12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358 |
- /*
- * jquant2.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 2-pass color quantization (color mapping) routines.
- * These routines provide selection of a custom color map for an image,
- * followed by mapping of the image to that color map, with optional
- * Floyd-Steinberg dithering.
- * It is also possible to use just the second pass to map to an arbitrary
- * externally-given color map.
- *
- * Note: ordered dithering is not supported, since there isn't any fast
- * way to compute intercolor distances; it's unclear that ordered dither's
- * fundamental assumptions even hold with an irregularly spaced color map.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #ifdef QUANT_2PASS_SUPPORTED
- /*
- * This module implements the well-known Heckbert paradigm for color
- * quantization. Most of the ideas used here can be traced back to
- * Heckbert's seminal paper
- * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
- * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
- *
- * In the first pass over the image, we accumulate a histogram showing the
- * usage count of each possible color. To keep the histogram to a reasonable
- * size, we reduce the precision of the input; typical practice is to retain
- * 5 or 6 bits per color, so that 8 or 4 different input values are counted
- * in the same histogram cell.
- *
- * Next, the color-selection step begins with a box representing the whole
- * color space, and repeatedly splits the "largest" remaining box until we
- * have as many boxes as desired colors. Then the mean color in each
- * remaining box becomes one of the possible output colors.
- *
- * The second pass over the image maps each input pixel to the closest output
- * color (optionally after applying a Floyd-Steinberg dithering correction).
- * This mapping is logically trivial, but making it go fast enough requires
- * considerable care.
- *
- * Heckbert-style quantizers vary a good deal in their policies for choosing
- * the "largest" box and deciding where to cut it. The particular policies
- * used here have proved out well in experimental comparisons, but better ones
- * may yet be found.
- *
- * In earlier versions of the IJG code, this module quantized in YCbCr color
- * space, processing the raw upsampled data without a color conversion step.
- * This allowed the color conversion math to be done only once per colormap
- * entry, not once per pixel. However, that optimization precluded other
- * useful optimizations (such as merging color conversion with upsampling)
- * and it also interfered with desired capabilities such as quantizing to an
- * externally-supplied colormap. We have therefore abandoned that approach.
- * The present code works in the post-conversion color space, typically RGB.
- *
- * To improve the visual quality of the results, we actually work in scaled
- * RGB space, giving G distances more weight than R, and R in turn more than
- * B. To do everything in integer math, we must use integer scale factors.
- * The 2/3/1 scale factors used here correspond loosely to the relative
- * weights of the colors in the NTSC grayscale equation.
- * If you want to use this code to quantize a non-RGB color space, you'll
- * probably need to change these scale factors.
- */
- #define R_SCALE 2 /* scale R distances by this much */
- #define G_SCALE 3 /* scale G distances by this much */
- #define B_SCALE 1 /* and B by this much */
- /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
- * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
- * and B,G,R orders. If you define some other weird order in jmorecfg.h,
- * you'll get compile errors until you extend this logic. In that case
- * you'll probably want to tweak the histogram sizes too.
- */
- #if RGB_RED == 0
- #define C0_SCALE R_SCALE
- #endif
- #if RGB_BLUE == 0
- #define C0_SCALE B_SCALE
- #endif
- #if RGB_GREEN == 1
- #define C1_SCALE G_SCALE
- #endif
- #if RGB_RED == 2
- #define C2_SCALE R_SCALE
- #endif
- #if RGB_BLUE == 2
- #define C2_SCALE B_SCALE
- #endif
- /*
- * First we have the histogram data structure and routines for creating it.
- *
- * The number of bits of precision can be adjusted by changing these symbols.
- * We recommend keeping 6 bits for G and 5 each for R and B.
- * If you have plenty of memory and cycles, 6 bits all around gives marginally
- * better results; if you are short of memory, 5 bits all around will save
- * some space but degrade the results.
- * To maintain a fully accurate histogram, we'd need to allocate a "long"
- * (preferably unsigned long) for each cell. In practice this is overkill;
- * we can get by with 16 bits per cell. Few of the cell counts will overflow,
- * and clamping those that do overflow to the maximum value will give close-
- * enough results. This reduces the recommended histogram size from 256Kb
- * to 128Kb, which is a useful savings on PC-class machines.
- * (In the second pass the histogram space is re-used for pixel mapping data;
- * in that capacity, each cell must be able to store zero to the number of
- * desired colors. 16 bits/cell is plenty for that too.)
- * Since the JPEG code is intended to run in small memory model on 80x86
- * machines, we can't just allocate the histogram in one chunk. Instead
- * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
- * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
- * on 80x86 machines, the pointer row is in near memory but the actual
- * arrays are in far memory (same arrangement as we use for image arrays).
- */
- #define MAXNUMCOLORS ( MAXJSAMPLE + 1 ) /* maximum size of colormap */
- /* These will do the right thing for either R,G,B or B,G,R color order,
- * but you may not like the results for other color orders.
- */
- #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
- #define HIST_C1_BITS 6 /* bits of precision in G histogram */
- #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
- /* Number of elements along histogram axes. */
- #define HIST_C0_ELEMS ( 1 << HIST_C0_BITS )
- #define HIST_C1_ELEMS ( 1 << HIST_C1_BITS )
- #define HIST_C2_ELEMS ( 1 << HIST_C2_BITS )
- /* These are the amounts to shift an input value to get a histogram index. */
- #define C0_SHIFT ( BITS_IN_JSAMPLE - HIST_C0_BITS )
- #define C1_SHIFT ( BITS_IN_JSAMPLE - HIST_C1_BITS )
- #define C2_SHIFT ( BITS_IN_JSAMPLE - HIST_C2_BITS )
- typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
- typedef histcell FAR * histptr; /* for pointers to histogram cells */
- typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
- typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
- typedef hist2d * hist3d; /* type for top-level pointer */
- /* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the array fserrors[], at a resolution of
- * 1/16th of a pixel count. The error at a given pixel is propagated
- * to its not-yet-processed neighbors using the standard F-S fractions,
- * ... (here) 7/16
- * 3/16 5/16 1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * We can get away with a single array (holding one row's worth of errors)
- * by using it to store the current row's errors at pixel columns not yet
- * processed, but the next row's errors at columns already processed. We
- * need only a few extra variables to hold the errors immediately around the
- * current column. (If we are lucky, those variables are in registers, but
- * even if not, they're probably cheaper to access than array elements are.)
