min( numRows, rows );
- for ( int i = 0; i < minRow; i++ ) {
- for ( int j = 0; j < columns; j++ ) {
- mat[ i * columns + j ] = mat[ i * numColumns + j ];
- }
- }
- } else if ( columns > numColumns ) {
- for ( int i = Min( numRows, rows ) - 1; i >= 0; i-- ) {
- if ( makeZero ) {
- for ( int j = columns - 1; j >= numColumns; j-- ) {
- mat[ i * columns + j ] = 0.0f;
- }
- }
- for ( int j = numColumns - 1; j >= 0; j-- ) {
- mat[ i * columns + j ] = mat[ i * numColumns + j ];
- }
- }
- }
- if ( makeZero && rows > numRows ) {
- memset( mat + numRows * columns, 0, ( rows - numRows ) * columns * sizeof( float ) );
- }
- }
- numRows = rows;
- numColumns = columns;
- MATX_CLEAREND();
- }
- /*
- ============
- idMatX::RemoveRow
- ============
- */
- idMatX &idMatX::RemoveRow( int r ) {
- int i;
- assert( r < numRows );
- numRows--;
- for ( i = r; i < numRows; i++ ) {
- memcpy( &mat[i * numColumns], &mat[( i + 1 ) * numColumns], numColumns * sizeof( float ) );
- }
- return *this;
- }
- /*
- ============
- idMatX::RemoveColumn
- ============
- */
- idMatX &idMatX::RemoveColumn( int r ) {
- int i;
- assert( r < numColumns );
- numColumns--;
- for ( i = 0; i < numRows - 1; i++ ) {
- memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
- }
- memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
- return *this;
- }
- /*
- ============
- idMatX::RemoveRowColumn
- ============
- */
- idMatX &idMatX::RemoveRowColumn( int r ) {
- int i;
- assert( r < numRows && r < numColumns );
- numRows--;
- numColumns--;
- if ( r > 0 ) {
- for ( i = 0; i < r - 1; i++ ) {
- memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
- }
- memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
- }
- memcpy( &mat[r * numColumns], &mat[( r + 1 ) * ( numColumns + 1 )], r * sizeof( float ) );
- for ( i = r; i < numRows - 1; i++ ) {
- memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) );
- }
- memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) );
- return *this;
- }
- /*
- ============
- idMatX::IsOrthogonal
- returns true if (*this) * this->Transpose() == Identity
- ============
- */
- bool idMatX::IsOrthogonal( const float epsilon ) const {
- float *ptr1, *ptr2, sum;
- if ( !IsSquare() ) {
- return false;
- }
- ptr1 = mat;
- for ( int i = 0; i < numRows; i++ ) {
- for ( int j = 0; j < numColumns; j++ ) {
- ptr2 = mat + j;
- sum = ptr1[0] * ptr2[0] - (float) ( i == j );
- for ( int n = 1; n < numColumns; n++ ) {
- ptr2 += numColumns;
- sum += ptr1[n] * ptr2[0];
- }
- if ( idMath::Fabs( sum ) > epsilon ) {
- return false;
- }
- }
- ptr1 += numColumns;
- }
- return true;
- }
- /*
- ============
- idMatX::IsOrthonormal
- returns true if (*this) * this->Transpose() == Identity and the length of each column vector is 1
- ============
- */
- bool idMatX::IsOrthonormal( const float epsilon ) const {
- float *ptr1, *ptr2, sum;
- if ( !IsSquare() ) {
- return false;
- }
- ptr1 = mat;
- for ( int i = 0; i < numRows; i++ ) {
- for ( int j = 0; j < numColumns; j++ ) {
- ptr2 = mat + j;
- sum = ptr1[0] * ptr2[0] - (float) ( i == j );
- for ( int n = 1; n < numColumns; n++ ) {
- ptr2 += numColumns;
- sum += ptr1[n] * ptr2[0];
- }
- if ( idMath::Fabs( sum ) > epsilon ) {
- return false;
- }
- }
- ptr1 += numColumns;
- ptr2 = mat + i;
- sum = ptr2[0] * ptr2[0] - 1.0f;
- for ( i = 1; i < numRows; i++ ) {
- ptr2 += numColumns;
- sum += ptr2[i] * ptr2[i];
- }
- if ( idMath::Fabs( sum ) > epsilon ) {
- return false;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::IsPMatrix
- returns true if the matrix is a P-matrix
- A square matrix is a P-matrix if all its principal minors are positive.
- ============
- */
- bool idMatX::IsPMatrix( const float epsilon ) const {
- int i, j;
- float d;
- idMatX m;
- if ( !IsSquare() ) {
- return false;
- }
- if ( numRows <= 0 ) {
- return true;
- }
- if ( (*this)[0][0] <= epsilon ) {
- return false;
- }
- if ( numRows <= 1 ) {
- return true;
- }
- m.SetData( numRows - 1, numColumns - 1, MATX_ALLOCA( ( numRows - 1 ) * ( numColumns - 1 ) ) );
- for ( i = 1; i < numRows; i++ ) {
- for ( j = 1; j < numColumns; j++ ) {
- m[i-1][j-1] = (*this)[i][j];
- }
- }
- if ( !m.IsPMatrix( epsilon ) ) {
- return false;
- }
- for ( i = 1; i < numRows; i++ ) {
- d = (*this)[i][0] / (*this)[0][0];
- for ( j = 1; j < numColumns; j++ ) {
- m[i-1][j-1] = (*this)[i][j] - d * (*this)[0][j];
- }
- }
- if ( !m.IsPMatrix( epsilon ) ) {
- return false;
- }
- return true;
- }
- /*
- ============
- idMatX::IsZMatrix
- returns true if the matrix is a Z-matrix
- A square matrix M is a Z-matrix if M[i][j] <= 0 for all i != j.
- ============
- */
- bool idMatX::IsZMatrix( const float epsilon ) const {
- int i, j;
- if ( !IsSquare() ) {
- return false;
- }
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < numColumns; j++ ) {
- if ( (*this)[i][j] > epsilon && i != j ) {
- return false;
- }
- }
- }
- return true;
- }
- /*
- ============
- idMatX::IsPositiveDefinite
- returns true if the matrix is Positive Definite (PD)
- A square matrix M of order n is said to be PD if y'My > 0 for all vectors y of dimension n, y != 0.
- ============
- */
- bool idMatX::IsPositiveDefinite( const float epsilon ) const {
- int i, j, k;
- float d, s;
- idMatX m;
- // the matrix must be square
- if ( !IsSquare() ) {
- return false;
- }
- // copy matrix
- m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
- m = *this;
- // add transpose
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < numColumns; j++ ) {
- m[i][j] += (*this)[j][i];
- }
- }
- // test Positive Definiteness with Gaussian pivot steps
- for ( i = 0; i < numRows; i++ ) {
- for ( j = i; j < numColumns; j++ ) {
- if ( m[j][j] <= epsilon ) {
- return false;
- }
- }
- d = 1.0f / m[i][i];
- for ( j = i + 1; j < numColumns; j++ ) {
- s = d * m[j][i];
- m[j][i] = 0.0f;
- for ( k = i + 1; k < numRows; k++ ) {
- m[j][k] -= s * m[i][k];
- }
- }
- }
- return true;
- }
- /*
- ============
- idMatX::IsSymmetricPositiveDefinite
- returns true if the matrix is Symmetric Positive Definite (PD)
- ============
- */
- bool idMatX::IsSymmetricPositiveDefinite( const float epsilon ) const {
- idMatX m;
- // the matrix must be symmetric
- if ( !IsSymmetric( epsilon ) ) {
- return false;
- }
- // copy matrix
- m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
- m = *this;
- // being able to obtain Cholesky factors is both a necessary and sufficient condition for positive definiteness
- return m.Cholesky_Factor();
- }
- /*
- ============
- idMatX::IsPositiveSemiDefinite
- returns true if the matrix is Positive Semi Definite (PSD)
- A square matrix M of order n is said to be PSD if y'My >= 0 for all vectors y of dimension n, y != 0.
- ============
- */
- bool idMatX::IsPositiveSemiDefinite( const float epsilon ) const {
- int i, j, k;
- float d, s;
- idMatX m;
- // the matrix must be square
- if ( !IsSquare() ) {
- return false;
- }
- // copy original matrix
- m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
- m = *this;
- // add transpose
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < numColumns; j++ ) {
- m[i][j] += (*this)[j][i];
- }
- }
- // test Positive Semi Definiteness with Gaussian pivot steps
- for ( i = 0; i < numRows; i++ ) {
- for ( j = i; j < numColumns; j++ ) {
- if ( m[j][j] < -epsilon ) {
- return false;
- }
- if ( m[j][j] > epsilon ) {
- continue;
- }
- for ( k = 0; k < numRows; k++ ) {
- if ( idMath::Fabs( m[k][j] ) > epsilon ) {
- return false;
- }
- if ( idMath::Fabs( m[j][k] ) > epsilon ) {
- return false;
- }
- }
- }
- if ( m[i][i] <= epsilon ) {
- continue;
- }
- d = 1.0f / m[i][i];
- for ( j = i + 1; j < numColumns; j++ ) {
- s = d * m[j][i];
- m[j][i] = 0.0f;
- for ( k = i + 1; k < numRows; k++ ) {
- m[j][k] -= s * m[i][k];
- }
- }
- }
- return true;
- }
- /*
- ============
- idMatX::IsSymmetricPositiveSemiDefinite
- returns true if the matrix is Symmetric Positive Semi Definite (PSD)
- ============
- */
- bool idMatX::IsSymmetricPositiveSemiDefinite( const float epsilon ) const {
- // the matrix must be symmetric
- if ( !IsSymmetric( epsilon ) ) {
- return false;
- }
- return IsPositiveSemiDefinite( epsilon );
- }
- /*
- ============
- idMatX::LowerTriangularInverse
- in-place inversion of the lower triangular matrix
- ============
- */
- bool idMatX::LowerTriangularInverse( void ) {
- int i, j, k;
- double d, sum;
- for ( i = 0; i < numRows; i++ ) {
- d = (*this)[i][i];
- if ( d == 0.0f ) {
- return false;
- }
- (*this)[i][i] = d = 1.0f / d;
- for ( j = 0; j < i; j++ ) {
- sum = 0.0f;
- for ( k = j; k < i; k++ ) {
- sum -= (*this)[i][k] * (*this)[k][j];
- }
- (*this)[i][j] = sum * d;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::UpperTriangularInverse
- in-place inversion of the upper triangular matrix
- ============
- */
- bool idMatX::UpperTriangularInverse( void ) {
- int i, j, k;
- double d, sum;
- for ( i = numRows-1; i >= 0; i-- ) {
- d = (*this)[i][i];
- if ( d == 0.0f ) {
- return false;
- }
- (*this)[i][i] = d = 1.0f / d;
- for ( j = numRows-1; j > i; j-- ) {
- sum = 0.0f;
- for ( k = j; k > i; k-- ) {
- sum -= (*this)[i][k] * (*this)[k][j];
- }
- (*this)[i][j] = sum * d;
- }
- }
- return true;
- }
- /*
- =============
- idMatX::ToString
- =============
- */
- const char *idMatX::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- /*
- ============
- idMatX::Update_RankOne
- Updates the matrix to obtain the matrix: A + alpha * v * w'
- ============
- */
- void idMatX::Update_RankOne( const idVecX &v, const idVecX &w, float alpha ) {
- int i, j;
- float s;
- assert( v.GetSize() >= numRows );
- assert( w.GetSize() >= numColumns );
- for ( i = 0; i < numRows; i++ ) {
- s = alpha * v[i];
- for ( j = 0; j < numColumns; j++ ) {
- (*this)[i][j] += s * w[j];
- }
- }
- }
- /*
- ============
- idMatX::Update_RankOneSymmetric
- Updates the matrix to obtain the matrix: A + alpha * v * v'
- ============
- */
- void idMatX::Update_RankOneSymmetric( const idVecX &v, float alpha ) {
- int i, j;
- float s;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- for ( i = 0; i < numRows; i++ ) {
- s = alpha * v[i];
- for ( j = 0; j < numColumns; j++ ) {
- (*this)[i][j] += s * v[j];
- }
- }
- }
- /*
- ============
- idMatX::Update_RowColumn
- Updates the matrix to obtain the matrix:
- [ 0 a 0 ]
- A + [ d b e ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
- ============
- */
- void idMatX::Update_RowColumn( const idVecX &v, const idVecX &w, int r ) {
- int i;
- assert( w[r] == 0.0f );
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- for ( i = 0; i < numRows; i++ ) {
- (*this)[i][r] += v[i];
- }
- for ( i = 0; i < numColumns; i++ ) {
- (*this)[r][i] += w[i];
- }
- }
- /*
- ============
- idMatX::Update_RowColumnSymmetric
- Updates the matrix to obtain the matrix:
- [ 0 a 0 ]
- A + [ a b c ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
- ============
- */
- void idMatX::Update_RowColumnSymmetric( const idVecX &v, int r ) {
- int i;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- for ( i = 0; i < r; i++ ) {
- (*this)[i][r] += v[i];
- (*this)[r][i] += v[i];
- }
- (*this)[r][r] += v[r];
- for ( i = r+1; i < numRows; i++ ) {
- (*this)[i][r] += v[i];
- (*this)[r][i] += v[i];
- }
- }
- /*
- ============
- idMatX::Update_Increment
- Updates the matrix to obtain the matrix:
- [ A a ]
- [ c b ]
- where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1]], w[numColumns] = 0
- ============
- */
- void idMatX::Update_Increment( const idVecX &v, const idVecX &w ) {
- int i;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- assert( w.GetSize() >= numColumns+1 );
- ChangeSize( numRows+1, numColumns+1, false );
- for ( i = 0; i < numRows; i++ ) {
- (*this)[i][numColumns-1] = v[i];
- }
- for ( i = 0; i < numColumns-1; i++ ) {
- (*this)[numRows-1][i] = w[i];
- }
- }
- /*
- ============
- idMatX::Update_IncrementSymmetric
- Updates the matrix to obtain the matrix:
- [ A a ]
- [ a b ]
- where: a = v[0,numRows-1], b = v[numRows]
- ============
- */
- void idMatX::Update_IncrementSymmetric( const idVecX &v ) {
- int i;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- ChangeSize( numRows+1, numColumns+1, false );
- for ( i = 0; i < numRows-1; i++ ) {
- (*this)[i][numColumns-1] = v[i];
- }
- for ( i = 0; i < numColumns; i++ ) {
- (*this)[numRows-1][i] = v[i];
- }
- }
- /*
- ============
- idMatX::Update_Decrement
- Updates the matrix to obtain a matrix with row r and column r removed.
