123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- /*
- * jidctint.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_ISLOW_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
- #endif
- /*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
- #if BITS_IN_JSAMPLE == 8
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #else
- #define CONST_BITS 13
- #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
- #endif
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 13
- #define FIX_0_298631336 ( (INT32) 2446 ) /* FIX(0.298631336) */
- #define FIX_0_390180644 ( (INT32) 3196 ) /* FIX(0.390180644) */
- #define FIX_0_541196100 ( (INT32) 4433 ) /* FIX(0.541196100) */
- #define FIX_0_765366865 ( (INT32) 6270 ) /* FIX(0.765366865) */
- #define FIX_0_899976223 ( (INT32) 7373 ) /* FIX(0.899976223) */
- #define FIX_1_175875602 ( (INT32) 9633 ) /* FIX(1.175875602) */
- #define FIX_1_501321110 ( (INT32) 12299 ) /* FIX(1.501321110) */
- #define FIX_1_847759065 ( (INT32) 15137 ) /* FIX(1.847759065) */
- #define FIX_1_961570560 ( (INT32) 16069 ) /* FIX(1.961570560) */
- #define FIX_2_053119869 ( (INT32) 16819 ) /* FIX(2.053119869) */
- #define FIX_2_562915447 ( (INT32) 20995 ) /* FIX(2.562915447) */
- #define FIX_3_072711026 ( (INT32) 25172 ) /* FIX(3.072711026) */
- #else
- #define FIX_0_298631336 FIX( 0.298631336 )
- #define FIX_0_390180644 FIX( 0.390180644 )
- #define FIX_0_541196100 FIX( 0.541196100 )
- #define FIX_0_765366865 FIX( 0.765366865 )
- #define FIX_0_899976223 FIX( 0.899976223 )
- #define FIX_1_175875602 FIX( 1.175875602 )
- #define FIX_1_501321110 FIX( 1.501321110 )
- #define FIX_1_847759065 FIX( 1.847759065 )
- #define FIX_1_961570560 FIX( 1.961570560 )
- #define FIX_2_053119869 FIX( 2.053119869 )
- #define FIX_2_562915447 FIX( 2.562915447 )
- #define FIX_3_072711026 FIX( 3.072711026 )
- #endif
- /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
- #if BITS_IN_JSAMPLE == 8
- #define MULTIPLY( var, const ) MULTIPLY16C16( var, const )
- #else
- #define MULTIPLY( var, const ) ( ( var ) * ( const ) )
- #endif
- /* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result. In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
- #define DEQUANTIZE( coef, quantval ) ( ( (ISLOW_MULT_TYPE) ( coef ) ) * ( quantval ) )
- /*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
- GLOBAL void
- jpeg_idct_islow( j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col ) {
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE * range_limit = IDCT_range_limit( cinfo );
- int ctr;
- int workspace[DCTSIZE2];/* buffers data between passes */
- SHIFT_TEMPS
- /* Pass 1: process columns from input, store into work array. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for ( ctr = DCTSIZE; ctr > 0; ctr-- ) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
- if ( ( inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] |
- inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] |
- inptr[DCTSIZE * 7] ) == 0 ) {
- /* AC terms all zero */
- int dcval = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] ) << PASS1_BITS;
- wsptr[DCTSIZE * 0] = dcval;
- wsptr[DCTSIZE * 1] = dcval;
- wsptr[DCTSIZE * 2] = dcval;
- wsptr[DCTSIZE * 3] = dcval;
- wsptr[DCTSIZE * 4] = dcval;
- wsptr[DCTSIZE * 5] = dcval;
- wsptr[DCTSIZE * 6] = dcval;
- wsptr[DCTSIZE * 7] = dcval;
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- z2 = DEQUANTIZE( inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] );
- z3 = DEQUANTIZE( inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] );
- z1 = MULTIPLY( z2 + z3, FIX_0_541196100 );
- tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 );
- tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 );
- z2 = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] );
- z3 = DEQUANTIZE( inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] );
- tmp0 = ( z2 + z3 ) << CONST_BITS;
- tmp1 = ( z2 - z3 ) << CONST_BITS;
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
- tmp0 = DEQUANTIZE( inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] );
- tmp1 = DEQUANTIZE( inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] );
- tmp2 = DEQUANTIZE( inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] );
- tmp3 = DEQUANTIZE( inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] );