- *
- * The fserrors[] array has (#columns + 2) entries; the extra entry at
- * each end saves us from special-casing the first and last pixels.
- * Each entry is three values long, one value for each color component.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
- */
- #if BITS_IN_JSAMPLE == 8
- typedef INT16 FSERROR; /* 16 bits should be enough */
- typedef int LOCFSERROR; /* use 'int' for calculation temps */
- #else
- typedef INT32 FSERROR; /* may need more than 16 bits */
- typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
- #endif
- typedef FSERROR FAR * FSERRPTR; /* pointer to error array (in FAR storage!) */
- /* Private subobject */
- typedef struct {
- struct jpeg_color_quantizer pub;/* public fields */
- /* Space for the eventually created colormap is stashed here */
- JSAMPARRAY sv_colormap; /* colormap allocated at init time */
- int desired; /* desired # of colors = size of colormap */
- /* Variables for accumulating image statistics */
- hist3d histogram; /* pointer to the histogram */
- boolean needs_zeroed; /* TRUE if next pass must zero histogram */
- /* Variables for Floyd-Steinberg dithering */
- FSERRPTR fserrors; /* accumulated errors */
- boolean on_odd_row; /* flag to remember which row we are on */
- int * error_limiter; /* table for clamping the applied error */
- } my_cquantizer;
- typedef my_cquantizer * my_cquantize_ptr;
- /*
- * Prescan some rows of pixels.
- * In this module the prescan simply updates the histogram, which has been
- * initialized to zeroes by start_pass.
- * An output_buf parameter is required by the method signature, but no data
- * is actually output (in fact the buffer controller is probably passing a
- * NULL pointer).
- */
- METHODDEF void
- prescan_quantize( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
- JSAMPARRAY output_buf, int num_rows ) {
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- register JSAMPROW ptr;
- register histptr histp;
- register hist3d histogram = cquantize->histogram;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- for ( row = 0; row < num_rows; row++ ) {
- ptr = input_buf[row];
- for ( col = width; col > 0; col-- ) {
- /* get pixel value and index into the histogram */
- histp = &histogram[GETJSAMPLE( ptr[0] ) >> C0_SHIFT]
- [GETJSAMPLE( ptr[1] ) >> C1_SHIFT]
- [GETJSAMPLE( ptr[2] ) >> C2_SHIFT];
- /* increment, check for overflow and undo increment if so. */
- if ( ++ ( *histp ) <= 0 ) {
- ( *histp )--;
- }
- ptr += 3;
- }
- }
- }
- /*
- * Next we have the really interesting routines: selection of a colormap
- * given the completed histogram.
- * These routines work with a list of "boxes", each representing a rectangular
- * subset of the input color space (to histogram precision).
- */
- typedef struct {
- /* The bounds of the box (inclusive); expressed as histogram indexes */
- int c0min, c0max;
- int c1min, c1max;
- int c2min, c2max;
- /* The volume (actually 2-norm) of the box */
- INT32 volume;
- /* The number of nonzero histogram cells within this box */
- long colorcount;
- } box;
- typedef box * boxptr;
- LOCAL boxptr
- find_biggest_color_pop( boxptr boxlist, int numboxes ) {
- /* Find the splittable box with the largest color population */
- /* Returns NULL if no splittable boxes remain */
- register boxptr boxp;
- register int i;
- register long maxc = 0;
- boxptr which = NULL;
- for ( i = 0, boxp = boxlist; i < numboxes; i++, boxp++ ) {
- if ( ( boxp->colorcount > maxc ) && ( boxp->volume > 0 ) ) {
- which = boxp;
- maxc = boxp->colorcount;
- }
- }
- return which;
- }
- LOCAL boxptr
- find_biggest_volume( boxptr boxlist, int numboxes ) {
- /* Find the splittable box with the largest (scaled) volume */
- /* Returns NULL if no splittable boxes remain */
- register boxptr boxp;
- register int i;
- register INT32 maxv = 0;
- boxptr which = NULL;
- for ( i = 0, boxp = boxlist; i < numboxes; i++, boxp++ ) {
- if ( boxp->volume > maxv ) {
- which = boxp;
- maxv = boxp->volume;
- }
- }
- return which;
- }
- LOCAL void
- update_box( j_decompress_ptr cinfo, boxptr boxp ) {
- /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
- /* and recompute its volume and population */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0, c1, c2;
- int c0min, c0max, c1min, c1max, c2min, c2max;
- INT32 dist0, dist1, dist2;
- long ccount;
- c0min = boxp->c0min;
- c0max = boxp->c0max;
- c1min = boxp->c1min;
- c1max = boxp->c1max;
- c2min = boxp->c2min;
- c2max = boxp->c2max;
- if ( c0max > c0min ) {
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- for ( c1 = c1min; c1 <= c1max; c1++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- if ( *histp++ != 0 ) {
- boxp->c0min = c0min = c0;
- goto have_c0min;
- }
- }
- }
- }
- }
- have_c0min:
- if ( c0max > c0min ) {
- for ( c0 = c0max; c0 >= c0min; c0-- ) {
- for ( c1 = c1min; c1 <= c1max; c1++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- if ( *histp++ != 0 ) {
- boxp->c0max = c0max = c0;
- goto have_c0max;
- }
- }
- }
- }
- }
- have_c0max:
- if ( c1max > c1min ) {
- for ( c1 = c1min; c1 <= c1max; c1++ ) {
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- if ( *histp++ != 0 ) {
- boxp->c1min = c1min = c1;
- goto have_c1min;
- }
- }
- }
- }
- }
- have_c1min:
- if ( c1max > c1min ) {
- for ( c1 = c1max; c1 >= c1min; c1-- ) {
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- if ( *histp++ != 0 ) {
- boxp->c1max = c1max = c1;
- goto have_c1max;
- }
- }
- }
- }
- }
- have_c1max:
- if ( c2max > c2min ) {
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- histp = &histogram[c0][c1min][c2];
- for ( c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS ) {
- if ( *histp != 0 ) {
- boxp->c2min = c2min = c2;
- goto have_c2min;
- }
- }
- }
- }
- }
- have_c2min:
- if ( c2max > c2min ) {
- for ( c2 = c2max; c2 >= c2min; c2-- ) {
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- histp = &histogram[c0][c1min][c2];
- for ( c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS ) {
- if ( *histp != 0 ) {
- boxp->c2max = c2max = c2;
- goto have_c2max;
- }
- }
- }
- }
- }
- have_c2max:
- /* Update box volume.