- ============
- */
- void idMatX::Update_Decrement( int r ) {
- RemoveRowColumn( r );
- }
- /*
- ============
- idMatX::Inverse_GaussJordan
- in-place inversion using Gauss-Jordan elimination
- ============
- */
- bool idMatX::Inverse_GaussJordan( void ) {
- int i, j, k, r, c;
- float d, max;
- assert( numRows == numColumns );
- int *columnIndex = (int *) _alloca16( numRows * sizeof( int ) );
- int *rowIndex = (int *) _alloca16( numRows * sizeof( int ) );
- bool *pivot = (bool *) _alloca16( numRows * sizeof( bool ) );
- memset( pivot, 0, numRows * sizeof( bool ) );
- // elimination with full pivoting
- for ( i = 0; i < numRows; i++ ) {
- // search the whole matrix except for pivoted rows for the maximum absolute value
- max = 0.0f;
- r = c = 0;
- for ( j = 0; j < numRows; j++ ) {
- if ( !pivot[j] ) {
- for ( k = 0; k < numRows; k++ ) {
- if ( !pivot[k] ) {
- d = idMath::Fabs( (*this)[j][k] );
- if ( d > max ) {
- max = d;
- r = j;
- c = k;
- }
- }
- }
- }
- }
- if ( max == 0.0f ) {
- // matrix is not invertible
- return false;
- }
- pivot[c] = true;
- // swap rows such that entry (c,c) has the pivot entry
- if ( r != c ) {
- SwapRows( r, c );
- }
- // keep track of the row permutation
- rowIndex[i] = r;
- columnIndex[i] = c;
- // scale the row to make the pivot entry equal to 1
- d = 1.0f / (*this)[c][c];
- (*this)[c][c] = 1.0f;
- for ( k = 0; k < numRows; k++ ) {
- (*this)[c][k] *= d;
- }
- // zero out the pivot column entries in the other rows
- for ( j = 0; j < numRows; j++ ) {
- if ( j != c ) {
- d = (*this)[j][c];
- (*this)[j][c] = 0.0f;
- for ( k = 0; k < numRows; k++ ) {
- (*this)[j][k] -= (*this)[c][k] * d;
- }
- }
- }
- }
- // reorder rows to store the inverse of the original matrix
- for ( j = numRows - 1; j >= 0; j-- ) {
- if ( rowIndex[j] != columnIndex[j] ) {
- for ( k = 0; k < numRows; k++ ) {
- d = (*this)[k][rowIndex[j]];
- (*this)[k][rowIndex[j]] = (*this)[k][columnIndex[j]];
- (*this)[k][columnIndex[j]] = d;
- }
- }
- }
- return true;
- }
- /*
- ============
- idMatX::Inverse_UpdateRankOne
- Updates the in-place inverse using the Sherman-Morrison formula to obtain the inverse for the matrix: A + alpha * v * w'
- ============
- */
- bool idMatX::Inverse_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha ) {
- int i, j;
- float beta, s;
- idVecX y, z;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- y.SetData( numRows, VECX_ALLOCA( numRows ) );
- z.SetData( numRows, VECX_ALLOCA( numRows ) );
- Multiply( y, v );
- TransposeMultiply( z, w );
- beta = 1.0f + ( w * y );
- if ( beta == 0.0f ) {
- return false;
- }
- alpha /= beta;
- for ( i = 0; i < numRows; i++ ) {
- s = y[i] * alpha;
- for ( j = 0; j < numColumns; j++ ) {
- (*this)[i][j] -= s * z[j];
- }
- }
- return true;
- }
- /*
- ============
- idMatX::Inverse_UpdateRowColumn
- Updates the in-place inverse to obtain the inverse for the matrix:
- [ 0 a 0 ]
- A + [ d b e ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
- ============
- */
- bool idMatX::Inverse_UpdateRowColumn( const idVecX &v, const idVecX &w, int r ) {
- idVecX s;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- assert( r >= 0 && r < numRows && r < numColumns );
- assert( w[r] == 0.0f );
- s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
- s.Zero();
- s[r] = 1.0f;
- if ( !Inverse_UpdateRankOne( v, s, 1.0f ) ) {
- return false;
- }
- if ( !Inverse_UpdateRankOne( s, w, 1.0f ) ) {
- return false;
- }
- return true;
- }
- /*
- ============
- idMatX::Inverse_UpdateIncrement
- Updates the in-place inverse to obtain the inverse for the matrix:
- [ A a ]
- [ c b ]
- where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
- ============
- */
- bool idMatX::Inverse_UpdateIncrement( const idVecX &v, const idVecX &w ) {
- idVecX v2;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- assert( w.GetSize() >= numColumns+1 );
- ChangeSize( numRows+1, numColumns+1, true );
- (*this)[numRows-1][numRows-1] = 1.0f;
- v2.SetData( numRows, VECX_ALLOCA( numRows ) );
- v2 = v;
- v2[numRows-1] -= 1.0f;
- return Inverse_UpdateRowColumn( v2, w, numRows-1 );
- }
- /*
- ============
- idMatX::Inverse_UpdateDecrement
- Updates the in-place inverse to obtain the inverse of the matrix with row r and column r removed.
- v and w should store the column and row of the original matrix respectively.
- ============
- */
- bool idMatX::Inverse_UpdateDecrement( const idVecX &v, const idVecX &w, int r ) {
- idVecX v1, w1;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( w.GetSize() >= numColumns );
- assert( r >= 0 && r < numRows && r < numColumns );
- v1.SetData( numRows, VECX_ALLOCA( numRows ) );
- w1.SetData( numRows, VECX_ALLOCA( numRows ) );
- // update the row and column to identity
- v1 = -v;
- w1 = -w;
- v1[r] += 1.0f;
- w1[r] = 0.0f;
- if ( !Inverse_UpdateRowColumn( v1, w1, r ) ) {
- return false;
- }
- // physically remove the row and column
- Update_Decrement( r );
- return true;
- }
- /*
- ============
- idMatX::Inverse_Solve
- Solve Ax = b with A inverted
- ============
- */
- void idMatX::Inverse_Solve( idVecX &x, const idVecX &b ) const {
- Multiply( x, b );
- }
- /*
- ============
- idMatX::LU_Factor
- in-place factorization: LU
- L is a triangular matrix stored in the lower triangle.
- L has ones on the diagonal that are not stored.
- U is a triangular matrix stored in the upper triangle.
- If index != NULL partial pivoting is used for numerical stability.
- If index != NULL it must point to an array of numRow integers and is used to keep track of the row permutation.
- If det != NULL the determinant of the matrix is calculated and stored.
- ============
- */
- bool idMatX::LU_Factor( int *index, float *det ) {
- int i, j, k, newi, min;
- double s, t, d, w;
- // if partial pivoting should be used
- if ( index ) {
- for ( i = 0; i < numRows; i++ ) {
- index[i] = i;
- }
- }
- w = 1.0f;
- min = Min( numRows, numColumns );
- for ( i = 0; i < min; i++ ) {
- newi = i;
- s = idMath::Fabs( (*this)[i][i] );
- if ( index ) {
- // find the largest absolute pivot
- for ( j = i + 1; j < numRows; j++ ) {
- t = idMath::Fabs( (*this)[j][i] );
- if ( t > s ) {
- newi = j;
- s = t;
- }
- }
- }
- if ( s == 0.0f ) {
- return false;
- }
- if ( newi != i ) {
- w = -w;
- // swap index elements
- k = index[i];
- index[i] = index[newi];
- index[newi] = k;
- // swap rows
- for ( j = 0; j < numColumns; j++ ) {
- t = (*this)[newi][j];
- (*this)[newi][j] = (*this)[i][j];
- (*this)[i][j] = t;
- }
- }
- if ( i < numRows ) {
- d = 1.0f / (*this)[i][i];
- for ( j = i + 1; j < numRows; j++ ) {
- (*this)[j][i] *= d;
- }
- }
- if ( i < min-1 ) {
- for ( j = i + 1; j < numRows; j++ ) {
- d = (*this)[j][i];
- for ( k = i + 1; k < numColumns; k++ ) {
- (*this)[j][k] -= d * (*this)[i][k];
- }
- }
- }
- }
- if ( det ) {
- for ( i = 0; i < numRows; i++ ) {
- w *= (*this)[i][i];
- }
- *det = w;
- }
- return true;
- }
- /*
- ============
- idMatX::LU_UpdateRankOne
- Updates the in-place LU factorization to obtain the factors for the matrix: LU + alpha * v * w'
- ============
- */
- bool idMatX::LU_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha, int *index ) {
- int i, j, max;
- float *y, *z;
- double diag, beta, p0, p1, d;
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
- z = (float *) _alloca16( w.GetSize() * sizeof( float ) );
- if ( index != NULL ) {
- for ( i = 0; i < numRows; i++ ) {
- y[i] = alpha * v[index[i]];
- }
- } else {
- for ( i = 0; i < numRows; i++ ) {
- y[i] = alpha * v[i];
- }
- }
- memcpy( z, w.ToFloatPtr(), w.GetSize() * sizeof( float ) );
- max = Min( numRows, numColumns );
- for ( i = 0; i < max; i++ ) {
- diag = (*this)[i][i];
- p0 = y[i];
- p1 = z[i];
- diag += p0 * p1;
- if ( diag == 0.0f ) {
- return false;
- }
- beta = p1 / diag;
- (*this)[i][i] = diag;
- for ( j = i+1; j < numColumns; j++ ) {
- d = (*this)[i][j];
- d += p0 * z[j];
- z[j] -= beta * d;
- (*this)[i][j] = d;
- }
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i];
- y[j] -= p0 * d;
- d += beta * y[j];
- (*this)[j][i] = d;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::LU_UpdateRowColumn
- Updates the in-place LU factorization to obtain the factors for the matrix:
- [ 0 a 0 ]
- LU + [ d b e ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
- ============
- */
- bool idMatX::LU_UpdateRowColumn( const idVecX &v, const idVecX &w, int r, int *index ) {
- #if 0
- idVecX s;
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- assert( r >= 0 && r < numRows && r < numColumns );
- assert( w[r] == 0.0f );
- s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
- s.Zero();
- s[r] = 1.0f;
- if ( !LU_UpdateRankOne( v, s, 1.0f, index ) ) {
- return false;
- }
- if ( !LU_UpdateRankOne( s, w, 1.0f, index ) ) {
- return false;
- }
- return true;
- #else
- int i, j, min, max, rp;
- float *y0, *y1, *z0, *z1;
- double diag, beta0, beta1, p0, p1, q0, q1, d;
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- assert( r >= 0 && r < numColumns && r < numRows );
- assert( w[r] == 0.0f );
- y0 = (float *) _alloca16( v.GetSize() * sizeof( float ) );
- z0 = (float *) _alloca16( w.GetSize() * sizeof( float ) );
- y1 = (float *) _alloca16( v.GetSize() * sizeof( float ) );
- z1 = (float *) _alloca16( w.GetSize() * sizeof( float ) );
- if ( index != NULL ) {
- for ( i = 0; i < numRows; i++ ) {
- y0[i] = v[index[i]];
- }
- rp = r;
- for ( i = 0; i < numRows; i++ ) {
- if ( index[i] == r ) {
- rp = i;
- break;
- }
- }
- } else {
- memcpy( y0, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
- rp = r;
- }
- memset( y1, 0, v.GetSize() * sizeof( float ) );
- y1[rp] = 1.0f;
- memset( z0, 0, w.GetSize() * sizeof( float ) );
- z0[r] = 1.0f;
- memcpy( z1, w.ToFloatPtr(), w.GetSize() * sizeof( float ) );
- // update the beginning of the to be updated row and column
- min = Min( r, rp );
- for ( i = 0; i < min; i++ ) {
- p0 = y0[i];
- beta1 = z1[i] / (*this)[i][i];
- (*this)[i][r] += p0;
- for ( j = i+1; j < numColumns; j++ ) {
- z1[j] -= beta1 * (*this)[i][j];
- }
- for ( j = i+1; j < numRows; j++ ) {
- y0[j] -= p0 * (*this)[j][i];
- }
- (*this)[rp][i] += beta1;
- }
- // update the lower right corner starting at r,r
- max = Min( numRows, numColumns );
- for ( i = min; i < max; i++ ) {
- diag = (*this)[i][i];
- p0 = y0[i];
- p1 = z0[i];
- diag += p0 * p1;
- if ( diag == 0.0f ) {
- return false;
- }
- beta0 = p1 / diag;
- q0 = y1[i];
- q1 = z1[i];
- diag += q0 * q1;
- if ( diag == 0.0f ) {
- return false;
- }
- beta1 = q1 / diag;
- (*this)[i][i] = diag;
- for ( j = i+1; j < numColumns; j++ ) {
- d = (*this)[i][j];
- d += p0 * z0[j];
- z0[j] -= beta0 * d;
- d += q0 * z1[j];
- z1[j] -= beta1 * d;
- (*this)[i][j] = d;
- }
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i];
- y0[j] -= p0 * d;
- d += beta0 * y0[j];
- y1[j] -= q0 * d;
- d += beta1 * y1[j];
- (*this)[j][i] = d;
- }
- }
- return true;
- #endif
- }
- /*
- ============
- idMatX::LU_UpdateIncrement
- Updates the in-place LU factorization to obtain the factors for the matrix:
- [ A a ]
- [ c b ]
- where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
- ============
- */
- bool idMatX::LU_UpdateIncrement( const idVecX &v, const idVecX &w, int *index ) {
- int i, j;
- float sum;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- assert( w.GetSize() >= numColumns+1 );
- ChangeSize( numRows+1, numColumns+1, true );
- // add row to L
- for ( i = 0; i < numRows - 1; i++ ) {
- sum = w[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[numRows - 1][j] * (*this)[j][i];
- }
- (*this)[numRows - 1 ][i] = sum / (*this)[i][i];
- }
- // add row to the permutation index
- if ( index != NULL ) {
- index[numRows - 1] = numRows - 1;
- }
- // add column to U
- for ( i = 0; i < numRows; i++ ) {
- if ( index != NULL ) {
- sum = v[index[i]];
- } else {
- sum = v[i];
- }
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * (*this)[j][numRows - 1];
- }
- (*this)[i][numRows - 1] = sum;
- }
- return true;
- }
- /*
- ============
- idMatX::LU_UpdateDecrement
- Updates the in-place LU factorization to obtain the factors for the matrix with row r and column r removed.
- v and w should store the column and row of the original matrix respectively.
- If index != NULL then u should store row index[r] of the original matrix. If index == NULL then u = w.
- ============
- */
- bool idMatX::LU_UpdateDecrement( const idVecX &v, const idVecX &w, const idVecX &u, int r, int *index ) {
- int i, p;
- idVecX v1, w1;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- assert( r >= 0 && r < numRows && r < numColumns );
- v1.SetData( numRows, VECX_ALLOCA( numRows ) );
- w1.SetData( numRows, VECX_ALLOCA( numRows ) );
- if ( index != NULL ) {
- // find the pivot row
- for ( p = i = 0; i < numRows; i++ ) {
- if ( index[i] == r ) {
- p = i;
- break;
- }
- }
- // update the row and column to identity
- v1 = -v;
- w1 = -u;
- if ( p != r ) {
- idSwap( v1[index[r]], v1[index[p]] );
- idSwap( index[r], index[p] );
- }
- v1[r] += 1.0f;
- w1[r] = 0.0f;
- if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) {
- return false;
- }
- if ( p != r ) {
- if ( idMath::Fabs( u[p] ) < 1e-4f ) {
- // NOTE: an additional row interchange is required for numerical stability
- }
- // move row index[r] of the original matrix to row index[p] of the original matrix
- v1.Zero();
- v1[index[p]] = 1.0f;
- w1 = u - w;
- if ( !LU_UpdateRankOne( v1, w1, 1.0f, index ) ) {
- return false;
- }
- }
- // remove the row from the permutation index
- for ( i = r; i < numRows - 1; i++ ) {
- index[i] = index[i+1];
- }
- for ( i = 0; i < numRows - 1; i++ ) {
- if ( index[i] > r ) {
- index[i]--;
- }
- }
- } else {
- v1 = -v;
- w1 = -w;
- v1[r] += 1.0f;
- w1[r] = 0.0f;
- if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) {
- return false;
- }
- }
- // physically remove the row and column
- Update_Decrement( r );
- return true;
- }
- /*
- ============
- idMatX::LU_Solve
- Solve Ax = b with A factored in-place as: LU
- ============
- */
- void idMatX::LU_Solve( idVecX &x, const idVecX &b, const int *index ) const {
- int i, j;
- double sum;
- assert( x.GetSize() == numColumns && b.GetSize() == numRows );
- // solve L
- for ( i = 0; i < numRows; i++ ) {
- if ( index != NULL ) {
- sum = b[index[i]];
- } else {
- sum = b[i];
- }
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum;
- }
- // solve U
- for ( i = numRows - 1; i >= 0; i-- ) {
- sum = x[i];
- for ( j = i + 1; j < numRows; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum / (*this)[i][i];
- }
- }
- /*
- ============
- idMatX::LU_Inverse
- Calculates the inverse of the matrix which is factored in-place as LU
- ============
- */
- void idMatX::LU_Inverse( idMatX &inv, const int *index ) const {
- int i, j;
- idVecX x, b;
- assert( numRows == numColumns );
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- inv.SetSize( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- LU_Solve( x, b, index );
- for ( j = 0; j < numRows; j++ ) {
- inv[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- }
- /*
- ============
- idMatX::LU_UnpackFactors
- Unpacks the in-place LU factorization.