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY( z3 + z4, FIX_1_175875602 );/* sqrt(2) * c3 */
- tmp0 = MULTIPLY( tmp0, FIX_0_298631336 );/* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY( tmp1, FIX_2_053119869 );/* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY( tmp2, FIX_3_072711026 );/* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY( tmp3, FIX_1_501321110 );/* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY( z1, -FIX_0_899976223 );/* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY( z2, -FIX_2_562915447 );/* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY( z3, -FIX_1_961570560 );/* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY( z4, -FIX_0_390180644 );/* sqrt(2) * (c5-c3) */
- z3 += z5;
- z4 += z5;
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
- wsptr[DCTSIZE * 0] = (int) DESCALE( tmp10 + tmp3, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 7] = (int) DESCALE( tmp10 - tmp3, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 1] = (int) DESCALE( tmp11 + tmp2, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 6] = (int) DESCALE( tmp11 - tmp2, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 2] = (int) DESCALE( tmp12 + tmp1, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 5] = (int) DESCALE( tmp12 - tmp1, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 3] = (int) DESCALE( tmp13 + tmp0, CONST_BITS - PASS1_BITS );
- wsptr[DCTSIZE * 4] = (int) DESCALE( tmp13 - tmp0, CONST_BITS - PASS1_BITS );
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
- wsptr = workspace;
- for ( ctr = 0; ctr < DCTSIZE; ctr++ ) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
- #ifndef NO_ZERO_ROW_TEST
- if ( ( wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
- wsptr[7] ) == 0 ) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int) DESCALE( (INT32) wsptr[0], PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
- wsptr += DCTSIZE;/* advance pointer to next row */
- continue;
- }
- #endif
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
- z1 = MULTIPLY( z2 + z3, FIX_0_541196100 );
- tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 );
- tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 );
- tmp0 = ( (INT32) wsptr[0] + (INT32) wsptr[4] ) << CONST_BITS;
- tmp1 = ( (INT32) wsptr[0] - (INT32) wsptr[4] ) << CONST_BITS;
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
- tmp0 = (INT32) wsptr[7];
- tmp1 = (INT32) wsptr[5];
- tmp2 = (INT32) wsptr[3];
- tmp3 = (INT32) wsptr[1];
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY( z3 + z4, FIX_1_175875602 );/* sqrt(2) * c3 */
- tmp0 = MULTIPLY( tmp0, FIX_0_298631336 );/* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY( tmp1, FIX_2_053119869 );/* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY( tmp2, FIX_3_072711026 );/* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY( tmp3, FIX_1_501321110 );/* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY( z1, -FIX_0_899976223 );/* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY( z2, -FIX_2_562915447 );/* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY( z3, -FIX_1_961570560 );/* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY( z4, -FIX_0_390180644 );/* sqrt(2) * (c5-c3) */
- z3 += z5;
- z4 += z5;
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
- outptr[0] = range_limit[(int) DESCALE( tmp10 + tmp3,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[7] = range_limit[(int) DESCALE( tmp10 - tmp3,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[1] = range_limit[(int) DESCALE( tmp11 + tmp2,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[6] = range_limit[(int) DESCALE( tmp11 - tmp2,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[2] = range_limit[(int) DESCALE( tmp12 + tmp1,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[5] = range_limit[(int) DESCALE( tmp12 - tmp1,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[3] = range_limit[(int) DESCALE( tmp13 + tmp0,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- outptr[4] = range_limit[(int) DESCALE( tmp13 - tmp0,
- CONST_BITS + PASS1_BITS + 3 )
- & RANGE_MASK];
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
- }
- #endif /* DCT_ISLOW_SUPPORTED */
|