- * We use 2-norm rather than real volume here; this biases the method
- * against making long narrow boxes, and it has the side benefit that
- * a box is splittable iff norm > 0.
- * Since the differences are expressed in histogram-cell units,
- * we have to shift back to JSAMPLE units to get consistent distances;
- * after which, we scale according to the selected distance scale factors.
- */
- dist0 = ( ( c0max - c0min ) << C0_SHIFT ) * C0_SCALE;
- dist1 = ( ( c1max - c1min ) << C1_SHIFT ) * C1_SCALE;
- dist2 = ( ( c2max - c2min ) << C2_SHIFT ) * C2_SCALE;
- boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
- /* Now scan remaining volume of box and compute population */
- ccount = 0;
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- for ( c1 = c1min; c1 <= c1max; c1++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++, histp++ ) {
- if ( *histp != 0 ) {
- ccount++;
- }
- }
- }
- }
- boxp->colorcount = ccount;
- }
- LOCAL int
- median_cut( j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
- int desired_colors ) {
- /* Repeatedly select and split the largest box until we have enough boxes */
- int n, lb;
- int c0, c1, c2, cmax;
- register boxptr b1, b2;
- while ( numboxes < desired_colors ) {
- /* Select box to split.
- * Current algorithm: by population for first half, then by volume.
- */
- if ( numboxes * 2 <= desired_colors ) {
- b1 = find_biggest_color_pop( boxlist, numboxes );
- } else {
- b1 = find_biggest_volume( boxlist, numboxes );
- }
- if ( b1 == NULL ) {/* no splittable boxes left! */
- break;
- }
- b2 = &boxlist[numboxes];/* where new box will go */
- /* Copy the color bounds to the new box. */
- b2->c0max = b1->c0max;
- b2->c1max = b1->c1max;
- b2->c2max = b1->c2max;
- b2->c0min = b1->c0min;
- b2->c1min = b1->c1min;
- b2->c2min = b1->c2min;
- /* Choose which axis to split the box on.
- * Current algorithm: longest scaled axis.
- * See notes in update_box about scaling distances.
- */
- c0 = ( ( b1->c0max - b1->c0min ) << C0_SHIFT ) * C0_SCALE;
- c1 = ( ( b1->c1max - b1->c1min ) << C1_SHIFT ) * C1_SCALE;
- c2 = ( ( b1->c2max - b1->c2min ) << C2_SHIFT ) * C2_SCALE;
- /* We want to break any ties in favor of green, then red, blue last.
- * This code does the right thing for R,G,B or B,G,R color orders only.
- */
- #if RGB_RED == 0
- cmax = c1;
- n = 1;
- if ( c0 > cmax ) {
- cmax = c0;
- n = 0;
- }
- if ( c2 > cmax ) {
- n = 2;
- }
- #else
- cmax = c1;
- n = 1;
- if ( c2 > cmax ) {
- cmax = c2;
- n = 2;
- }
- if ( c0 > cmax ) {
- n = 0;
- }
- #endif
- /* Choose split point along selected axis, and update box bounds.
- * Current algorithm: split at halfway point.
- * (Since the box has been shrunk to minimum volume,
- * any split will produce two nonempty subboxes.)
- * Note that lb value is max for lower box, so must be < old max.
- */
- switch ( n ) {
- case 0:
- lb = ( b1->c0max + b1->c0min ) / 2;
- b1->c0max = lb;
- b2->c0min = lb + 1;
- break;
- case 1:
- lb = ( b1->c1max + b1->c1min ) / 2;
- b1->c1max = lb;
- b2->c1min = lb + 1;
- break;
- case 2:
- lb = ( b1->c2max + b1->c2min ) / 2;
- b1->c2max = lb;
- b2->c2min = lb + 1;
- break;
- }
- /* Update stats for boxes */
- update_box( cinfo, b1 );
- update_box( cinfo, b2 );
- numboxes++;
- }
- return numboxes;
- }
- LOCAL void
- compute_color( j_decompress_ptr cinfo, boxptr boxp, int icolor ) {
- /* Compute representative color for a box, put it in colormap[icolor] */
- /* Current algorithm: mean weighted by pixels (not colors) */
- /* Note it is important to get the rounding correct! */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- histptr histp;
- int c0, c1, c2;
- int c0min, c0max, c1min, c1max, c2min, c2max;
- long count;
- long total = 0;
- long c0total = 0;
- long c1total = 0;
- long c2total = 0;
- c0min = boxp->c0min;
- c0max = boxp->c0max;
- c1min = boxp->c1min;
- c1max = boxp->c1max;
- c2min = boxp->c2min;
- c2max = boxp->c2max;
- for ( c0 = c0min; c0 <= c0max; c0++ ) {
- for ( c1 = c1min; c1 <= c1max; c1++ ) {
- histp = &histogram[c0][c1][c2min];
- for ( c2 = c2min; c2 <= c2max; c2++ ) {
- if ( ( count = *histp++ ) != 0 ) {
- total += count;
- c0total += ( ( c0 << C0_SHIFT ) + ( ( 1 << C0_SHIFT ) >> 1 ) ) * count;
- c1total += ( ( c1 << C1_SHIFT ) + ( ( 1 << C1_SHIFT ) >> 1 ) ) * count;
- c2total += ( ( c2 << C2_SHIFT ) + ( ( 1 << C2_SHIFT ) >> 1 ) ) * count;
- }
- }
- }
- }
- cinfo->colormap[0][icolor] = (JSAMPLE) ( ( c0total + ( total >> 1 ) ) / total );
- cinfo->colormap[1][icolor] = (JSAMPLE) ( ( c1total + ( total >> 1 ) ) / total );
- cinfo->colormap[2][icolor] = (JSAMPLE) ( ( c2total + ( total >> 1 ) ) / total );
- }
- LOCAL void
- select_colors( j_decompress_ptr cinfo, int desired_colors ) {
- /* Master routine for color selection */
- boxptr boxlist;
- int numboxes;
- int i;
- /* Allocate workspace for box list */
- boxlist = (boxptr) ( *cinfo->mem->alloc_small )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF( box ) );
- /* Initialize one box containing whole space */
- numboxes = 1;
- boxlist[0].c0min = 0;
- boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
- boxlist[0].c1min = 0;
- boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
- boxlist[0].c2min = 0;
- boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
- /* Shrink it to actually-used volume and set its statistics */
- update_box( cinfo, &boxlist[0] );
- /* Perform median-cut to produce final box list */
- numboxes = median_cut( cinfo, boxlist, numboxes, desired_colors );
- /* Compute the representative color for each box, fill colormap */
- for ( i = 0; i < numboxes; i++ ) {
- compute_color( cinfo, &boxlist[i], i );
- }
- cinfo->actual_number_of_colors = numboxes;
- TRACEMS1( cinfo, 1, JTRC_QUANT_SELECTED, numboxes );
- }
- /*
- * These routines are concerned with the time-critical task of mapping input
- * colors to the nearest color in the selected colormap.