- ============
- */
- void idMatX::LU_UnpackFactors( idMatX &L, idMatX &U ) const {
- int i, j;
- L.Zero( numRows, numColumns );
- U.Zero( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < i; j++ ) {
- L[i][j] = (*this)[i][j];
- }
- L[i][i] = 1.0f;
- for ( j = i; j < numColumns; j++ ) {
- U[i][j] = (*this)[i][j];
- }
- }
- }
- /*
- ============
- idMatX::LU_MultiplyFactors
- Multiplies the factors of the in-place LU factorization to form the original matrix.
- ============
- */
- void idMatX::LU_MultiplyFactors( idMatX &m, const int *index ) const {
- int r, rp, i, j;
- double sum;
- m.SetSize( numRows, numColumns );
- for ( r = 0; r < numRows; r++ ) {
- if ( index != NULL ) {
- rp = index[r];
- } else {
- rp = r;
- }
- // calculate row of matrix
- for ( i = 0; i < numColumns; i++ ) {
- if ( i >= r ) {
- sum = (*this)[r][i];
- } else {
- sum = 0.0f;
- }
- for ( j = 0; j <= i && j < r; j++ ) {
- sum += (*this)[r][j] * (*this)[j][i];
- }
- m[rp][i] = sum;
- }
- }
- }
- /*
- ============
- idMatX::QR_Factor
- in-place factorization: QR
- Q is an orthogonal matrix represented as a product of Householder matrices stored in the lower triangle and c.
- R is a triangular matrix stored in the upper triangle except for the diagonal elements which are stored in d.
- The initial matrix has to be square.
- ============
- */
- bool idMatX::QR_Factor( idVecX &c, idVecX &d ) {
- int i, j, k;
- double scale, s, t, sum;
- bool singular = false;
- assert( numRows == numColumns );
- assert( c.GetSize() >= numRows && d.GetSize() >= numRows );
- for ( k = 0; k < numRows-1; k++ ) {
- scale = 0.0f;
- for ( i = k; i < numRows; i++ ) {
- s = idMath::Fabs( (*this)[i][k] );
- if ( s > scale ) {
- scale = s;
- }
- }
- if ( scale == 0.0f ) {
- singular = true;
- c[k] = d[k] = 0.0f;
- } else {
- s = 1.0f / scale;
- for ( i = k; i < numRows; i++ ) {
- (*this)[i][k] *= s;
- }
- sum = 0.0f;
- for ( i = k; i < numRows; i++ ) {
- s = (*this)[i][k];
- sum += s * s;
- }
- s = idMath::Sqrt( sum );
- if ( (*this)[k][k] < 0.0f ) {
- s = -s;
- }
- (*this)[k][k] += s;
- c[k] = s * (*this)[k][k];
- d[k] = -scale * s;
- for ( j = k+1; j < numRows; j++ ) {
- sum = 0.0f;
- for ( i = k; i < numRows; i++ ) {
- sum += (*this)[i][k] * (*this)[i][j];
- }
- t = sum / c[k];
- for ( i = k; i < numRows; i++ ) {
- (*this)[i][j] -= t * (*this)[i][k];
- }
- }
- }
- }
- d[numRows-1] = (*this)[ (numRows-1) ][ (numRows-1) ];
- if ( d[numRows-1] == 0.0f ) {
- singular = true;
- }
- return !singular;
- }
- /*
- ============
- idMatX::QR_Rotate
- Performs a Jacobi rotation on the rows i and i+1 of the unpacked QR factors.
- ============
- */
- void idMatX::QR_Rotate( idMatX &R, int i, float a, float b ) {
- int j;
- float f, c, s, w, y;
- if ( a == 0.0f ) {
- c = 0.0f;
- s = ( b >= 0.0f ) ? 1.0f : -1.0f;
- } else if ( idMath::Fabs( a ) > idMath::Fabs( b ) ) {
- f = b / a;
- c = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) );
- if ( a < 0.0f ) {
- c = -c;
- }
- s = f * c;
- } else {
- f = a / b;
- s = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) );
- if ( b < 0.0f ) {
- s = -s;
- }
- c = f * s;
- }
- for ( j = i; j < numRows; j++ ) {
- y = R[i][j];
- w = R[i+1][j];
- R[i][j] = c * y - s * w;
- R[i+1][j] = s * y + c * w;
- }
- for ( j = 0; j < numRows; j++ ) {
- y = (*this)[j][i];
- w = (*this)[j][i+1];
- (*this)[j][i] = c * y - s * w;
- (*this)[j][i+1] = s * y + c * w;
- }
- }
- /*
- ============
- idMatX::QR_UpdateRankOne
- Updates the unpacked QR factorization to obtain the factors for the matrix: QR + alpha * v * w'
- ============
- */
- bool idMatX::QR_UpdateRankOne( idMatX &R, const idVecX &v, const idVecX &w, float alpha ) {
- int i, k;
- float f;
- idVecX u;
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- u.SetData( v.GetSize(), VECX_ALLOCA( v.GetSize() ) );
- TransposeMultiply( u, v );
- u *= alpha;
- for ( k = v.GetSize()-1; k > 0; k-- ) {
- if ( u[k] != 0.0f ) {
- break;
- }
- }
- for ( i = k-1; i >= 0; i-- ) {
- QR_Rotate( R, i, u[i], -u[i+1] );
- if ( u[i] == 0.0f ) {
- u[i] = idMath::Fabs( u[i+1] );
- } else if ( idMath::Fabs( u[i] ) > idMath::Fabs( u[i+1] ) ) {
- f = u[i+1] / u[i];
- u[i] = idMath::Fabs( u[i] ) * idMath::Sqrt( 1.0f + f * f );
- } else {
- f = u[i] / u[i+1];
- u[i] = idMath::Fabs( u[i+1] ) * idMath::Sqrt( 1.0f + f * f );
- }
- }
- for ( i = 0; i < v.GetSize(); i++ ) {
- R[0][i] += u[0] * w[i];
- }
- for ( i = 0; i < k; i++ ) {
- QR_Rotate( R, i, -R[i][i], R[i+1][i] );
- }
- return true;
- }
- /*
- ============
- idMatX::QR_UpdateRowColumn
- Updates the unpacked QR factorization to obtain the factors for the matrix:
- [ 0 a 0 ]
- QR + [ d b e ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1]
- ============
- */
- bool idMatX::QR_UpdateRowColumn( idMatX &R, const idVecX &v, const idVecX &w, int r ) {
- idVecX s;
- assert( v.GetSize() >= numColumns );
- assert( w.GetSize() >= numRows );
- assert( r >= 0 && r < numRows && r < numColumns );
- assert( w[r] == 0.0f );
- s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) );
- s.Zero();
- s[r] = 1.0f;
- if ( !QR_UpdateRankOne( R, v, s, 1.0f ) ) {
- return false;
- }
- if ( !QR_UpdateRankOne( R, s, w, 1.0f ) ) {
- return false;
- }
- return true;
- }
- /*
- ============
- idMatX::QR_UpdateIncrement
- Updates the unpacked QR factorization to obtain the factors for the matrix:
- [ A a ]
- [ c b ]
- where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0
- ============
- */
- bool idMatX::QR_UpdateIncrement( idMatX &R, const idVecX &v, const idVecX &w ) {
- idVecX v2;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- assert( w.GetSize() >= numColumns+1 );
- ChangeSize( numRows+1, numColumns+1, true );
- (*this)[numRows-1][numRows-1] = 1.0f;
- R.ChangeSize( R.numRows+1, R.numColumns+1, true );
- R[R.numRows-1][R.numRows-1] = 1.0f;
- v2.SetData( numRows, VECX_ALLOCA( numRows ) );
- v2 = v;
- v2[numRows-1] -= 1.0f;
- return QR_UpdateRowColumn( R, v2, w, numRows-1 );
- }
- /*
- ============
- idMatX::QR_UpdateDecrement
- Updates the unpacked QR factorization to obtain the factors for the matrix with row r and column r removed.
- v and w should store the column and row of the original matrix respectively.
- ============
- */
- bool idMatX::QR_UpdateDecrement( idMatX &R, const idVecX &v, const idVecX &w, int r ) {
- idVecX v1, w1;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( w.GetSize() >= numColumns );
- assert( r >= 0 && r < numRows && r < numColumns );
- v1.SetData( numRows, VECX_ALLOCA( numRows ) );
- w1.SetData( numRows, VECX_ALLOCA( numRows ) );
- // update the row and column to identity
- v1 = -v;
- w1 = -w;
- v1[r] += 1.0f;
- w1[r] = 0.0f;
- if ( !QR_UpdateRowColumn( R, v1, w1, r ) ) {
- return false;
- }
- // physically remove the row and column
- Update_Decrement( r );
- R.Update_Decrement( r );
- return true;
- }
- /*
- ============
- idMatX::QR_Solve
- Solve Ax = b with A factored in-place as: QR
- ============
- */
- void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idVecX &c, const idVecX &d ) const {
- int i, j;
- double sum, t;
- assert( numRows == numColumns );
- assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
- assert( c.GetSize() >= numRows && d.GetSize() >= numRows );
- for ( i = 0; i < numRows; i++ ) {
- x[i] = b[i];
- }
- // multiply b with transpose of Q
- for ( i = 0; i < numRows-1; i++ ) {
- sum = 0.0f;
- for ( j = i; j < numRows; j++ ) {
- sum += (*this)[j][i] * x[j];
- }
- t = sum / c[i];
- for ( j = i; j < numRows; j++ ) {
- x[j] -= t * (*this)[j][i];
- }
- }
- // backsubstitution with R
- for ( i = numRows-1; i >= 0; i-- ) {
- sum = x[i];
- for ( j = i + 1; j < numRows; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum / d[i];
- }
- }
- /*
- ============
- idMatX::QR_Solve
- Solve Ax = b with A factored as: QR
- ============
- */
- void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idMatX &R ) const {
- int i, j;
- double sum;
- assert( numRows == numColumns );
- // multiply b with transpose of Q
- TransposeMultiply( x, b );
- // backsubstitution with R
- for ( i = numRows-1; i >= 0; i-- ) {
- sum = x[i];
- for ( j = i + 1; j < numRows; j++ ) {
- sum -= R[i][j] * x[j];
- }
- x[i] = sum / R[i][i];
- }
- }
- /*
- ============
- idMatX::QR_Inverse
- Calculates the inverse of the matrix which is factored in-place as: QR
- ============
- */
- void idMatX::QR_Inverse( idMatX &inv, const idVecX &c, const idVecX &d ) const {
- int i, j;
- idVecX x, b;
- assert( numRows == numColumns );
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- inv.SetSize( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- QR_Solve( x, b, c, d );
- for ( j = 0; j < numRows; j++ ) {
- inv[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- }
- /*
- ============
- idMatX::QR_UnpackFactors
- Unpacks the in-place QR factorization.
- ============
- */
- void idMatX::QR_UnpackFactors( idMatX &Q, idMatX &R, const idVecX &c, const idVecX &d ) const {
- int i, j, k;
- double sum;
- Q.Identity( numRows, numColumns );
- for ( i = 0; i < numColumns-1; i++ ) {
- if ( c[i] == 0.0f ) {
- continue;
- }
- for ( j = 0; j < numRows; j++ ) {
- sum = 0.0f;
- for ( k = i; k < numColumns; k++ ) {
- sum += (*this)[k][i] * Q[j][k];
- }
- sum /= c[i];
- for ( k = i; k < numColumns; k++ ) {
- Q[j][k] -= sum * (*this)[k][i];
- }
- }
- }
- R.Zero( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- R[i][i] = d[i];
- for ( j = i+1; j < numColumns; j++ ) {
- R[i][j] = (*this)[i][j];
- }
- }
- }
- /*
- ============
- idMatX::QR_MultiplyFactors
- Multiplies the factors of the in-place QR factorization to form the original matrix.
- ============
- */
- void idMatX::QR_MultiplyFactors( idMatX &m, const idVecX &c, const idVecX &d ) const {
- int i, j, k;
- double sum;
- idMatX Q;
- Q.Identity( numRows, numColumns );
- for ( i = 0; i < numColumns-1; i++ ) {
- if ( c[i] == 0.0f ) {
- continue;
- }
- for ( j = 0; j < numRows; j++ ) {
- sum = 0.0f;
- for ( k = i; k < numColumns; k++ ) {
- sum += (*this)[k][i] * Q[j][k];
- }
- sum /= c[i];
- for ( k = i; k < numColumns; k++ ) {
- Q[j][k] -= sum * (*this)[k][i];
- }
- }
- }
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < numColumns; j++ ) {
- sum = Q[i][j] * d[i];
- for ( k = 0; k < i; k++ ) {
- sum += Q[i][k] * (*this)[j][k];
- }
- m[i][j] = sum;
- }
- }
- }
- /*
- ============
- idMatX::Pythag
- Computes (a^2 + b^2)^1/2 without underflow or overflow.
- ============
- */
- float idMatX::Pythag( float a, float b ) const {
- double at, bt, ct;
- at = idMath::Fabs( a );
- bt = idMath::Fabs( b );
- if ( at > bt ) {
- ct = bt / at;
- return at * idMath::Sqrt( 1.0f + ct * ct );
- } else {
- if ( bt ) {
- ct = at / bt;
- return bt * idMath::Sqrt( 1.0f + ct * ct );
- } else {
- return 0.0f;
- }
- }
- }
- /*
- ============
- idMatX::SVD_BiDiag
- ============
- */
- void idMatX::SVD_BiDiag( idVecX &w, idVecX &rv1, float &anorm ) {
- int i, j, k, l;
- double f, h, r, g, s, scale;
- anorm = 0.0f;
- g = s = scale = 0.0f;
- for ( i = 0; i < numColumns; i++ ) {
- l = i + 1;
- rv1[i] = scale * g;
- g = s = scale = 0.0f;
- if ( i < numRows ) {
- for ( k = i; k < numRows; k++ ) {
- scale += idMath::Fabs( (*this)[k][i] );
- }
- if ( scale ) {
- for ( k = i; k < numRows; k++ ) {
- (*this)[k][i] /= scale;
- s += (*this)[k][i] * (*this)[k][i];
- }
- f = (*this)[i][i];
- g = idMath::Sqrt( s );
- if ( f >= 0.0f ) {
- g = -g;
- }
- h = f * g - s;
- (*this)[i][i] = f - g;
- if ( i != (numColumns-1) ) {
- for ( j = l; j < numColumns; j++ ) {
- for ( s = 0.0f, k = i; k < numRows; k++ ) {
- s += (*this)[k][i] * (*this)[k][j];
- }
- f = s / h;
- for ( k = i; k < numRows; k++ ) {
- (*this)[k][j] += f * (*this)[k][i];
- }
- }
- }
- for ( k = i; k < numRows; k++ ) {
- (*this)[k][i] *= scale;
- }
- }
- }
- w[i] = scale * g;
- g = s = scale = 0.0f;
- if ( i < numRows && i != (numColumns-1) ) {
- for ( k = l; k < numColumns; k++ ) {
- scale += idMath::Fabs( (*this)[i][k] );
- }
- if ( scale ) {
- for ( k = l; k < numColumns; k++ ) {
- (*this)[i][k] /= scale;
- s += (*this)[i][k] * (*this)[i][k];
- }
- f = (*this)[i][l];
- g = idMath::Sqrt( s );
- if ( f >= 0.0f ) {
- g = -g;
- }
- h = 1.0f / ( f * g - s );
- (*this)[i][l] = f - g;
- for ( k = l; k < numColumns; k++ ) {
- rv1[k] = (*this)[i][k] * h;
- }
- if ( i != (numRows-1) ) {
- for ( j = l; j < numRows; j++ ) {
- for ( s = 0.0f, k = l; k < numColumns; k++ ) {
- s += (*this)[j][k] * (*this)[i][k];
- }
- for ( k = l; k < numColumns; k++ ) {
- (*this)[j][k] += s * rv1[k];
- }
- }
- }
- for ( k = l; k < numColumns; k++ ) {
- (*this)[i][k] *= scale;
- }
- }
- }
- r = idMath::Fabs( w[i] ) + idMath::Fabs( rv1[i] );
- if ( r > anorm ) {
- anorm = r;
- }
- }
- }
- /*
- ============
- idMatX::SVD_InitialWV
- ============
- */
- void idMatX::SVD_InitialWV( idVecX &w, idMatX &V, idVecX &rv1 ) {
- int i, j, k, l;
- double f, g, s;
- g = 0.0f;
- for ( i = (numColumns-1); i >= 0; i-- ) {
- l = i + 1;
- if ( i < ( numColumns - 1 ) ) {
- if ( g ) {
- for ( j = l; j < numColumns; j++ ) {
- V[j][i] = ((*this)[i][j] / (*this)[i][l]) / g;
- }
- // double division to reduce underflow
- for ( j = l; j < numColumns; j++ ) {
- for ( s = 0.0f, k = l; k < numColumns; k++ ) {
- s += (*this)[i][k] * V[k][j];
- }
- for ( k = l; k < numColumns; k++ ) {
- V[k][j] += s * V[k][i];
- }
- }
- }
- for ( j = l; j < numColumns; j++ ) {
- V[i][j] = V[j][i] = 0.0f;
- }
- }
- V[i][i] = 1.0f;
- g = rv1[i];
- }
- for ( i = numColumns - 1 ; i >= 0; i-- ) {
- l = i + 1;
- g = w[i];
- if ( i < (numColumns-1) ) {
- for ( j = l; j < numColumns; j++ ) {
- (*this)[i][j] = 0.0f;
- }
- }
- if ( g ) {
- g = 1.0f / g;
- if ( i != (numColumns-1) ) {
- for ( j = l; j < numColumns; j++ ) {
- for ( s = 0.0f, k = l; k < numRows; k++ ) {
- s += (*this)[k][i] * (*this)[k][j];
- }
- f = (s / (*this)[i][i]) * g;
- for ( k = i; k < numRows; k++ ) {
- (*this)[k][j] += f * (*this)[k][i];
- }
- }
- }
- for ( j = i; j < numRows; j++ ) {
- (*this)[j][i] *= g;
- }
- }
- else {
- for ( j = i; j < numRows; j++ ) {
- (*this)[j][i] = 0.0f;
- }
- }
- (*this)[i][i] += 1.0f;
- }
- }
- /*
- ============
- idMatX::SVD_Factor
- in-place factorization: U * Diag(w) * V.Transpose()
- known as the Singular Value Decomposition.