- *
- * We re-use the histogram space as an "inverse color map", essentially a
- * cache for the results of nearest-color searches. All colors within a
- * histogram cell will be mapped to the same colormap entry, namely the one
- * closest to the cell's center. This may not be quite the closest entry to
- * the actual input color, but it's almost as good. A zero in the cache
- * indicates we haven't found the nearest color for that cell yet; the array
- * is cleared to zeroes before starting the mapping pass. When we find the
- * nearest color for a cell, its colormap index plus one is recorded in the
- * cache for future use. The pass2 scanning routines call fill_inverse_cmap
- * when they need to use an unfilled entry in the cache.
- *
- * Our method of efficiently finding nearest colors is based on the "locally
- * sorted search" idea described by Heckbert and on the incremental distance
- * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
- * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
- * the distances from a given colormap entry to each cell of the histogram can
- * be computed quickly using an incremental method: the differences between
- * distances to adjacent cells themselves differ by a constant. This allows a
- * fairly fast implementation of the "brute force" approach of computing the
- * distance from every colormap entry to every histogram cell. Unfortunately,
- * it needs a work array to hold the best-distance-so-far for each histogram
- * cell (because the inner loop has to be over cells, not colormap entries).
- * The work array elements have to be INT32s, so the work array would need
- * 256Kb at our recommended precision. This is not feasible in DOS machines.
- *
- * To get around these problems, we apply Thomas' method to compute the
- * nearest colors for only the cells within a small subbox of the histogram.
- * The work array need be only as big as the subbox, so the memory usage
- * problem is solved. Furthermore, we need not fill subboxes that are never
- * referenced in pass2; many images use only part of the color gamut, so a
- * fair amount of work is saved. An additional advantage of this
- * approach is that we can apply Heckbert's locality criterion to quickly
- * eliminate colormap entries that are far away from the subbox; typically
- * three-fourths of the colormap entries are rejected by Heckbert's criterion,
- * and we need not compute their distances to individual cells in the subbox.
- * The speed of this approach is heavily influenced by the subbox size: too
- * small means too much overhead, too big loses because Heckbert's criterion
- * can't eliminate as many colormap entries. Empirically the best subbox
- * size seems to be about 1/512th of the histogram (1/8th in each direction).
- *
- * Thomas' article also describes a refined method which is asymptotically
- * faster than the brute-force method, but it is also far more complex and
- * cannot efficiently be applied to small subboxes. It is therefore not
- * useful for programs intended to be portable to DOS machines. On machines
- * with plenty of memory, filling the whole histogram in one shot with Thomas'
- * refined method might be faster than the present code --- but then again,
- * it might not be any faster, and it's certainly more complicated.
- */
- /* log2(histogram cells in update box) for each axis; this can be adjusted */
- #define BOX_C0_LOG ( HIST_C0_BITS - 3 )
- #define BOX_C1_LOG ( HIST_C1_BITS - 3 )
- #define BOX_C2_LOG ( HIST_C2_BITS - 3 )
- #define BOX_C0_ELEMS ( 1 << BOX_C0_LOG ) /* # of hist cells in update box */
- #define BOX_C1_ELEMS ( 1 << BOX_C1_LOG )
- #define BOX_C2_ELEMS ( 1 << BOX_C2_LOG )
- #define BOX_C0_SHIFT ( C0_SHIFT + BOX_C0_LOG )
- #define BOX_C1_SHIFT ( C1_SHIFT + BOX_C1_LOG )
- #define BOX_C2_SHIFT ( C2_SHIFT + BOX_C2_LOG )
- /*
- * The next three routines implement inverse colormap filling. They could
- * all be folded into one big routine, but splitting them up this way saves
- * some stack space (the mindist[] and bestdist[] arrays need not coexist)
- * and may allow some compilers to produce better code by registerizing more
- * inner-loop variables.
- */
- LOCAL int
- find_nearby_colors( j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- JSAMPLE colorlist[] ) {
- /* Locate the colormap entries close enough to an update box to be candidates
- * for the nearest entry to some cell(s) in the update box. The update box
- * is specified by the center coordinates of its first cell. The number of
- * candidate colormap entries is returned, and their colormap indexes are
- * placed in colorlist[].
- * This routine uses Heckbert's "locally sorted search" criterion to select
- * the colors that need further consideration.
- */
- int numcolors = cinfo->actual_number_of_colors;
- int maxc0, maxc1, maxc2;
- int centerc0, centerc1, centerc2;
- int i, x, ncolors;
- INT32 minmaxdist, min_dist, max_dist, tdist;
- INT32 mindist[MAXNUMCOLORS];/* min distance to colormap entry i */
- /* Compute true coordinates of update box's upper corner and center.
- * Actually we compute the coordinates of the center of the upper-corner
- * histogram cell, which are the upper bounds of the volume we care about.
- * Note that since ">>" rounds down, the "center" values may be closer to
- * min than to max; hence comparisons to them must be "<=", not "<".