- U is a column-orthogonal matrix which overwrites the original matrix.
- w is a diagonal matrix with all elements >= 0 which are the singular values.
- V is the transpose of an orthogonal matrix.
- ============
- */
- bool idMatX::SVD_Factor( idVecX &w, idMatX &V ) {
- int flag, i, its, j, jj, k, l, nm;
- double c, f, h, s, x, y, z, r, g = 0.0f;
- float anorm = 0.0f;
- idVecX rv1;
- if ( numRows < numColumns ) {
- return false;
- }
- rv1.SetData( numColumns, VECX_ALLOCA( numColumns ) );
- rv1.Zero();
- w.Zero( numColumns );
- V.Zero( numColumns, numColumns );
- SVD_BiDiag( w, rv1, anorm );
- SVD_InitialWV( w, V, rv1 );
- for ( k = numColumns - 1; k >= 0; k-- ) {
- for ( its = 1; its <= 30; its++ ) {
- flag = 1;
- nm = 0;
- for ( l = k; l >= 0; l-- ) {
- nm = l - 1;
- if ( ( idMath::Fabs( rv1[l] ) + anorm ) == anorm /* idMath::Fabs( rv1[l] ) < idMath::FLT_EPSILON */ ) {
- flag = 0;
- break;
- }
- if ( ( idMath::Fabs( w[nm] ) + anorm ) == anorm /* idMath::Fabs( w[nm] ) < idMath::FLT_EPSILON */ ) {
- break;
- }
- }
- if ( flag ) {
- c = 0.0f;
- s = 1.0f;
- for ( i = l; i <= k; i++ ) {
- f = s * rv1[i];
- if ( ( idMath::Fabs( f ) + anorm ) != anorm /* idMath::Fabs( f ) > idMath::FLT_EPSILON */ ) {
- g = w[i];
- h = Pythag( f, g );
- w[i] = h;
- h = 1.0f / h;
- c = g * h;
- s = -f * h;
- for ( j = 0; j < numRows; j++ ) {
- y = (*this)[j][nm];
- z = (*this)[j][i];
- (*this)[j][nm] = y * c + z * s;
- (*this)[j][i] = z * c - y * s;
- }
- }
- }
- }
- z = w[k];
- if ( l == k ) {
- if ( z < 0.0f ) {
- w[k] = -z;
- for ( j = 0; j < numColumns; j++ ) {
- V[j][k] = -V[j][k];
- }
- }
- break;
- }
- if ( its == 30 ) {
- return false; // no convergence
- }
- x = w[l];
- nm = k - 1;
- y = w[nm];
- g = rv1[nm];
- h = rv1[k];
- f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y );
- g = Pythag( f, 1.0f );
- r = ( f >= 0.0f ? g : - g );
- f= ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + r ) ) - h ) ) / x;
- c = s = 1.0f;
- for ( j = l; j <= nm; j++ ) {
- i = j + 1;
- g = rv1[i];
- y = w[i];
- h = s * g;
- g = c * g;
- z = Pythag( f, h );
- rv1[j] = z;
- c = f / z;
- s = h / z;
- f = x * c + g * s;
- g = g * c - x * s;
- h = y * s;
- y = y * c;
- for ( jj = 0; jj < numColumns; jj++ ) {
- x = V[jj][j];
- z = V[jj][i];
- V[jj][j] = x * c + z * s;
- V[jj][i] = z * c - x * s;
- }
- z = Pythag( f, h );
- w[j] = z;
- if ( z ) {
- z = 1.0f / z;
- c = f * z;
- s = h * z;
- }
- f = ( c * g ) + ( s * y );
- x = ( c * y ) - ( s * g );
- for ( jj = 0; jj < numRows; jj++ ) {
- y = (*this)[jj][j];
- z = (*this)[jj][i];
- (*this)[jj][j] = y * c + z * s;
- (*this)[jj][i] = z * c - y * s;
- }
- }
- rv1[l] = 0.0f;
- rv1[k] = f;
- w[k] = x;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::SVD_Solve
- Solve Ax = b with A factored as: U * Diag(w) * V.Transpose()
- ============
- */
- void idMatX::SVD_Solve( idVecX &x, const idVecX &b, const idVecX &w, const idMatX &V ) const {
- int i, j;
- double sum;
- idVecX tmp;
- assert( x.GetSize() >= numColumns );
- assert( b.GetSize() >= numColumns );
- assert( w.GetSize() == numColumns );
- assert( V.GetNumRows() == numColumns && V.GetNumColumns() == numColumns );
- tmp.SetData( numColumns, VECX_ALLOCA( numColumns ) );
- for ( i = 0; i < numColumns; i++ ) {
- sum = 0.0f;
- if ( w[i] >= idMath::FLT_EPSILON ) {
- for ( j = 0; j < numRows; j++ ) {
- sum += (*this)[j][i] * b[j];
- }
- sum /= w[i];
- }
- tmp[i] = sum;
- }
- for ( i = 0; i < numColumns; i++ ) {
- sum = 0.0f;
- for ( j = 0; j < numColumns; j++ ) {
- sum += V[i][j] * tmp[j];
- }
- x[i] = sum;
- }
- }
- /*
- ============
- idMatX::SVD_Inverse
- Calculates the inverse of the matrix which is factored in-place as: U * Diag(w) * V.Transpose()
- ============
- */
- void idMatX::SVD_Inverse( idMatX &inv, const idVecX &w, const idMatX &V ) const {
- int i, j, k;
- double wi, sum;
- idMatX V2;
- assert( numRows == numColumns );
- V2 = V;
- // V * [diag(1/w[i])]
- for ( i = 0; i < numRows; i++ ) {
- wi = w[i];
- wi = ( wi < idMath::FLT_EPSILON ) ? 0.0f : 1.0f / wi;
- for ( j = 0; j < numColumns; j++ ) {
- V2[j][i] *= wi;
- }
- }
- // V * [diag(1/w[i])] * Ut
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < numColumns; j++ ) {
- sum = V2[i][0] * (*this)[j][0];
- for ( k = 1; k < numColumns; k++ ) {
- sum += V2[i][k] * (*this)[j][k];
- }
- inv[i][j] = sum;
- }
- }
- }
- /*
- ============
- idMatX::SVD_MultiplyFactors
- Multiplies the factors of the in-place SVD factorization to form the original matrix.
- ============
- */
- void idMatX::SVD_MultiplyFactors( idMatX &m, const idVecX &w, const idMatX &V ) const {
- int r, i, j;
- double sum;
- m.SetSize( numRows, V.GetNumRows() );
- for ( r = 0; r < numRows; r++ ) {
- // calculate row of matrix
- if ( w[r] >= idMath::FLT_EPSILON ) {
- for ( i = 0; i < V.GetNumRows(); i++ ) {
- sum = 0.0f;
- for ( j = 0; j < numColumns; j++ ) {
- sum += (*this)[r][j] * V[i][j];
- }
- m[r][i] = sum * w[r];
- }
- } else {
- for ( i = 0; i < V.GetNumRows(); i++ ) {
- m[r][i] = 0.0f;
- }
- }
- }
- }
- /*
- ============
- idMatX::Cholesky_Factor
- in-place Cholesky factorization: LL'
- L is a triangular matrix stored in the lower triangle.
- The upper triangle is not cleared.
- The initial matrix has to be symmetric positive definite.
- ============
- */
- bool idMatX::Cholesky_Factor( void ) {
- int i, j, k;
- float *invSqrt;
- double sum;
- assert( numRows == numColumns );
- invSqrt = (float *) _alloca16( numRows * sizeof( float ) );
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < i; j++ ) {
- sum = (*this)[i][j];
- for ( k = 0; k < j; k++ ) {
- sum -= (*this)[i][k] * (*this)[j][k];
- }
- (*this)[i][j] = sum * invSqrt[j];
- }
- sum = (*this)[i][i];
- for ( k = 0; k < i; k++ ) {
- sum -= (*this)[i][k] * (*this)[i][k];
- }
- if ( sum <= 0.0f ) {
- return false;
- }
- invSqrt[i] = idMath::InvSqrt( sum );
- (*this)[i][i] = invSqrt[i] * sum;
- }
- return true;
- }
- /*
- ============
- idMatX::Cholesky_UpdateRankOne
- Updates the in-place Cholesky factorization to obtain the factors for the matrix: LL' + alpha * v * v'
- If offset > 0 only the lower right corner starting at (offset, offset) is updated.
- ============
- */
- bool idMatX::Cholesky_UpdateRankOne( const idVecX &v, float alpha, int offset ) {
- int i, j;
- float *y;
- double diag, invDiag, diagSqr, newDiag, newDiagSqr, beta, p, d;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( offset >= 0 && offset < numRows );
- y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
- memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
- for ( i = offset; i < numColumns; i++ ) {
- p = y[i];
- diag = (*this)[i][i];
- invDiag = 1.0f / diag;
- diagSqr = diag * diag;
- newDiagSqr = diagSqr + alpha * p * p;
- if ( newDiagSqr <= 0.0f ) {
- return false;
- }
- (*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr );
- alpha /= newDiagSqr;
- beta = p * alpha;
- alpha *= diagSqr;
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i] * invDiag;
- y[j] -= p * d;
- d += beta * y[j];
- (*this)[j][i] = d * newDiag;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::Cholesky_UpdateRowColumn
- Updates the in-place Cholesky factorization to obtain the factors for the matrix:
- [ 0 a 0 ]
- LL' + [ a b c ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
- ============
- */
- bool idMatX::Cholesky_UpdateRowColumn( const idVecX &v, int r ) {
- int i, j;
- double sum;
- float *original, *y;
- idVecX addSub;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( r >= 0 && r < numRows );
- addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- if ( r == 0 ) {
- if ( numColumns == 1 ) {
- double v0 = v[0];
- sum = (*this)[0][0];
- sum = sum * sum;
- sum = sum + v0;
- if ( sum <= 0.0f ) {
- return false;
- }
- (*this)[0][0] = idMath::Sqrt( sum );
- return true;
- }
- for ( i = 0; i < numColumns; i++ ) {
- addSub[i] = v[i];
- }
- } else {
- original = (float *) _alloca16( numColumns * sizeof( float ) );
- y = (float *) _alloca16( numColumns * sizeof( float ) );
- // calculate original row/column of matrix
- for ( i = 0; i < numRows; i++ ) {
- sum = 0.0f;
- for ( j = 0; j <= i; j++ ) {
- sum += (*this)[r][j] * (*this)[i][j];
- }
- original[i] = sum;
- }
- // solve for y in L * y = original + v
- for ( i = 0; i < r; i++ ) {
- sum = original[i] + v[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[r][j] * (*this)[i][j];
- }
- (*this)[r][i] = sum / (*this)[i][i];
- }
- // if the last row/column of the matrix is updated
- if ( r == numColumns - 1 ) {
- // only calculate new diagonal
- sum = original[r] + v[r];
- for ( j = 0; j < r; j++) {
- sum -= (*this)[r][j] * (*this)[r][j];
- }
- if ( sum <= 0.0f ) {
- return false;
- }
- (*this)[r][r] = idMath::Sqrt( sum );
- return true;
- }
- // calculate the row/column to be added to the lower right sub matrix starting at (r, r)
- for ( i = r; i < numColumns; i++ ) {
- sum = 0.0f;
- for ( j = 0; j <= r; j++ ) {
- sum += (*this)[r][j] * (*this)[i][j];
- }
- addSub[i] = v[i] - ( sum - original[i] );
- }
- }
- // add row/column to the lower right sub matrix starting at (r, r)
- #if 0
- idVecX v1, v2;
- double d;
- v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- d = idMath::SQRT_1OVER2;
- v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
- v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
- for ( i = r+1; i < numColumns; i++ ) {
- v1[i] = v2[i] = addSub[i] * d;
- }
- // update
- if ( !Cholesky_UpdateRankOne( v1, 1.0f, r ) ) {
- return false;
- }
- // downdate
- if ( !Cholesky_UpdateRankOne( v2, -1.0f, r ) ) {
- return false;
- }
- #else
- float *v1, *v2;
- double diag, invDiag, diagSqr, newDiag, newDiagSqr;
- double alpha1, alpha2, beta1, beta2, p1, p2, d;
- v1 = (float *) _alloca16( numColumns * sizeof( float ) );
- v2 = (float *) _alloca16( numColumns * sizeof( float ) );
- d = idMath::SQRT_1OVER2;
- v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
- v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
- for ( i = r+1; i < numColumns; i++ ) {
- v1[i] = v2[i] = addSub[i] * d;
- }
- alpha1 = 1.0f;
- alpha2 = -1.0f;
- // simultaneous update/downdate of the sub matrix starting at (r, r)
- for ( i = r; i < numColumns; i++ ) {
- p1 = v1[i];
- diag = (*this)[i][i];
- invDiag = 1.0f / diag;
- diagSqr = diag * diag;
- newDiagSqr = diagSqr + alpha1 * p1 * p1;
- if ( newDiagSqr <= 0.0f ) {
- return false;
- }
- alpha1 /= newDiagSqr;
- beta1 = p1 * alpha1;
- alpha1 *= diagSqr;
- p2 = v2[i];
- diagSqr = newDiagSqr;
- newDiagSqr = diagSqr + alpha2 * p2 * p2;
- if ( newDiagSqr <= 0.0f ) {
- return false;
- }
- (*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr );
- alpha2 /= newDiagSqr;
- beta2 = p2 * alpha2;
- alpha2 *= diagSqr;
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i] * invDiag;
- v1[j] -= p1 * d;
- d += beta1 * v1[j];
- v2[j] -= p2 * d;
- d += beta2 * v2[j];
- (*this)[j][i] = d * newDiag;
- }
- }
- #endif
- return true;
- }
- /*
- ============
- idMatX::Cholesky_UpdateIncrement
- Updates the in-place Cholesky factorization to obtain the factors for the matrix:
- [ A a ]
- [ a b ]
- where: a = v[0,numRows-1], b = v[numRows]
- ============
- */
- bool idMatX::Cholesky_UpdateIncrement( const idVecX &v ) {
- int i, j;
- float *x;
- double sum;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- ChangeSize( numRows+1, numColumns+1, false );
- x = (float *) _alloca16( numRows * sizeof( float ) );
- // solve for x in L * x = v
- for ( i = 0; i < numRows - 1; i++ ) {
- sum = v[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum / (*this)[i][i];
- }
- // calculate new row of L and calculate the square of the diagonal entry
- sum = v[numRows - 1];
- for ( i = 0; i < numRows - 1; i++ ) {
- (*this)[numRows - 1][i] = x[i];
- sum -= x[i] * x[i];
- }
- if ( sum <= 0.0f ) {
- return false;
- }
- // store the diagonal entry
- (*this)[numRows - 1][numRows - 1] = idMath::Sqrt( sum );
- return true;
- }
- /*
- ============
- idMatX::Cholesky_UpdateDecrement
- Updates the in-place Cholesky factorization to obtain the factors for the matrix with row r and column r removed.
- v should store the row of the original matrix.
- ============
- */
- bool idMatX::Cholesky_UpdateDecrement( const idVecX &v, int r ) {
- idVecX v1;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( r >= 0 && r < numRows );
- v1.SetData( numRows, VECX_ALLOCA( numRows ) );
- // update the row and column to identity
- v1 = -v;
- v1[r] += 1.0f;
- // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay
- // untouched when calling Cholesky_UpdateRowColumn in the if statement
- #if 0
- if ( !Cholesky_UpdateRowColumn( v1, r ) ) {
- #else
- bool ret = Cholesky_UpdateRowColumn( v1, r );
- if ( !ret ) {
- #endif
- return false;
- }
- // physically remove the row and column
- Update_Decrement( r );
- return true;
- }
- /*
- ============
- idMatX::Cholesky_Solve
- Solve Ax = b with A factored in-place as: LL'
- ============
- */
- void idMatX::Cholesky_Solve( idVecX &x, const idVecX &b ) const {
- int i, j;
- double sum;
- assert( numRows == numColumns );
- assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
- // solve L
- for ( i = 0; i < numRows; i++ ) {
- sum = b[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum / (*this)[i][i];
- }
- // solve Lt
- for ( i = numRows - 1; i >= 0; i-- ) {
- sum = x[i];
- for ( j = i + 1; j < numRows; j++ ) {
- sum -= (*this)[j][i] * x[j];
- }
- x[i] = sum / (*this)[i][i];
- }
- }
- /*
- ============
- idMatX::Cholesky_Inverse
- Calculates the inverse of the matrix which is factored in-place as: LL'
- ============
- */
- void idMatX::Cholesky_Inverse( idMatX &inv ) const {
- int i, j;
- idVecX x, b;
- assert( numRows == numColumns );
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- inv.SetSize( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- Cholesky_Solve( x, b );
- for ( j = 0; j < numRows; j++ ) {
- inv[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- }
- /*
- ============
- idMatX::Cholesky_MultiplyFactors
- Multiplies the factors of the in-place Cholesky factorization to form the original matrix.
- ============
- */
- void idMatX::Cholesky_MultiplyFactors( idMatX &m ) const {
- int r, i, j;
- double sum;
- m.SetSize( numRows, numColumns );
- for ( r = 0; r < numRows; r++ ) {
- // calculate row of matrix
- for ( i = 0; i < numRows; i++ ) {
- sum = 0.0f;
- for ( j = 0; j <= i && j <= r; j++ ) {
- sum += (*this)[r][j] * (*this)[i][j];
- }
- m[r][i] = sum;
- }
- }
- }
- /*
- ============
- idMatX::LDLT_Factor
- in-place factorization: LDL'
- L is a triangular matrix stored in the lower triangle.
- L has ones on the diagonal that are not stored.
- D is a diagonal matrix stored on the diagonal.
- The upper triangle is not cleared.
- The initial matrix has to be symmetric.
- ============
- */
- bool idMatX::LDLT_Factor( void ) {
- int i, j, k;
- float *v;
- double d, sum;
- assert( numRows == numColumns );
- v = (float *) _alloca16( numRows * sizeof( float ) );
- for ( i = 0; i < numRows; i++ ) {
- sum = (*this)[i][i];
- for ( j = 0; j < i; j++ ) {
- d = (*this)[i][j];
- v[j] = (*this)[j][j] * d;
- sum -= v[j] * d;
- }
- if ( sum == 0.0f ) {
- return false;
- }
- (*this)[i][i] = sum;
- d = 1.0f / sum;
- for ( j = i + 1; j < numRows; j++ ) {
- sum = (*this)[j][i];
- for ( k = 0; k < i; k++ ) {
- sum -= (*this)[j][k] * v[k];
- }
- (*this)[j][i] = sum * d;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::LDLT_UpdateRankOne
- Updates the in-place LDL' factorization to obtain the factors for the matrix: LDL' + alpha * v * v'
- If offset > 0 only the lower right corner starting at (offset, offset) is updated.
- ============
- */
- bool idMatX::LDLT_UpdateRankOne( const idVecX &v, float alpha, int offset ) {
- int i, j;
- float *y;
- double diag, newDiag, beta, p, d;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( offset >= 0 && offset < numRows );
- y = (float *) _alloca16( v.GetSize() * sizeof( float ) );
- memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) );
- for ( i = offset; i < numColumns; i++ ) {
- p = y[i];
- diag = (*this)[i][i];
- (*this)[i][i] = newDiag = diag + alpha * p * p;
- if ( newDiag == 0.0f ) {
- return false;
- }
- alpha /= newDiag;
- beta = p * alpha;
- alpha *= diag;
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i];
- y[j] -= p * d;
- d += beta * y[j];
- (*this)[j][i] = d;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::LDLT_UpdateRowColumn
- Updates the in-place LDL' factorization to obtain the factors for the matrix:
- [ 0 a 0 ]
- LDL' + [ a b c ]
- [ 0 c 0 ]
- where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1]
- ============
- */
- bool idMatX::LDLT_UpdateRowColumn( const idVecX &v, int r ) {
- int i, j;
- double sum;
- float *original, *y;
- idVecX addSub;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( r >= 0 && r < numRows );
- addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- if ( r == 0 ) {
- if ( numColumns == 1 ) {
- (*this)[0][0] += v[0];
- return true;
- }
- for ( i = 0; i < numColumns; i++ ) {
- addSub[i] = v[i];
- }
- } else {
- original = (float *) _alloca16( numColumns * sizeof( float ) );
- y = (float *) _alloca16( numColumns * sizeof( float ) );
- // calculate original row/column of matrix
- for ( i = 0; i < r; i++ ) {
- y[i] = (*this)[r][i] * (*this)[i][i];
- }
- for ( i = 0; i < numColumns; i++ ) {
- if ( i < r ) {
- sum = (*this)[i][i] * (*this)[r][i];
- } else if ( i == r ) {
- sum = (*this)[r][r];
- } else {
- sum = (*this)[r][r] * (*this)[i][r];
- }
- for ( j = 0; j < i && j < r; j++ ) {
- sum += (*this)[i][j] * y[j];
- }
- original[i] = sum;
- }
- // solve for y in L * y = original + v
- for ( i = 0; i < r; i++ ) {
- sum = original[i] + v[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * y[j];
- }
- y[i] = sum;
- }
- // calculate new row of L
- for ( i = 0; i < r; i++ ) {
- (*this)[r][i] = y[i] / (*this)[i][i];
- }
- // if the last row/column of the matrix is updated
- if ( r == numColumns - 1 ) {
- // only calculate new diagonal
- sum = original[r] + v[r];
- for ( j = 0; j < r; j++ ) {
- sum -= (*this)[r][j] * y[j];
- }
- if ( sum == 0.0f ) {
- return false;
- }
- (*this)[r][r] = sum;
- return true;
- }
- // calculate the row/column to be added to the lower right sub matrix starting at (r, r)
- for ( i = 0; i < r; i++ ) {
- y[i] = (*this)[r][i] * (*this)[i][i];
- }
- for ( i = r; i < numColumns; i++ ) {
- if ( i == r ) {
- sum = (*this)[r][r];
- } else {
- sum = (*this)[r][r] * (*this)[i][r];
- }
- for ( j = 0; j < r; j++ ) {
- sum += (*this)[i][j] * y[j];
- }
- addSub[i] = v[i] - ( sum - original[i] );
- }
- }
- // add row/column to the lower right sub matrix starting at (r, r)
- #if 0
- idVecX v1, v2;
- double d;
- v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) );
- d = idMath::SQRT_1OVER2;
- v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
- v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
- for ( i = r+1; i < numColumns; i++ ) {
- v1[i] = v2[i] = addSub[i] * d;
- }
- // update
- if ( !LDLT_UpdateRankOne( v1, 1.0f, r ) ) {
- return false;
- }
- // downdate
- if ( !LDLT_UpdateRankOne( v2, -1.0f, r ) ) {
- return false;
- }
- #else
- float *v1, *v2;
- double d, diag, newDiag, p1, p2, alpha1, alpha2, beta1, beta2;
- v1 = (float *) _alloca16( numColumns * sizeof( float ) );
- v2 = (float *) _alloca16( numColumns * sizeof( float ) );
- d = idMath::SQRT_1OVER2;
- v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d;
- v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d;
- for ( i = r+1; i < numColumns; i++ ) {
- v1[i] = v2[i] = addSub[i] * d;
- }
- alpha1 = 1.0f;
- alpha2 = -1.0f;
- // simultaneous update/downdate of the sub matrix starting at (r, r)
- for ( i = r; i < numColumns; i++ ) {
- diag = (*this)[i][i];
- p1 = v1[i];
- newDiag = diag + alpha1 * p1 * p1;
- if ( newDiag == 0.0f ) {
- return false;
- }
- alpha1 /= newDiag;
- beta1 = p1 * alpha1;
- alpha1 *= diag;
- diag = newDiag;
- p2 = v2[i];
- newDiag = diag + alpha2 * p2 * p2;
- if ( newDiag == 0.0f ) {
- return false;
- }
- alpha2 /= newDiag;
- beta2 = p2 * alpha2;
- alpha2 *= diag;
- (*this)[i][i] = newDiag;
- for ( j = i+1; j < numRows; j++ ) {
- d = (*this)[j][i];
- v1[j] -= p1 * d;
- d += beta1 * v1[j];
- v2[j] -= p2 * d;
- d += beta2 * v2[j];
- (*this)[j][i] = d;
- }
- }
- #endif
- return true;
- }
- /*
- ============
- idMatX::LDLT_UpdateIncrement
- Updates the in-place LDL' factorization to obtain the factors for the matrix:
- [ A a ]
- [ a b ]
- where: a = v[0,numRows-1], b = v[numRows]
- ============
- */
- bool idMatX::LDLT_UpdateIncrement( const idVecX &v ) {
- int i, j;
- float *x;
- double sum, d;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows+1 );
- ChangeSize( numRows+1, numColumns+1, false );
- x = (float *) _alloca16( numRows * sizeof( float ) );
- // solve for x in L * x = v
- for ( i = 0; i < numRows - 1; i++ ) {
- sum = v[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum;
- }
- // calculate new row of L and calculate the diagonal entry
- sum = v[numRows - 1];
- for ( i = 0; i < numRows - 1; i++ ) {
- (*this)[numRows - 1][i] = d = x[i] / (*this)[i][i];
- sum -= d * x[i];
- }
- if ( sum == 0.0f ) {
- return false;
- }
- // store the diagonal entry
- (*this)[numRows - 1][numRows - 1] = sum;
- return true;
- }
- /*
- ============
- idMatX::LDLT_UpdateDecrement
- Updates the in-place LDL' factorization to obtain the factors for the matrix with row r and column r removed.
- v should store the row of the original matrix.
- ============
- */
- bool idMatX::LDLT_UpdateDecrement( const idVecX &v, int r ) {
- idVecX v1;
- assert( numRows == numColumns );
- assert( v.GetSize() >= numRows );
- assert( r >= 0 && r < numRows );
- v1.SetData( numRows, VECX_ALLOCA( numRows ) );
- // update the row and column to identity
- v1 = -v;
- v1[r] += 1.0f;
- // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay
- // untouched when calling LDLT_UpdateRowColumn in the if statement
- #if 0
- if ( !LDLT_UpdateRowColumn( v1, r ) ) {
- #else
- bool ret = LDLT_UpdateRowColumn( v1, r );
- if ( !ret ) {
- #endif
- return false;
- }
- // physically remove the row and column
- Update_Decrement( r );
- return true;
- }
- /*
- ============
- idMatX::LDLT_Solve
- Solve Ax = b with A factored in-place as: LDL'
- ============
- */
- void idMatX::LDLT_Solve( idVecX &x, const idVecX &b ) const {
- int i, j;
- double sum;
- assert( numRows == numColumns );
- assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
- // solve L
- for ( i = 0; i < numRows; i++ ) {
- sum = b[i];
- for ( j = 0; j < i; j++ ) {
- sum -= (*this)[i][j] * x[j];
- }
- x[i] = sum;
- }
- // solve D
- for ( i = 0; i < numRows; i++ ) {
- x[i] /= (*this)[i][i];
- }
- // solve Lt
- for ( i = numRows - 2; i >= 0; i-- ) {
- sum = x[i];
- for ( j = i + 1; j < numRows; j++ ) {
- sum -= (*this)[j][i] * x[j];
- }
- x[i] = sum;
- }
- }
- /*
- ============
- idMatX::LDLT_Inverse
- Calculates the inverse of the matrix which is factored in-place as: LDL'
- ============
- */
- void idMatX::LDLT_Inverse( idMatX &inv ) const {
- int i, j;
- idVecX x, b;
- assert( numRows == numColumns );
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- inv.SetSize( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- LDLT_Solve( x, b );
- for ( j = 0; j < numRows; j++ ) {
- inv[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- }
- /*
- ============
- idMatX::LDLT_UnpackFactors
- Unpacks the in-place LDL' factorization.
- ============
- */
- void idMatX::LDLT_UnpackFactors( idMatX &L, idMatX &D ) const {
- int i, j;
- L.Zero( numRows, numColumns );
- D.Zero( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- for ( j = 0; j < i; j++ ) {
- L[i][j] = (*this)[i][j];
- }
- L[i][i] = 1.0f;
- D[i][i] = (*this)[i][i];
- }
- }
- /*
- ============
- idMatX::LDLT_MultiplyFactors
- Multiplies the factors of the in-place LDL' factorization to form the original matrix.
- ============
- */
- void idMatX::LDLT_MultiplyFactors( idMatX &m ) const {
- int r, i, j;
- float *v;
- double sum;
- v = (float *) _alloca16( numRows * sizeof( float ) );
- m.SetSize( numRows, numColumns );
- for ( r = 0; r < numRows; r++ ) {
- // calculate row of matrix
- for ( i = 0; i < r; i++ ) {
- v[i] = (*this)[r][i] * (*this)[i][i];
- }
- for ( i = 0; i < numColumns; i++ ) {
- if ( i < r ) {
- sum = (*this)[i][i] * (*this)[r][i];
- } else if ( i == r ) {
- sum = (*this)[r][r];
- } else {
- sum = (*this)[r][r] * (*this)[i][r];
- }
- for ( j = 0; j < i && j < r; j++ ) {
- sum += (*this)[i][j] * v[j];
- }
- m[r][i] = sum;
- }
- }
- }
- /*
- ============
- idMatX::TriDiagonal_ClearTriangles
- ============
- */
- void idMatX::TriDiagonal_ClearTriangles( void ) {
- int i, j;
- assert( numRows == numColumns );
- for ( i = 0; i < numRows-2; i++ ) {
- for ( j = i+2; j < numColumns; j++ ) {
- (*this)[i][j] = 0.0f;
- (*this)[j][i] = 0.0f;
- }
- }
- }
- /*
- ============
- idMatX::TriDiagonal_Solve
- Solve Ax = b with A being tridiagonal.