- */
- maxc0 = minc0 + ( ( 1 << BOX_C0_SHIFT ) - ( 1 << C0_SHIFT ) );
- centerc0 = ( minc0 + maxc0 ) >> 1;
- maxc1 = minc1 + ( ( 1 << BOX_C1_SHIFT ) - ( 1 << C1_SHIFT ) );
- centerc1 = ( minc1 + maxc1 ) >> 1;
- maxc2 = minc2 + ( ( 1 << BOX_C2_SHIFT ) - ( 1 << C2_SHIFT ) );
- centerc2 = ( minc2 + maxc2 ) >> 1;
- /* For each color in colormap, find:
- * 1. its minimum squared-distance to any point in the update box
- * (zero if color is within update box);
- * 2. its maximum squared-distance to any point in the update box.
- * Both of these can be found by considering only the corners of the box.
- * We save the minimum distance for each color in mindist[];
- * only the smallest maximum distance is of interest.
- */
- minmaxdist = 0x7FFFFFFFL;
- for ( i = 0; i < numcolors; i++ ) {
- /* We compute the squared-c0-distance term, then add in the other two. */
- x = GETJSAMPLE( cinfo->colormap[0][i] );
- if ( x < minc0 ) {
- tdist = ( x - minc0 ) * C0_SCALE;
- min_dist = tdist * tdist;
- tdist = ( x - maxc0 ) * C0_SCALE;
- max_dist = tdist * tdist;
- } else if ( x > maxc0 ) {
- tdist = ( x - maxc0 ) * C0_SCALE;
- min_dist = tdist * tdist;
- tdist = ( x - minc0 ) * C0_SCALE;
- max_dist = tdist * tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- min_dist = 0;
- if ( x <= centerc0 ) {
- tdist = ( x - maxc0 ) * C0_SCALE;
- max_dist = tdist * tdist;
- } else {
- tdist = ( x - minc0 ) * C0_SCALE;
- max_dist = tdist * tdist;
- }
- }
- x = GETJSAMPLE( cinfo->colormap[1][i] );
- if ( x < minc1 ) {
- tdist = ( x - minc1 ) * C1_SCALE;
- min_dist += tdist * tdist;
- tdist = ( x - maxc1 ) * C1_SCALE;
- max_dist += tdist * tdist;
- } else if ( x > maxc1 ) {
- tdist = ( x - maxc1 ) * C1_SCALE;
- min_dist += tdist * tdist;
- tdist = ( x - minc1 ) * C1_SCALE;
- max_dist += tdist * tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- if ( x <= centerc1 ) {
- tdist = ( x - maxc1 ) * C1_SCALE;
- max_dist += tdist * tdist;
- } else {
- tdist = ( x - minc1 ) * C1_SCALE;
- max_dist += tdist * tdist;
- }
- }
- x = GETJSAMPLE( cinfo->colormap[2][i] );
- if ( x < minc2 ) {
- tdist = ( x - minc2 ) * C2_SCALE;
- min_dist += tdist * tdist;
- tdist = ( x - maxc2 ) * C2_SCALE;
- max_dist += tdist * tdist;
- } else if ( x > maxc2 ) {
- tdist = ( x - maxc2 ) * C2_SCALE;
- min_dist += tdist * tdist;
- tdist = ( x - minc2 ) * C2_SCALE;
- max_dist += tdist * tdist;
- } else {
- /* within cell range so no contribution to min_dist */
- if ( x <= centerc2 ) {
- tdist = ( x - maxc2 ) * C2_SCALE;
- max_dist += tdist * tdist;
- } else {
- tdist = ( x - minc2 ) * C2_SCALE;
- max_dist += tdist * tdist;
- }
- }
- mindist[i] = min_dist;/* save away the results */
- if ( max_dist < minmaxdist ) {
- minmaxdist = max_dist;
- }
- }
- /* Now we know that no cell in the update box is more than minmaxdist
- * away from some colormap entry. Therefore, only colors that are
- * within minmaxdist of some part of the box need be considered.
- */
- ncolors = 0;
- for ( i = 0; i < numcolors; i++ ) {
- if ( mindist[i] <= minmaxdist ) {
- colorlist[ncolors++] = (JSAMPLE) i;
- }
- }
- return ncolors;
- }
- LOCAL void
- find_best_colors( j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
- int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[] ) {
- /* Find the closest colormap entry for each cell in the update box,
- * given the list of candidate colors prepared by find_nearby_colors.
- * Return the indexes of the closest entries in the bestcolor[] array.
- * This routine uses Thomas' incremental distance calculation method to
- * find the distance from a colormap entry to successive cells in the box.
- */
- int ic0, ic1, ic2;
- int i, icolor;
- register INT32 * bptr; /* pointer into bestdist[] array */
- JSAMPLE * cptr; /* pointer into bestcolor[] array */
- INT32 dist0, dist1; /* initial distance values */
- register INT32 dist2; /* current distance in inner loop */
- INT32 xx0, xx1; /* distance increments */
- register INT32 xx2;
- INT32 inc0, inc1, inc2; /* initial values for increments */
- /* This array holds the distance to the nearest-so-far color for each cell */
- INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
- /* Initialize best-distance for each cell of the update box */
- bptr = bestdist;
- for ( i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i-- ) {
- *bptr++ = 0x7FFFFFFFL;
- }
- /* For each color selected by find_nearby_colors,
- * compute its distance to the center of each cell in the box.
- * If that's less than best-so-far, update best distance and color number.