- ============
- */
- bool idMatX::TriDiagonal_Solve( idVecX &x, const idVecX &b ) const {
- int i;
- float d;
- idVecX tmp;
- assert( numRows == numColumns );
- assert( x.GetSize() >= numRows && b.GetSize() >= numRows );
- tmp.SetData( numRows, VECX_ALLOCA( numRows ) );
- d = (*this)[0][0];
- if ( d == 0.0f ) {
- return false;
- }
- d = 1.0f / d;
- x[0] = b[0] * d;
- for ( i = 1; i < numRows; i++ ) {
- tmp[i] = (*this)[i-1][i] * d;
- d = (*this)[i][i] - (*this)[i][i-1] * tmp[i];
- if ( d == 0.0f ) {
- return false;
- }
- d = 1.0f / d;
- x[i] = ( b[i] - (*this)[i][i-1] * x[i-1] ) * d;
- }
- for ( i = numRows - 2; i >= 0; i-- ) {
- x[i] -= tmp[i+1] * x[i+1];
- }
- return true;
- }
- /*
- ============
- idMatX::TriDiagonal_Inverse
- Calculates the inverse of a tri-diagonal matrix.
- ============
- */
- void idMatX::TriDiagonal_Inverse( idMatX &inv ) const {
- int i, j;
- idVecX x, b;
- assert( numRows == numColumns );
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- inv.SetSize( numRows, numColumns );
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- TriDiagonal_Solve( x, b );
- for ( j = 0; j < numRows; j++ ) {
- inv[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- }
- /*
- ============
- idMatX::HouseholderReduction
- Householder reduction to symmetric tri-diagonal form.
- The original matrix is replaced by an orthogonal matrix effecting the accumulated householder transformations.
- The diagonal elements of the diagonal matrix are stored in diag.
- The off-diagonal elements of the diagonal matrix are stored in subd.
- The initial matrix has to be symmetric.
- ============
- */
- void idMatX::HouseholderReduction( idVecX &diag, idVecX &subd ) {
- int i0, i1, i2, i3;
- float h, f, g, invH, halfFdivH, scale, invScale, sum;
- assert( numRows == numColumns );
- diag.SetSize( numRows );
- subd.SetSize( numRows );
- for ( i0 = numRows-1, i3 = numRows-2; i0 >= 1; i0--, i3-- ) {
- h = 0.0f;
- scale = 0.0f;
- if ( i3 > 0 ) {
- for ( i2 = 0; i2 <= i3; i2++ ) {
- scale += idMath::Fabs( (*this)[i0][i2] );
- }
- if ( scale == 0 ) {
- subd[i0] = (*this)[i0][i3];
- } else {
- invScale = 1.0f / scale;
- for (i2 = 0; i2 <= i3; i2++)
- {
- (*this)[i0][i2] *= invScale;
- h += (*this)[i0][i2] * (*this)[i0][i2];
- }
- f = (*this)[i0][i3];
- g = idMath::Sqrt( h );
- if ( f > 0.0f ) {
- g = -g;
- }
- subd[i0] = scale * g;
- h -= f * g;
- (*this)[i0][i3] = f - g;
- f = 0.0f;
- invH = 1.0f / h;
- for (i1 = 0; i1 <= i3; i1++) {
- (*this)[i1][i0] = (*this)[i0][i1] * invH;
- g = 0.0f;
- for (i2 = 0; i2 <= i1; i2++) {
- g += (*this)[i1][i2] * (*this)[i0][i2];
- }
- for (i2 = i1+1; i2 <= i3; i2++) {
- g += (*this)[i2][i1] * (*this)[i0][i2];
- }
- subd[i1] = g * invH;
- f += subd[i1] * (*this)[i0][i1];
- }
- halfFdivH = 0.5f * f * invH;
- for ( i1 = 0; i1 <= i3; i1++ ) {
- f = (*this)[i0][i1];
- g = subd[i1] - halfFdivH * f;
- subd[i1] = g;
- for ( i2 = 0; i2 <= i1; i2++ ) {
- (*this)[i1][i2] -= f * subd[i2] + g * (*this)[i0][i2];
- }
- }
- }
- } else {
- subd[i0] = (*this)[i0][i3];
- }
- diag[i0] = h;
- }
- diag[0] = 0.0f;
- subd[0] = 0.0f;
- for ( i0 = 0, i3 = -1; i0 <= numRows-1; i0++, i3++ ) {
- if ( diag[i0] ) {
- for ( i1 = 0; i1 <= i3; i1++ ) {
- sum = 0.0f;
- for (i2 = 0; i2 <= i3; i2++) {
- sum += (*this)[i0][i2] * (*this)[i2][i1];
- }
- for ( i2 = 0; i2 <= i3; i2++ ) {
- (*this)[i2][i1] -= sum * (*this)[i2][i0];
- }
- }
- }
- diag[i0] = (*this)[i0][i0];
- (*this)[i0][i0] = 1.0f;
- for ( i1 = 0; i1 <= i3; i1++ ) {
- (*this)[i1][i0] = 0.0f;
- (*this)[i0][i1] = 0.0f;
- }
- }
- // re-order
- for ( i0 = 1, i3 = 0; i0 < numRows; i0++, i3++ ) {
- subd[i3] = subd[i0];
- }
- subd[numRows-1] = 0.0f;
- }
- /*
- ============
- idMatX::QL
- QL algorithm with implicit shifts to determine the eigenvalues and eigenvectors of a symmetric tri-diagonal matrix.
- diag contains the diagonal elements of the symmetric tri-diagonal matrix on input and is overwritten with the eigenvalues.
- subd contains the off-diagonal elements of the symmetric tri-diagonal matrix and is destroyed.
- This matrix has to be either the identity matrix to determine the eigenvectors for a symmetric tri-diagonal matrix,
- or the matrix returned by the Householder reduction to determine the eigenvalues for the original symmetric matrix.
- ============
- */
- bool idMatX::QL( idVecX &diag, idVecX &subd ) {
- const int maxIter = 32;
- int i0, i1, i2, i3;
- float a, b, f, g, r, p, s, c;
- assert( numRows == numColumns );
- for ( i0 = 0; i0 < numRows; i0++ ) {
- for ( i1 = 0; i1 < maxIter; i1++ ) {
- for ( i2 = i0; i2 <= numRows - 2; i2++ ) {
- a = idMath::Fabs( diag[i2] ) + idMath::Fabs( diag[i2+1] );
- if ( idMath::Fabs( subd[i2] ) + a == a ) {
- break;
- }
- }
- if ( i2 == i0 ) {
- break;
- }
- g = ( diag[i0+1] - diag[i0] ) / ( 2.0f * subd[i0] );
- r = idMath::Sqrt( g * g + 1.0f );
- if ( g < 0.0f ) {
- g = diag[i2] - diag[i0] + subd[i0] / ( g - r );
- } else {
- g = diag[i2] - diag[i0] + subd[i0] / ( g + r );
- }
- s = 1.0f;
- c = 1.0f;
- p = 0.0f;
- for ( i3 = i2 - 1; i3 >= i0; i3-- ) {
- f = s * subd[i3];
- b = c * subd[i3];
- if ( idMath::Fabs( f ) >= idMath::Fabs( g ) ) {
- c = g / f;
- r = idMath::Sqrt( c * c + 1.0f );
- subd[i3+1] = f * r;
- s = 1.0f / r;
- c *= s;
- } else {
- s = f / g;
- r = idMath::Sqrt( s * s + 1.0f );
- subd[i3+1] = g * r;
- c = 1.0f / r;
- s *= c;
- }
- g = diag[i3+1] - p;
- r = ( diag[i3] - g ) * s + 2.0f * b * c;
- p = s * r;
- diag[i3+1] = g + p;
- g = c * r - b;
- for ( int i4 = 0; i4 < numRows; i4++ ) {
- f = (*this)[i4][i3+1];
- (*this)[i4][i3+1] = s * (*this)[i4][i3] + c * f;
- (*this)[i4][i3] = c * (*this)[i4][i3] - s * f;
- }
- }
- diag[i0] -= p;
- subd[i0] = g;
- subd[i2] = 0.0f;
- }
- if ( i1 == maxIter ) {
- return false;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::Eigen_SolveSymmetricTriDiagonal
- Determine eigen values and eigen vectors for a symmetric tri-diagonal matrix.
- The eigen values are stored in 'eigenValues'.
- Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i].
- The initial matrix has to be symmetric tri-diagonal.
- ============
- */
- bool idMatX::Eigen_SolveSymmetricTriDiagonal( idVecX &eigenValues ) {
- int i;
- idVecX subd;
- assert( numRows == numColumns );
- subd.SetData( numRows, VECX_ALLOCA( numRows ) );
- eigenValues.SetSize( numRows );
- for ( i = 0; i < numRows-1; i++ ) {
- eigenValues[i] = (*this)[i][i];
- subd[i] = (*this)[i+1][i];
- }
- eigenValues[numRows-1] = (*this)[numRows-1][numRows-1];
- Identity();
- return QL( eigenValues, subd );
- }
- /*
- ============
- idMatX::Eigen_SolveSymmetric
- Determine eigen values and eigen vectors for a symmetric matrix.
- The eigen values are stored in 'eigenValues'.
- Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i].
- The initial matrix has to be symmetric.
- ============
- */
- bool idMatX::Eigen_SolveSymmetric( idVecX &eigenValues ) {
- idVecX subd;
- assert( numRows == numColumns );
- subd.SetData( numRows, VECX_ALLOCA( numRows ) );
- eigenValues.SetSize( numRows );
- HouseholderReduction( eigenValues, subd );
- return QL( eigenValues, subd );
- }
- /*
- ============
- idMatX::HessenbergReduction
- Reduction to Hessenberg form.
- ============
- */
- void idMatX::HessenbergReduction( idMatX &H ) {
- int i, j, m;
- int low = 0;
- int high = numRows - 1;
- float scale, f, g, h;
- idVecX v;
- v.SetData( numRows, VECX_ALLOCA( numRows ) );
- for ( m = low + 1; m <= high - 1; m++ ) {
- scale = 0.0f;
- for ( i = m; i <= high; i++ ) {
- scale = scale + idMath::Fabs( H[i][m-1] );
- }
- if ( scale != 0.0f ) {
- // compute Householder transformation.
- h = 0.0f;
- for ( i = high; i >= m; i-- ) {
- v[i] = H[i][m-1] / scale;
- h += v[i] * v[i];
- }
- g = idMath::Sqrt( h );
- if ( v[m] > 0.0f ) {
- g = -g;
- }
- h = h - v[m] * g;
- v[m] = v[m] - g;
- // apply Householder similarity transformation
- // H = (I-u*u'/h)*H*(I-u*u')/h)
- for ( j = m; j < numRows; j++) {
- f = 0.0f;
- for ( i = high; i >= m; i-- ) {
- f += v[i] * H[i][j];
- }
- f = f / h;
- for ( i = m; i <= high; i++ ) {
- H[i][j] -= f * v[i];
- }
- }
- for ( i = 0; i <= high; i++ ) {
- f = 0.0f;
- for ( j = high; j >= m; j-- ) {
- f += v[j] * H[i][j];
- }
- f = f / h;
- for ( j = m; j <= high; j++ ) {
- H[i][j] -= f * v[j];
- }
- }
- v[m] = scale * v[m];
- H[m][m-1] = scale * g;
- }
- }
- // accumulate transformations
- Identity();
- for ( int m = high - 1; m >= low + 1; m-- ) {
- if ( H[m][m-1] != 0.0f ) {
- for ( i = m + 1; i <= high; i++ ) {
- v[i] = H[i][m-1];
- }
- for ( j = m; j <= high; j++ ) {
- g = 0.0f;
- for ( i = m; i <= high; i++ ) {
- g += v[i] * (*this)[i][j];
- }
- // float division to avoid possible underflow
- g = ( g / v[m] ) / H[m][m-1];
- for ( i = m; i <= high; i++ ) {
- (*this)[i][j] += g * v[i];
- }
- }
- }
- }
- }
- /*
- ============
- idMatX::ComplexDivision
- Complex scalar division.
- ============
- */
- void idMatX::ComplexDivision( float xr, float xi, float yr, float yi, float &cdivr, float &cdivi ) {
- float r, d;
- if ( idMath::Fabs( yr ) > idMath::Fabs( yi ) ) {
- r = yi / yr;
- d = yr + r * yi;
- cdivr = ( xr + r * xi ) / d;
- cdivi = ( xi - r * xr ) / d;
- } else {
- r = yr / yi;
- d = yi + r * yr;
- cdivr = ( r * xr + xi ) / d;
- cdivi = ( r * xi - xr ) / d;
- }
- }
- /*
- ============
- idMatX::HessenbergToRealSchur
- Reduction from Hessenberg to real Schur form.