- */
- /* Nominal steps between cell centers ("x" in Thomas article) */
- #define STEP_C0 ( ( 1 << C0_SHIFT ) * C0_SCALE )
- #define STEP_C1 ( ( 1 << C1_SHIFT ) * C1_SCALE )
- #define STEP_C2 ( ( 1 << C2_SHIFT ) * C2_SCALE )
- for ( i = 0; i < numcolors; i++ ) {
- icolor = GETJSAMPLE( colorlist[i] );
- /* Compute (square of) distance from minc0/c1/c2 to this color */
- inc0 = ( minc0 - GETJSAMPLE( cinfo->colormap[0][icolor] ) ) * C0_SCALE;
- dist0 = inc0 * inc0;
- inc1 = ( minc1 - GETJSAMPLE( cinfo->colormap[1][icolor] ) ) * C1_SCALE;
- dist0 += inc1 * inc1;
- inc2 = ( minc2 - GETJSAMPLE( cinfo->colormap[2][icolor] ) ) * C2_SCALE;
- dist0 += inc2 * inc2;
- /* Form the initial difference increments */
- inc0 = inc0 * ( 2 * STEP_C0 ) + STEP_C0 * STEP_C0;
- inc1 = inc1 * ( 2 * STEP_C1 ) + STEP_C1 * STEP_C1;
- inc2 = inc2 * ( 2 * STEP_C2 ) + STEP_C2 * STEP_C2;
- /* Now loop over all cells in box, updating distance per Thomas method */
- bptr = bestdist;
- cptr = bestcolor;
- xx0 = inc0;
- for ( ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0-- ) {
- dist1 = dist0;
- xx1 = inc1;
- for ( ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1-- ) {
- dist2 = dist1;
- xx2 = inc2;
- for ( ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2-- ) {
- if ( dist2 < *bptr ) {
- *bptr = dist2;
- *cptr = (JSAMPLE) icolor;
- }
- dist2 += xx2;
- xx2 += 2 * STEP_C2 * STEP_C2;
- bptr++;
- cptr++;
- }
- dist1 += xx1;
- xx1 += 2 * STEP_C1 * STEP_C1;
- }
- dist0 += xx0;
- xx0 += 2 * STEP_C0 * STEP_C0;
- }
- }
- }
- LOCAL void
- fill_inverse_cmap( j_decompress_ptr cinfo, int c0, int c1, int c2 ) {
- /* Fill the inverse-colormap entries in the update box that contains */
- /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
- /* we can fill as many others as we wish.) */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- int minc0, minc1, minc2;/* lower left corner of update box */
- int ic0, ic1, ic2;
- register JSAMPLE * cptr;/* pointer into bestcolor[] array */
- register histptr cachep;/* pointer into main cache array */
- /* This array lists the candidate colormap indexes. */
- JSAMPLE colorlist[MAXNUMCOLORS];
- int numcolors; /* number of candidate colors */
- /* This array holds the actually closest colormap index for each cell. */
- JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
- /* Convert cell coordinates to update box ID */
- c0 >>= BOX_C0_LOG;
- c1 >>= BOX_C1_LOG;
- c2 >>= BOX_C2_LOG;
- /* Compute true coordinates of update box's origin corner.
- * Actually we compute the coordinates of the center of the corner
- * histogram cell, which are the lower bounds of the volume we care about.
- */
- minc0 = ( c0 << BOX_C0_SHIFT ) + ( ( 1 << C0_SHIFT ) >> 1 );
- minc1 = ( c1 << BOX_C1_SHIFT ) + ( ( 1 << C1_SHIFT ) >> 1 );
- minc2 = ( c2 << BOX_C2_SHIFT ) + ( ( 1 << C2_SHIFT ) >> 1 );
- /* Determine which colormap entries are close enough to be candidates
- * for the nearest entry to some cell in the update box.
- */
- numcolors = find_nearby_colors( cinfo, minc0, minc1, minc2, colorlist );
- /* Determine the actually nearest colors. */
- find_best_colors( cinfo, minc0, minc1, minc2, numcolors, colorlist,
- bestcolor );
- /* Save the best color numbers (plus 1) in the main cache array */
- c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
- c1 <<= BOX_C1_LOG;
- c2 <<= BOX_C2_LOG;
- cptr = bestcolor;
- for ( ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++ ) {
- for ( ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++ ) {
- cachep = &histogram[c0 + ic0][c1 + ic1][c2];
- for ( ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++ ) {
- *cachep++ = (histcell) ( GETJSAMPLE( *cptr++ ) + 1 );
- }
- }
- }
- }
- /*
- * Map some rows of pixels to the output colormapped representation.
- */
- METHODDEF void
- pass2_no_dither( j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows ) {
- /* This version performs no dithering */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- register JSAMPROW inptr, outptr;
- register histptr cachep;
- register int c0, c1, c2;
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- for ( row = 0; row < num_rows; row++ ) {
- inptr = input_buf[row];
- outptr = output_buf[row];
- for ( col = width; col > 0; col-- ) {
- /* get pixel value and index into the cache */
- c0 = GETJSAMPLE( *inptr++ ) >> C0_SHIFT;
- c1 = GETJSAMPLE( *inptr++ ) >> C1_SHIFT;
- c2 = GETJSAMPLE( *inptr++ ) >> C2_SHIFT;
- cachep = &histogram[c0][c1][c2];
- /* If we have not seen this color before, find nearest colormap entry */
- /* and update the cache */
- if ( *cachep == 0 ) {
- fill_inverse_cmap( cinfo, c0, c1, c2 );
- }
- /* Now emit the colormap index for this cell */
- *outptr++ = (JSAMPLE) ( *cachep - 1 );
- }
- }
- }
- METHODDEF void
- pass2_fs_dither( j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows ) {
- /* This version performs Floyd-Steinberg dithering */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- register LOCFSERROR cur0, cur1, cur2;/* current error or pixel value */
- LOCFSERROR belowerr0, belowerr1, belowerr2;/* error for pixel below cur */
- LOCFSERROR bpreverr0, bpreverr1, bpreverr2;/* error for below/prev col */
- register FSERRPTR errorptr; /* => fserrors[] at column before current */
- JSAMPROW inptr; /* => current input pixel */
- JSAMPROW outptr; /* => current output pixel */
- histptr cachep;
- int dir; /* +1 or -1 depending on direction */
- int dir3; /* 3*dir, for advancing inptr & errorptr */
- int row;
- JDIMENSION col;
- JDIMENSION width = cinfo->output_width;
- JSAMPLE * range_limit = cinfo->sample_range_limit;
- int * error_limit = cquantize->error_limiter;
- JSAMPROW colormap0 = cinfo->colormap[0];
- JSAMPROW colormap1 = cinfo->colormap[1];
- JSAMPROW colormap2 = cinfo->colormap[2];
- SHIFT_TEMPS
- for ( row = 0; row < num_rows; row++ ) {
- inptr = input_buf[row];
- outptr = output_buf[row];
- if ( cquantize->on_odd_row ) {
- /* work right to left in this row */
- inptr += ( width - 1 ) * 3;/* so point to rightmost pixel */
- outptr += width - 1;
- dir = -1;
- dir3 = -3;
- errorptr = cquantize->fserrors + ( width + 1 ) * 3;/* => entry after last column */
- cquantize->on_odd_row = FALSE;/* flip for next time */
- } else {
- /* work left to right in this row */
- dir = 1;
- dir3 = 3;
- errorptr = cquantize->fserrors;/* => entry before first real column */
- cquantize->on_odd_row = TRUE;/* flip for next time */
- }
- /* Preset error values: no error propagated to first pixel from left */
- cur0 = cur1 = cur2 = 0;
- /* and no error propagated to row below yet */
- belowerr0 = belowerr1 = belowerr2 = 0;
- bpreverr0 = bpreverr1 = bpreverr2 = 0;
- for ( col = width; col > 0; col-- ) {
- /* curN holds the error propagated from the previous pixel on the
- * current line. Add the error propagated from the previous line
- * to form the complete error correction term for this pixel, and
- * round the error term (which is expressed * 16) to an integer.