- ============
- */
- bool idMatX::HessenbergToRealSchur( idMatX &H, idVecX &realEigenValues, idVecX &imaginaryEigenValues ) {
- int i, j, k;
- int n = numRows - 1;
- int low = 0;
- int high = numRows - 1;
- float eps = 2e-16f, exshift = 0.0f;
- float p = 0.0f, q = 0.0f, r = 0.0f, s = 0.0f, z = 0.0f, t, w, x, y;
- // store roots isolated by balanc and compute matrix norm
- float norm = 0.0f;
- for ( i = 0; i < numRows; i++ ) {
- if ( i < low || i > high ) {
- realEigenValues[i] = H[i][i];
- imaginaryEigenValues[i] = 0.0f;
- }
- for ( j = Max( i - 1, 0 ); j < numRows; j++ ) {
- norm = norm + idMath::Fabs( H[i][j] );
- }
- }
- int iter = 0;
- while( n >= low ) {
- // look for single small sub-diagonal element
- int l = n;
- while ( l > low ) {
- s = idMath::Fabs( H[l-1][l-1] ) + idMath::Fabs( H[l][l] );
- if ( s == 0.0f ) {
- s = norm;
- }
- if ( idMath::Fabs( H[l][l-1] ) < eps * s ) {
- break;
- }
- l--;
- }
-
- // check for convergence
- if ( l == n ) { // one root found
- H[n][n] = H[n][n] + exshift;
- realEigenValues[n] = H[n][n];
- imaginaryEigenValues[n] = 0.0f;
- n--;
- iter = 0;
- } else if ( l == n-1 ) { // two roots found
- w = H[n][n-1] * H[n-1][n];
- p = ( H[n-1][n-1] - H[n][n] ) / 2.0f;
- q = p * p + w;
- z = idMath::Sqrt( idMath::Fabs( q ) );
- H[n][n] = H[n][n] + exshift;
- H[n-1][n-1] = H[n-1][n-1] + exshift;
- x = H[n][n];
- if ( q >= 0.0f ) { // real pair
- if ( p >= 0.0f ) {
- z = p + z;
- } else {
- z = p - z;
- }
- realEigenValues[n-1] = x + z;
- realEigenValues[n] = realEigenValues[n-1];
- if ( z != 0.0f ) {
- realEigenValues[n] = x - w / z;
- }
- imaginaryEigenValues[n-1] = 0.0f;
- imaginaryEigenValues[n] = 0.0f;
- x = H[n][n-1];
- s = idMath::Fabs( x ) + idMath::Fabs( z );
- p = x / s;
- q = z / s;
- r = idMath::Sqrt( p * p + q * q );
- p = p / r;
- q = q / r;
- // modify row
- for ( j = n-1; j < numRows; j++ ) {
- z = H[n-1][j];
- H[n-1][j] = q * z + p * H[n][j];
- H[n][j] = q * H[n][j] - p * z;
- }
- // modify column
- for ( i = 0; i <= n; i++ ) {
- z = H[i][n-1];
- H[i][n-1] = q * z + p * H[i][n];
- H[i][n] = q * H[i][n] - p * z;
- }
- // accumulate transformations
- for ( i = low; i <= high; i++ ) {
- z = (*this)[i][n-1];
- (*this)[i][n-1] = q * z + p * (*this)[i][n];
- (*this)[i][n] = q * (*this)[i][n] - p * z;
- }
- } else { // complex pair
- realEigenValues[n-1] = x + p;
- realEigenValues[n] = x + p;
- imaginaryEigenValues[n-1] = z;
- imaginaryEigenValues[n] = -z;
- }
- n = n - 2;
- iter = 0;
- } else { // no convergence yet
- // form shift
- x = H[n][n];
- y = 0.0f;
- w = 0.0f;
- if ( l < n ) {
- y = H[n-1][n-1];
- w = H[n][n-1] * H[n-1][n];
- }
- // Wilkinson's original ad hoc shift
- if ( iter == 10 ) {
- exshift += x;
- for ( i = low; i <= n; i++ ) {
- H[i][i] -= x;
- }
- s = idMath::Fabs( H[n][n-1] ) + idMath::Fabs( H[n-1][n-2] );
- x = y = 0.75f * s;
- w = -0.4375f * s * s;
- }
- // new ad hoc shift
- if ( iter == 30 ) {
- s = ( y - x ) / 2.0f;
- s = s * s + w;
- if ( s > 0 ) {
- s = idMath::Sqrt( s );
- if ( y < x ) {
- s = -s;
- }
- s = x - w / ( ( y - x ) / 2.0f + s );
- for ( i = low; i <= n; i++ ) {
- H[i][i] -= s;
- }
- exshift += s;
- x = y = w = 0.964f;
- }
- }
- iter = iter + 1;
- // look for two consecutive small sub-diagonal elements
- int m;
- for( m = n-2; m >= l; m-- ) {
- z = H[m][m];
- r = x - z;
- s = y - z;
- p = ( r * s - w ) / H[m+1][m] + H[m][m+1];
- q = H[m+1][m+1] - z - r - s;
- r = H[m+2][m+1];
- s = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r );
- p = p / s;
- q = q / s;
- r = r / s;
- if ( m == l ) {
- break;
- }
- if ( idMath::Fabs( H[m][m-1] ) * ( idMath::Fabs( q ) + idMath::Fabs( r ) ) <
- eps * ( idMath::Fabs( p ) * ( idMath::Fabs( H[m-1][m-1] ) + idMath::Fabs( z ) + idMath::Fabs( H[m+1][m+1] ) ) ) ) {
- break;
- }
- }
- for ( i = m+2; i <= n; i++ ) {
- H[i][i-2] = 0.0f;
- if ( i > m+2 ) {
- H[i][i-3] = 0.0f;
- }
- }
- // double QR step involving rows l:n and columns m:n
- for ( k = m; k <= n-1; k++ ) {
- bool notlast = ( k != n-1 );
- if ( k != m ) {
- p = H[k][k-1];
- q = H[k+1][k-1];
- r = ( notlast ? H[k+2][k-1] : 0.0f );
- x = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r );
- if ( x != 0.0f ) {
- p = p / x;
- q = q / x;
- r = r / x;
- }
- }
- if ( x == 0.0f ) {
- break;
- }
- s = idMath::Sqrt( p * p + q * q + r * r );
- if ( p < 0.0f ) {
- s = -s;
- }
- if ( s != 0.0f ) {
- if ( k != m ) {
- H[k][k-1] = -s * x;
- } else if ( l != m ) {
- H[k][k-1] = -H[k][k-1];
- }
- p = p + s;
- x = p / s;
- y = q / s;
- z = r / s;
- q = q / p;
- r = r / p;
- // modify row
- for ( j = k; j < numRows; j++ ) {
- p = H[k][j] + q * H[k+1][j];
- if ( notlast ) {
- p = p + r * H[k+2][j];
- H[k+2][j] = H[k+2][j] - p * z;
- }
- H[k][j] = H[k][j] - p * x;
- H[k+1][j] = H[k+1][j] - p * y;
- }
- // modify column
- for ( i = 0; i <= Min( n, k + 3 ); i++ ) {
- p = x * H[i][k] + y * H[i][k+1];
- if ( notlast ) {
- p = p + z * H[i][k+2];
- H[i][k+2] = H[i][k+2] - p * r;
- }
- H[i][k] = H[i][k] - p;
- H[i][k+1] = H[i][k+1] - p * q;
- }
- // accumulate transformations
- for ( i = low; i <= high; i++ ) {
- p = x * (*this)[i][k] + y * (*this)[i][k+1];
- if ( notlast ) {
- p = p + z * (*this)[i][k+2];
- (*this)[i][k+2] = (*this)[i][k+2] - p * r;
- }
- (*this)[i][k] = (*this)[i][k] - p;
- (*this)[i][k+1] = (*this)[i][k+1] - p * q;
- }
- }
- }
- }
- }
-
- // backsubstitute to find vectors of upper triangular form
- if ( norm == 0.0f ) {
- return false;
- }
- for ( n = numRows-1; n >= 0; n-- ) {
- p = realEigenValues[n];
- q = imaginaryEigenValues[n];
- if ( q == 0.0f ) { // real vector
- int l = n;
- H[n][n] = 1.0f;
- for ( i = n-1; i >= 0; i-- ) {
- w = H[i][i] - p;
- r = 0.0f;
- for ( j = l; j <= n; j++ ) {
- r = r + H[i][j] * H[j][n];
- }
- if ( imaginaryEigenValues[i] < 0.0f ) {
- z = w;
- s = r;
- } else {
- l = i;
- if ( imaginaryEigenValues[i] == 0.0f ) {
- if ( w != 0.0f ) {
- H[i][n] = -r / w;
- } else {
- H[i][n] = -r / ( eps * norm );
- }
- } else { // solve real equations
- x = H[i][i+1];
- y = H[i+1][i];
- q = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i];
- t = ( x * s - z * r ) / q;
- H[i][n] = t;
- if ( idMath::Fabs(x) > idMath::Fabs( z ) ) {
- H[i+1][n] = ( -r - w * t ) / x;
- } else {
- H[i+1][n] = ( -s - y * t ) / z;
- }
- }
- // overflow control
- t = idMath::Fabs(H[i][n]);
- if ( ( eps * t ) * t > 1 ) {
- for ( j = i; j <= n; j++ ) {
- H[j][n] = H[j][n] / t;
- }
- }
- }
- }
- } else if ( q < 0.0f ) { // complex vector
- int l = n-1;
- // last vector component imaginary so matrix is triangular
- if ( idMath::Fabs( H[n][n-1] ) > idMath::Fabs( H[n-1][n] ) ) {
- H[n-1][n-1] = q / H[n][n-1];
- H[n-1][n] = -( H[n][n] - p ) / H[n][n-1];
- } else {
- ComplexDivision( 0.0f, -H[n-1][n], H[n-1][n-1]-p, q, H[n-1][n-1], H[n-1][n] );
- }
- H[n][n-1] = 0.0f;
- H[n][n] = 1.0f;
- for ( i = n-2; i >= 0; i-- ) {
- float ra, sa, vr, vi;
- ra = 0.0f;
- sa = 0.0f;
- for ( j = l; j <= n; j++ ) {
- ra = ra + H[i][j] * H[j][n-1];
- sa = sa + H[i][j] * H[j][n];
- }
- w = H[i][i] - p;
- if ( imaginaryEigenValues[i] < 0.0f ) {
- z = w;
- r = ra;
- s = sa;
- } else {
- l = i;
- if ( imaginaryEigenValues[i] == 0.0f ) {
- ComplexDivision( -ra, -sa, w, q, H[i][n-1], H[i][n] );
- } else {
- // solve complex equations
- x = H[i][i+1];
- y = H[i+1][i];
- vr = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i] - q * q;
- vi = ( realEigenValues[i] - p ) * 2.0f * q;
- if ( vr == 0.0f && vi == 0.0f ) {
- vr = eps * norm * ( idMath::Fabs( w ) + idMath::Fabs( q ) + idMath::Fabs( x ) + idMath::Fabs( y ) + idMath::Fabs( z ) );
- }
- ComplexDivision( x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi, H[i][n-1], H[i][n] );
- if ( idMath::Fabs( x ) > ( idMath::Fabs( z ) + idMath::Fabs( q ) ) ) {
- H[i+1][n-1] = ( -ra - w * H[i][n-1] + q * H[i][n] ) / x;
- H[i+1][n] = ( -sa - w * H[i][n] - q * H[i][n-1] ) / x;
- } else {
- ComplexDivision( -r - y * H[i][n-1], -s - y * H[i][n], z, q, H[i+1][n-1], H[i+1][n] );
- }
- }
- // overflow control
- t = Max( idMath::Fabs( H[i][n-1] ), idMath::Fabs( H[i][n] ) );
- if ( ( eps * t ) * t > 1 ) {
- for ( j = i; j <= n; j++ ) {
- H[j][n-1] = H[j][n-1] / t;
- H[j][n] = H[j][n] / t;
- }
- }
- }
- }
- }
- }
- // vectors of isolated roots
- for ( i = 0; i < numRows; i++ ) {
- if ( i < low || i > high ) {
- for ( j = i; j < numRows; j++ ) {
- (*this)[i][j] = H[i][j];
- }
- }
- }
- // back transformation to get eigenvectors of original matrix
- for ( j = numRows - 1; j >= low; j-- ) {
- for ( i = low; i <= high; i++ ) {
- z = 0.0f;
- for ( k = low; k <= Min( j, high ); k++ ) {
- z = z + (*this)[i][k] * H[k][j];
- }
- (*this)[i][j] = z;
- }
- }
- return true;
- }
- /*
- ============
- idMatX::Eigen_Solve
- Determine eigen values and eigen vectors for a square matrix.
- The eigen values are stored in 'realEigenValues' and 'imaginaryEigenValues'.
- Column i of the original matrix will store the eigen vector corresponding to the realEigenValues[i] and imaginaryEigenValues[i].
- ============
- */
- bool idMatX::Eigen_Solve( idVecX &realEigenValues, idVecX &imaginaryEigenValues ) {
- idMatX H;
- assert( numRows == numColumns );
- realEigenValues.SetSize( numRows );
- imaginaryEigenValues.SetSize( numRows );
- H = *this;
- // reduce to Hessenberg form
- HessenbergReduction( H );
- // reduce Hessenberg to real Schur form
- return HessenbergToRealSchur( H, realEigenValues, imaginaryEigenValues );
- }
- /*
- ============
- idMatX::Eigen_SortIncreasing
- ============
- */
- void idMatX::Eigen_SortIncreasing( idVecX &eigenValues ) {
- int i, j, k;
- float min;
- for ( i = 0, j; i <= numRows - 2; i++ ) {
- j = i;
- min = eigenValues[j];
- for ( k = i + 1; k < numRows; k++ ) {
- if ( eigenValues[k] < min ) {
- j = k;
- min = eigenValues[j];
- }
- }
- if ( j != i ) {
- eigenValues.SwapElements( i, j );
- SwapColumns( i, j );
- }
- }
- }
- /*
- ============
- idMatX::Eigen_SortDecreasing
- ============
- */
- void idMatX::Eigen_SortDecreasing( idVecX &eigenValues ) {
- int i, j, k;
- float max;
- for ( i = 0, j; i <= numRows - 2; i++ ) {
- j = i;
- max = eigenValues[j];
- for ( k = i + 1; k < numRows; k++ ) {
- if ( eigenValues[k] > max ) {
- j = k;
- max = eigenValues[j];
- }
- }
- if ( j != i ) {
- eigenValues.SwapElements( i, j );
- SwapColumns( i, j );
- }
- }
- }
- /*
- ============
- idMatX::DeterminantGeneric
- ============
- */
- float idMatX::DeterminantGeneric( void ) const {
- int *index;
- float det;
- idMatX tmp;
- index = (int *) _alloca16( numRows * sizeof( int ) );
- tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
- tmp = *this;
- if ( !tmp.LU_Factor( index, &det ) ) {
- return 0.0f;
- }
- return det;
- }
- /*
- ============
- idMatX::InverseSelfGeneric
- ============
- */
- bool idMatX::InverseSelfGeneric( void ) {
- int i, j, *index;
- idMatX tmp;
- idVecX x, b;
- index = (int *) _alloca16( numRows * sizeof( int ) );
- tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) );
- tmp = *this;
- if ( !tmp.LU_Factor( index ) ) {
- return false;
- }
- x.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.SetData( numRows, VECX_ALLOCA( numRows ) );
- b.Zero();
- for ( i = 0; i < numRows; i++ ) {
- b[i] = 1.0f;
- tmp.LU_Solve( x, b, index );
- for ( j = 0; j < numRows; j++ ) {
- (*this)[j][i] = x[j];
- }
- b[i] = 0.0f;
- }
- return true;
- }
- /*
- ============
- idMatX::Test
- ============
- */
- void idMatX::Test( void ) {
- idMatX original, m1, m2, m3, q1, q2, r1, r2;
- idVecX v, w, u, c, d;
- int offset, size, *index1, *index2;
- size = 6;
- original.Random( size, size, 0 );
- original = original * original.Transpose();
- index1 = (int *) _alloca16( ( size + 1 ) * sizeof( index1[0] ) );
- index2 = (int *) _alloca16( ( size + 1 ) * sizeof( index2[0] ) );
- /*
- idMatX::LowerTriangularInverse
- */
- m1 = original;
- m1.ClearUpperTriangle();
- m2 = m1;
- m2.InverseSelf();
- m1.LowerTriangularInverse();
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LowerTriangularInverse failed" );
- }
- /*
- idMatX::UpperTriangularInverse
- */
- m1 = original;
- m1.ClearLowerTriangle();
- m2 = m1;
- m2.InverseSelf();
- m1.UpperTriangularInverse();
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::UpperTriangularInverse failed" );
- }
- /*
- idMatX::Inverse_GaussJordan
- */
- m1 = original;
- m1.Inverse_GaussJordan();
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Inverse_GaussJordan failed" );
- }
- /*
- idMatX::Inverse_UpdateRankOne
- */
- m1 = original;
- m2 = original;
- w.Random( size, 1 );
- v.Random( size, 2 );
- // invert m1
- m1.Inverse_GaussJordan();
- // modify and invert m2
- m2.Update_RankOne( v, w, 1.0f );
- if ( !m2.Inverse_GaussJordan() ) {
- assert( 0 );
- }
- // update inverse of m1
- m1.Inverse_UpdateRankOne( v, w, 1.0f );
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Inverse_UpdateRankOne failed" );
- }
- /*
- idMatX::Inverse_UpdateRowColumn
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- v.Random( size, 1 );
- w.Random( size, 2 );
- w[offset] = 0.0f;
- // invert m1
- m1.Inverse_GaussJordan();
- // modify and invert m2
- m2.Update_RowColumn( v, w, offset );
- if ( !m2.Inverse_GaussJordan() ) {
- assert( 0 );
- }
- // update inverse of m1
- m1.Inverse_UpdateRowColumn( v, w, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::Inverse_UpdateRowColumn failed" );
- }
- }
- /*
- idMatX::Inverse_UpdateIncrement
- */
- m1 = original;
- m2 = original;
- v.Random( size + 1, 1 );
- w.Random( size + 1, 2 );
- w[size] = 0.0f;
- // invert m1
- m1.Inverse_GaussJordan();
- // modify and invert m2
- m2.Update_Increment( v, w );
- if ( !m2.Inverse_GaussJordan() ) {
- assert( 0 );
- }
- // update inverse of m1
- m1.Inverse_UpdateIncrement( v, w );
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Inverse_UpdateIncrement failed" );
- }
- /*
- idMatX::Inverse_UpdateDecrement
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- v.SetSize( 6 );
- w.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- v[i] = original[i][offset];
- w[i] = original[offset][i];
- }
- // invert m1
- m1.Inverse_GaussJordan();
- // modify and invert m2
- m2.Update_Decrement( offset );
- if ( !m2.Inverse_GaussJordan() ) {
- assert( 0 );
- }
- // update inverse of m1
- m1.Inverse_UpdateDecrement( v, w, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::Inverse_UpdateDecrement failed" );
- }
- }
- /*
- idMatX::LU_Factor
- */
- m1 = original;
- m1.LU_Factor( NULL ); // no pivoting
- m1.LU_UnpackFactors( m2, m3 );
- m1 = m2 * m3;
- if ( !original.Compare( m1, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LU_Factor failed" );
- }
- /*
- idMatX::LU_UpdateRankOne
- */
- m1 = original;
- m2 = original;
- w.Random( size, 1 );
- v.Random( size, 2 );
- // factor m1
- m1.LU_Factor( index1 );
- // modify and factor m2
- m2.Update_RankOne( v, w, 1.0f );
- if ( !m2.LU_Factor( index2 ) ) {
- assert( 0 );
- }
- m2.LU_MultiplyFactors( m3, index2 );
- m2 = m3;
- // update factored m1
- m1.LU_UpdateRankOne( v, w, 1.0f, index1 );
- m1.LU_MultiplyFactors( m3, index1 );
- m1 = m3;
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LU_UpdateRankOne failed" );
- }
- /*
- idMatX::LU_UpdateRowColumn
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- v.Random( size, 1 );
- w.Random( size, 2 );
- w[offset] = 0.0f;
- // factor m1
- m1.LU_Factor( index1 );
- // modify and factor m2
- m2.Update_RowColumn( v, w, offset );
- if ( !m2.LU_Factor( index2 ) ) {
- assert( 0 );
- }
- m2.LU_MultiplyFactors( m3, index2 );
- m2 = m3;
- // update m1
- m1.LU_UpdateRowColumn( v, w, offset, index1 );
- m1.LU_MultiplyFactors( m3, index1 );
- m1 = m3;
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::LU_UpdateRowColumn failed" );
- }
- }
- /*
- idMatX::LU_UpdateIncrement
- */
- m1 = original;
- m2 = original;
- v.Random( size + 1, 1 );
- w.Random( size + 1, 2 );
- w[size] = 0.0f;
- // factor m1
- m1.LU_Factor( index1 );
- // modify and factor m2
- m2.Update_Increment( v, w );
- if ( !m2.LU_Factor( index2 ) ) {
- assert( 0 );
- }
- m2.LU_MultiplyFactors( m3, index2 );
- m2 = m3;
- // update factored m1
- m1.LU_UpdateIncrement( v, w, index1 );
- m1.LU_MultiplyFactors( m3, index1 );
- m1 = m3;
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LU_UpdateIncrement failed" );
- }
- /*
- idMatX::LU_UpdateDecrement
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- v.SetSize( 6 );
- w.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- v[i] = original[i][offset];
- w[i] = original[offset][i];
- }
- // factor m1
- m1.LU_Factor( index1 );
- // modify and factor m2
- m2.Update_Decrement( offset );
- if ( !m2.LU_Factor( index2 ) ) {
- assert( 0 );
- }
- m2.LU_MultiplyFactors( m3, index2 );
- m2 = m3;
- u.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- u[i] = original[index1[offset]][i];
- }
- // update factors of m1
- m1.LU_UpdateDecrement( v, w, u, offset, index1 );
- m1.LU_MultiplyFactors( m3, index1 );
- m1 = m3;
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::LU_UpdateDecrement failed" );
- }
- }
- /*
- idMatX::LU_Inverse
- */
- m2 = original;
- m2.LU_Factor( NULL );
- m2.LU_Inverse( m1, NULL );
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LU_Inverse failed" );
- }
- /*
- idMatX::QR_Factor
- */
- c.SetSize( size );
- d.SetSize( size );
- m1 = original;
- m1.QR_Factor( c, d );
- m1.QR_UnpackFactors( q1, r1, c, d );
- m1 = q1 * r1;
- if ( !original.Compare( m1, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::QR_Factor failed" );
- }
- /*
- idMatX::QR_UpdateRankOne
- */
- c.SetSize( size );
- d.SetSize( size );
- m1 = original;
- m2 = original;
- w.Random( size, 0 );
- v = w;
- // factor m1
- m1.QR_Factor( c, d );
- m1.QR_UnpackFactors( q1, r1, c, d );
- // modify and factor m2
- m2.Update_RankOne( v, w, 1.0f );
- if ( !m2.QR_Factor( c, d ) ) {
- assert( 0 );
- }
- m2.QR_UnpackFactors( q2, r2, c, d );
- m2 = q2 * r2;
- // update factored m1
- q1.QR_UpdateRankOne( r1, v, w, 1.0f );
- m1 = q1 * r1;
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::QR_UpdateRankOne failed" );
- }
- /*
- idMatX::QR_UpdateRowColumn
- */
- for ( offset = 0; offset < size; offset++ ) {
- c.SetSize( size );
- d.SetSize( size );
- m1 = original;
- m2 = original;
- v.Random( size, 1 );
- w.Random( size, 2 );
- w[offset] = 0.0f;
- // factor m1
- m1.QR_Factor( c, d );
- m1.QR_UnpackFactors( q1, r1, c, d );
- // modify and factor m2
- m2.Update_RowColumn( v, w, offset );
- if ( !m2.QR_Factor( c, d ) ) {
- assert( 0 );
- }
- m2.QR_UnpackFactors( q2, r2, c, d );
- m2 = q2 * r2;
- // update m1
- q1.QR_UpdateRowColumn( r1, v, w, offset );
- m1 = q1 * r1;
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::QR_UpdateRowColumn failed" );
- }
- }
- /*
- idMatX::QR_UpdateIncrement
- */
- c.SetSize( size+1 );
- d.SetSize( size+1 );
- m1 = original;
- m2 = original;
- v.Random( size + 1, 1 );
- w.Random( size + 1, 2 );
- w[size] = 0.0f;
- // factor m1
- m1.QR_Factor( c, d );
- m1.QR_UnpackFactors( q1, r1, c, d );
- // modify and factor m2
- m2.Update_Increment( v, w );
- if ( !m2.QR_Factor( c, d ) ) {
- assert( 0 );
- }
- m2.QR_UnpackFactors( q2, r2, c, d );
- m2 = q2 * r2;
- // update factored m1
- q1.QR_UpdateIncrement( r1, v, w );
- m1 = q1 * r1;
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::QR_UpdateIncrement failed" );
- }
- /*
- idMatX::QR_UpdateDecrement
- */
- for ( offset = 0; offset < size; offset++ ) {
- c.SetSize( size+1 );
- d.SetSize( size+1 );
- m1 = original;
- m2 = original;
- v.SetSize( 6 );
- w.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- v[i] = original[i][offset];
- w[i] = original[offset][i];
- }
- // factor m1
- m1.QR_Factor( c, d );
- m1.QR_UnpackFactors( q1, r1, c, d );
- // modify and factor m2
- m2.Update_Decrement( offset );
- if ( !m2.QR_Factor( c, d ) ) {
- assert( 0 );
- }
- m2.QR_UnpackFactors( q2, r2, c, d );
- m2 = q2 * r2;
- // update factors of m1
- q1.QR_UpdateDecrement( r1, v, w, offset );
- m1 = q1 * r1;
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::QR_UpdateDecrement failed" );
- }
- }
- /*
- idMatX::QR_Inverse
- */
- m2 = original;
- m2.QR_Factor( c, d );
- m2.QR_Inverse( m1, c, d );
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::QR_Inverse failed" );
- }
- /*
- idMatX::SVD_Factor
- */
- m1 = original;
- m3.Zero( size, size );
- w.Zero( size );
- m1.SVD_Factor( w, m3 );
- m2.Diag( w );
- m3.TransposeSelf();
- m1 = m1 * m2 * m3;
- if ( !original.Compare( m1, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::SVD_Factor failed" );
- }
- /*
- idMatX::SVD_Inverse
- */
- m2 = original;
- m2.SVD_Factor( w, m3 );
- m2.SVD_Inverse( m1, w, m3 );
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::SVD_Inverse failed" );
- }
- /*
- idMatX::Cholesky_Factor
- */
- m1 = original;
- m1.Cholesky_Factor();
- m1.Cholesky_MultiplyFactors( m2 );
- if ( !original.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_Factor failed" );
- }
- /*
- idMatX::Cholesky_UpdateRankOne
- */
- m1 = original;
- m2 = original;
- w.Random( size, 0 );
- // factor m1
- m1.Cholesky_Factor();
- m1.ClearUpperTriangle();
- // modify and factor m2
- m2.Update_RankOneSymmetric( w, 1.0f );
- if ( !m2.Cholesky_Factor() ) {
- assert( 0 );
- }
- m2.ClearUpperTriangle();
- // update factored m1
- m1.Cholesky_UpdateRankOne( w, 1.0f, 0 );
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_UpdateRankOne failed" );
- }
- /*
- idMatX::Cholesky_UpdateRowColumn
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- // factor m1
- m1.Cholesky_Factor();
- m1.ClearUpperTriangle();
- int pdtable[] = { 1, 0, 1, 0, 0, 0 };
- w.Random( size, pdtable[offset] );
- w *= 0.1f;
- // modify and factor m2
- m2.Update_RowColumnSymmetric( w, offset );
- if ( !m2.Cholesky_Factor() ) {
- assert( 0 );
- }
- m2.ClearUpperTriangle();
- // update m1
- m1.Cholesky_UpdateRowColumn( w, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_UpdateRowColumn failed" );
- }
- }
- /*
- idMatX::Cholesky_UpdateIncrement
- */
- m1.Random( size + 1, size + 1, 0 );
- m3 = m1 * m1.Transpose();
- m1.SquareSubMatrix( m3, size );
- m2 = m1;
- w.SetSize( size + 1 );
- for ( int i = 0; i < size + 1; i++ ) {
- w[i] = m3[size][i];
- }
- // factor m1
- m1.Cholesky_Factor();
- // modify and factor m2
- m2.Update_IncrementSymmetric( w );
- if ( !m2.Cholesky_Factor() ) {
- assert( 0 );
- }
- // update factored m1
- m1.Cholesky_UpdateIncrement( w );
- m1.ClearUpperTriangle();
- m2.ClearUpperTriangle();
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_UpdateIncrement failed" );
- }
- /*
- idMatX::Cholesky_UpdateDecrement
- */
- for ( offset = 0; offset < size; offset += size - 1 ) {
- m1 = original;
- m2 = original;
- v.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- v[i] = original[i][offset];
- }
- // factor m1
- m1.Cholesky_Factor();
- // modify and factor m2
- m2.Update_Decrement( offset );
- if ( !m2.Cholesky_Factor() ) {
- assert( 0 );
- }
- // update factors of m1
- m1.Cholesky_UpdateDecrement( v, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_UpdateDecrement failed" );
- }
- }
- /*
- idMatX::Cholesky_Inverse
- */
- m2 = original;
- m2.Cholesky_Factor();
- m2.Cholesky_Inverse( m1 );
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Cholesky_Inverse failed" );
- }
- /*
- idMatX::LDLT_Factor
- */
- m1 = original;
- m1.LDLT_Factor();
- m1.LDLT_MultiplyFactors( m2 );
- if ( !original.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LDLT_Factor failed" );
- }
- m1.LDLT_UnpackFactors( m2, m3 );
- m2 = m2 * m3 * m2.Transpose();
- if ( !original.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LDLT_Factor failed" );
- }
- /*
- idMatX::LDLT_UpdateRankOne
- */
- m1 = original;
- m2 = original;
- w.Random( size, 0 );
- // factor m1
- m1.LDLT_Factor();
- m1.ClearUpperTriangle();
- // modify and factor m2
- m2.Update_RankOneSymmetric( w, 1.0f );
- if ( !m2.LDLT_Factor() ) {
- assert( 0 );
- }
- m2.ClearUpperTriangle();
- // update factored m1
- m1.LDLT_UpdateRankOne( w, 1.0f, 0 );
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LDLT_UpdateRankOne failed" );
- }
- /*
- idMatX::LDLT_UpdateRowColumn
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- w.Random( size, 0 );
- // factor m1
- m1.LDLT_Factor();
- m1.ClearUpperTriangle();
- // modify and factor m2
- m2.Update_RowColumnSymmetric( w, offset );
- if ( !m2.LDLT_Factor() ) {
- assert( 0 );
- }
- m2.ClearUpperTriangle();
- // update m1
- m1.LDLT_UpdateRowColumn( w, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::LDLT_UpdateRowColumn failed" );
- }
- }
- /*
- idMatX::LDLT_UpdateIncrement
- */
- m1.Random( size + 1, size + 1, 0 );
- m3 = m1 * m1.Transpose();
- m1.SquareSubMatrix( m3, size );
- m2 = m1;
- w.SetSize( size + 1 );
- for ( int i = 0; i < size + 1; i++ ) {
- w[i] = m3[size][i];
- }
- // factor m1
- m1.LDLT_Factor();
- // modify and factor m2
- m2.Update_IncrementSymmetric( w );
- if ( !m2.LDLT_Factor() ) {
- assert( 0 );
- }
- // update factored m1
- m1.LDLT_UpdateIncrement( w );
- m1.ClearUpperTriangle();
- m2.ClearUpperTriangle();
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LDLT_UpdateIncrement failed" );
- }
- /*
- idMatX::LDLT_UpdateDecrement
- */
- for ( offset = 0; offset < size; offset++ ) {
- m1 = original;
- m2 = original;
- v.SetSize( 6 );
- for ( int i = 0; i < size; i++ ) {
- v[i] = original[i][offset];
- }
- // factor m1
- m1.LDLT_Factor();
- // modify and factor m2
- m2.Update_Decrement( offset );
- if ( !m2.LDLT_Factor() ) {
- assert( 0 );
- }
- // update factors of m1
- m1.LDLT_UpdateDecrement( v, offset );
- if ( !m1.Compare( m2, 1e-3f ) ) {
- idLib::common->Warning( "idMatX::LDLT_UpdateDecrement failed" );
- }
- }
- /*
- idMatX::LDLT_Inverse
- */
- m2 = original;
- m2.LDLT_Factor();
- m2.LDLT_Inverse( m1 );
- m1 *= original;
- if ( !m1.IsIdentity( 1e-4f ) ) {
- idLib::common->Warning( "idMatX::LDLT_Inverse failed" );
- }
- /*
- idMatX::Eigen_SolveSymmetricTriDiagonal
- */
- m3 = original;
- m3.TriDiagonal_ClearTriangles();
- m1 = m3;
- v.SetSize( size );
- m1.Eigen_SolveSymmetricTriDiagonal( v );
- m3.TransposeMultiply( m2, m1 );
- for ( int i = 0; i < size; i++ ) {
- for ( int j = 0; j < size; j++ ) {
- m1[i][j] *= v[j];
- }
- }
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Eigen_SolveSymmetricTriDiagonal failed" );
- }
- /*
- idMatX::Eigen_SolveSymmetric
- */
- m3 = original;
- m1 = m3;
- v.SetSize( size );
- m1.Eigen_SolveSymmetric( v );
- m3.TransposeMultiply( m2, m1 );
- for ( int i = 0; i < size; i++ ) {
- for ( int j = 0; j < size; j++ ) {
- m1[i][j] *= v[j];
- }
- }
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Eigen_SolveSymmetric failed" );
- }
- /*
- idMatX::Eigen_Solve
- */
- m3 = original;
- m1 = m3;
- v.SetSize( size );
- w.SetSize( size );
- m1.Eigen_Solve( v, w );
- m3.TransposeMultiply( m2, m1 );
- for ( int i = 0; i < size; i++ ) {
- for ( int j = 0; j < size; j++ ) {
- m1[i][j] *= v[j];
- }
- }
- if ( !m1.Compare( m2, 1e-4f ) ) {
- idLib::common->Warning( "idMatX::Eigen_Solve failed" );
- }
- }
|