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- * for either sign of the error value.
- * Note: errorptr points to *previous* column's array entry.
- */
- cur0 = RIGHT_SHIFT( cur0 + errorptr[dir3 + 0] + 8, 4 );
- cur1 = RIGHT_SHIFT( cur1 + errorptr[dir3 + 1] + 8, 4 );
- cur2 = RIGHT_SHIFT( cur2 + errorptr[dir3 + 2] + 8, 4 );
- /* Limit the error using transfer function set by init_error_limit.
- * See comments with init_error_limit for rationale.
- */
- cur0 = error_limit[cur0];
- cur1 = error_limit[cur1];
- cur2 = error_limit[cur2];
- /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
- * The maximum error is +- MAXJSAMPLE (or less with error limiting);
- * this sets the required size of the range_limit array.
- */
- cur0 += GETJSAMPLE( inptr[0] );
- cur1 += GETJSAMPLE( inptr[1] );
- cur2 += GETJSAMPLE( inptr[2] );
- cur0 = GETJSAMPLE( range_limit[cur0] );
- cur1 = GETJSAMPLE( range_limit[cur1] );
- cur2 = GETJSAMPLE( range_limit[cur2] );
- /* Index into the cache with adjusted pixel value */
- cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
- /* If we have not seen this color before, find nearest colormap */
- /* entry and update the cache */
- if ( *cachep == 0 ) {
- fill_inverse_cmap( cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT );
- }
- /* Now emit the colormap index for this cell */
- { register int pixcode = *cachep - 1;
- *outptr = (JSAMPLE) pixcode;
- /* Compute representation error for this pixel */
- cur0 -= GETJSAMPLE( colormap0[pixcode] );
- cur1 -= GETJSAMPLE( colormap1[pixcode] );
- cur2 -= GETJSAMPLE( colormap2[pixcode] );
- }
- /* Compute error fractions to be propagated to adjacent pixels.
- * Add these into the running sums, and simultaneously shift the
- * next-line error sums left by 1 column.
- */
- { register LOCFSERROR bnexterr, delta;
- bnexterr = cur0;/* Process component 0 */
- delta = cur0 * 2;
- cur0 += delta;/* form error * 3 */
- errorptr[0] = (FSERROR) ( bpreverr0 + cur0 );
- cur0 += delta;/* form error * 5 */
- bpreverr0 = belowerr0 + cur0;
- belowerr0 = bnexterr;
- cur0 += delta;/* form error * 7 */
- bnexterr = cur1;/* Process component 1 */
- delta = cur1 * 2;
- cur1 += delta;/* form error * 3 */
- errorptr[1] = (FSERROR) ( bpreverr1 + cur1 );
- cur1 += delta;/* form error * 5 */
- bpreverr1 = belowerr1 + cur1;
- belowerr1 = bnexterr;
- cur1 += delta;/* form error * 7 */
- bnexterr = cur2;/* Process component 2 */
- delta = cur2 * 2;
- cur2 += delta;/* form error * 3 */
- errorptr[2] = (FSERROR) ( bpreverr2 + cur2 );
- cur2 += delta;/* form error * 5 */
- bpreverr2 = belowerr2 + cur2;
- belowerr2 = bnexterr;
- cur2 += delta;/* form error * 7 */
- }
- /* At this point curN contains the 7/16 error value to be propagated
- * to the next pixel on the current line, and all the errors for the
- * next line have been shifted over. We are therefore ready to move on.
- */
- inptr += dir3; /* Advance pixel pointers to next column */
- outptr += dir;
- errorptr += dir3;/* advance errorptr to current column */
- }
- /* Post-loop cleanup: we must unload the final error values into the
- * final fserrors[] entry. Note we need not unload belowerrN because
- * it is for the dummy column before or after the actual array.
- */
- errorptr[0] = (FSERROR) bpreverr0;/* unload prev errs into array */
- errorptr[1] = (FSERROR) bpreverr1;
- errorptr[2] = (FSERROR) bpreverr2;
- }
- }
- /*
- * Initialize the error-limiting transfer function (lookup table).
- * The raw F-S error computation can potentially compute error values of up to
- * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
- * much less, otherwise obviously wrong pixels will be created. (Typical
- * effects include weird fringes at color-area boundaries, isolated bright
- * pixels in a dark area, etc.) The standard advice for avoiding this problem
- * is to ensure that the "corners" of the color cube are allocated as output
- * colors; then repeated errors in the same direction cannot cause cascading
- * error buildup. However, that only prevents the error from getting
- * completely out of hand; Aaron Giles reports that error limiting improves
- * the results even with corner colors allocated.
- * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
- * well, but the smoother transfer function used below is even better. Thanks
- * to Aaron Giles for this idea.
- */
- LOCAL void
- init_error_limit( j_decompress_ptr cinfo ) {
- /* Allocate and fill in the error_limiter table */
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- int * table;
- int in, out;
- table = (int *) ( *cinfo->mem->alloc_small )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE, ( MAXJSAMPLE * 2 + 1 ) * SIZEOF( int ) );
- table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
- cquantize->error_limiter = table;
- #define STEPSIZE ( ( MAXJSAMPLE + 1 ) / 16 )
- /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
- out = 0;
- for ( in = 0; in < STEPSIZE; in++, out++ ) {
- table[in] = out;
- table[-in] = -out;
- }
- /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
- for (; in < STEPSIZE * 3; in++, out += ( in & 1 ) ? 0 : 1 ) {
- table[in] = out;
- table[-in] = -out;
- }
- /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
- for (; in <= MAXJSAMPLE; in++ ) {
- table[in] = out;
- table[-in] = -out;
- }
- #undef STEPSIZE
- }
- /*
- * Finish up at the end of each pass.
- */
- METHODDEF void
- finish_pass1( j_decompress_ptr cinfo ) {
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- /* Select the representative colors and fill in cinfo->colormap */
- cinfo->colormap = cquantize->sv_colormap;
- select_colors( cinfo, cquantize->desired );
- /* Force next pass to zero the color index table */
- cquantize->needs_zeroed = TRUE;
- }
- METHODDEF void
- finish_pass2( j_decompress_ptr cinfo ) {
- /* no work */
- }
- /*
- * Initialize for each processing pass.
- */
- METHODDEF void
- start_pass_2_quant( j_decompress_ptr cinfo, boolean is_pre_scan ) {
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- hist3d histogram = cquantize->histogram;
- int i;
- /* Only F-S dithering or no dithering is supported. */
- /* If user asks for ordered dither, give him F-S. */
- if ( cinfo->dither_mode != JDITHER_NONE ) {
- cinfo->dither_mode = JDITHER_FS;
- }
- if ( is_pre_scan ) {
- /* Set up method pointers */
- cquantize->pub.color_quantize = prescan_quantize;
- cquantize->pub.finish_pass = finish_pass1;
- cquantize->needs_zeroed = TRUE;/* Always zero histogram */
- } else {
- /* Set up method pointers */
- if ( cinfo->dither_mode == JDITHER_FS ) {
- cquantize->pub.color_quantize = pass2_fs_dither;
- } else {
- cquantize->pub.color_quantize = pass2_no_dither;
- }
- cquantize->pub.finish_pass = finish_pass2;
- /* Make sure color count is acceptable */
- i = cinfo->actual_number_of_colors;
- if ( i < 1 ) {
- ERREXIT1( cinfo, JERR_QUANT_FEW_COLORS, 1 );
- }
- if ( i > MAXNUMCOLORS ) {
- ERREXIT1( cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS );
- }
- if ( cinfo->dither_mode == JDITHER_FS ) {
- size_t arraysize = (size_t) ( ( cinfo->output_width + 2 ) *
- ( 3 * SIZEOF( FSERROR ) ) );
- /* Allocate Floyd-Steinberg workspace if we didn't already. */
- if ( cquantize->fserrors == NULL ) {
- cquantize->fserrors = (FSERRPTR) ( *cinfo->mem->alloc_large )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE, arraysize );
- }
- /* Initialize the propagated errors to zero. */
- jzero_far( (void FAR *) cquantize->fserrors, arraysize );
- /* Make the error-limit table if we didn't already. */
- if ( cquantize->error_limiter == NULL ) {
- init_error_limit( cinfo );
- }
- cquantize->on_odd_row = FALSE;
- }
- }
- /* Zero the histogram or inverse color map, if necessary */
- if ( cquantize->needs_zeroed ) {
- for ( i = 0; i < HIST_C0_ELEMS; i++ ) {
- jzero_far( (void FAR *) histogram[i],
- HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF( histcell ) );
- }
- cquantize->needs_zeroed = FALSE;
- }
- }
- /*
- * Switch to a new external colormap between output passes.
- */
- METHODDEF void
- new_color_map_2_quant( j_decompress_ptr cinfo ) {
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
- /* Reset the inverse color map */
- cquantize->needs_zeroed = TRUE;
- }
- /*
- * Module initialization routine for 2-pass color quantization.
- */
- GLOBAL void
- jinit_2pass_quantizer( j_decompress_ptr cinfo ) {
- my_cquantize_ptr cquantize;
- int i;
- cquantize = (my_cquantize_ptr)
- ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF( my_cquantizer ) );
- cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
- cquantize->pub.start_pass = start_pass_2_quant;
- cquantize->pub.new_color_map = new_color_map_2_quant;
- cquantize->fserrors = NULL; /* flag optional arrays not allocated */
- cquantize->error_limiter = NULL;
- /* Make sure jdmaster didn't give me a case I can't handle */
- if ( cinfo->out_color_components != 3 ) {
- ERREXIT( cinfo, JERR_NOTIMPL );
- }
- /* Allocate the histogram/inverse colormap storage */
- cquantize->histogram = (hist3d) ( *cinfo->mem->alloc_small )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF( hist2d ) );
- for ( i = 0; i < HIST_C0_ELEMS; i++ ) {
- cquantize->histogram[i] = (hist2d) ( *cinfo->mem->alloc_large )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE,
- HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF( histcell ) );
- }
- cquantize->needs_zeroed = TRUE;/* histogram is garbage now */
- /* Allocate storage for the completed colormap, if required.
- * We do this now since it is FAR storage and may affect
- * the memory manager's space calculations.
- */
- if ( cinfo->enable_2pass_quant ) {
- /* Make sure color count is acceptable */
- int desired = cinfo->desired_number_of_colors;
- /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
- if ( desired < 8 ) {
- ERREXIT1( cinfo, JERR_QUANT_FEW_COLORS, 8 );
- }
- /* Make sure colormap indexes can be represented by JSAMPLEs */
- if ( desired > MAXNUMCOLORS ) {
- ERREXIT1( cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS );
- }
- cquantize->sv_colormap = ( *cinfo->mem->alloc_sarray )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3 );
- cquantize->desired = desired;
- } else {
- cquantize->sv_colormap = NULL;
- }
- /* Only F-S dithering or no dithering is supported. */
- /* If user asks for ordered dither, give him F-S. */
- if ( cinfo->dither_mode != JDITHER_NONE ) {
- cinfo->dither_mode = JDITHER_FS;
- }
- /* Allocate Floyd-Steinberg workspace if necessary.
- * This isn't really needed until pass 2, but again it is FAR storage.
- * Although we will cope with a later change in dither_mode,
- * we do not promise to honor max_memory_to_use if dither_mode changes.
- */
- if ( cinfo->dither_mode == JDITHER_FS ) {
- cquantize->fserrors = (FSERRPTR) ( *cinfo->mem->alloc_large )
- ( (j_common_ptr) cinfo, JPOOL_IMAGE,
- (size_t) ( ( cinfo->output_width + 2 ) * ( 3 * SIZEOF( FSERROR ) ) ) );
- /* Might as well create the error-limiting table too. */
- init_error_limit( cinfo );
- }
- }
- #endif /* QUANT_2PASS_SUPPORTED */
|