jidctflt.cpp 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /*
  2. * jidctflt.c
  3. *
  4. * Copyright (C) 1994, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a floating-point implementation of the
  9. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  10. * must also perform dequantization of the input coefficients.
  11. *
  12. * This implementation should be more accurate than either of the integer
  13. * IDCT implementations. However, it may not give the same results on all
  14. * machines because of differences in roundoff behavior. Speed will depend
  15. * on the hardware's floating point capacity.
  16. *
  17. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  18. * on each row (or vice versa, but it's more convenient to emit a row at
  19. * a time). Direct algorithms are also available, but they are much more
  20. * complex and seem not to be any faster when reduced to code.
  21. *
  22. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  23. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  24. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  25. * JPEG textbook (see REFERENCES section in file README). The following code
  26. * is based directly on figure 4-8 in P&M.
  27. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  28. * possible to arrange the computation so that many of the multiplies are
  29. * simple scalings of the final outputs. These multiplies can then be
  30. * folded into the multiplications or divisions by the JPEG quantization
  31. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  32. * to be done in the DCT itself.
  33. * The primary disadvantage of this method is that with a fixed-point
  34. * implementation, accuracy is lost due to imprecise representation of the
  35. * scaled quantization values. However, that problem does not arise if
  36. * we use floating point arithmetic.
  37. */
  38. #define JPEG_INTERNALS
  39. #include "jinclude.h"
  40. #include "jpeglib.h"
  41. #include "jdct.h" /* Private declarations for DCT subsystem */
  42. #ifdef DCT_FLOAT_SUPPORTED
  43. /*
  44. * This module is specialized to the case DCTSIZE = 8.
  45. */
  46. #if DCTSIZE != 8
  47. Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
  48. #endif
  49. /* Dequantize a coefficient by multiplying it by the multiplier-table
  50. * entry; produce a float result.
  51. */
  52. #define DEQUANTIZE( coef, quantval ) ( ( (FAST_FLOAT) ( coef ) ) * ( quantval ) )
  53. /*
  54. * Perform dequantization and inverse DCT on one block of coefficients.
  55. */
  56. GLOBAL void
  57. jpeg_idct_float( j_decompress_ptr cinfo, jpeg_component_info * compptr,
  58. JCOEFPTR coef_block,
  59. JSAMPARRAY output_buf, JDIMENSION output_col ) {
  60. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  61. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  62. FAST_FLOAT z5, z10, z11, z12, z13;
  63. JCOEFPTR inptr;
  64. FLOAT_MULT_TYPE * quantptr;
  65. FAST_FLOAT * wsptr;
  66. JSAMPROW outptr;
  67. JSAMPLE * range_limit = IDCT_range_limit( cinfo );
  68. int ctr;
  69. FAST_FLOAT workspace[DCTSIZE2];/* buffers data between passes */
  70. SHIFT_TEMPS
  71. /* Pass 1: process columns from input, store into work array. */
  72. inptr = coef_block;
  73. quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  74. wsptr = workspace;
  75. for ( ctr = DCTSIZE; ctr > 0; ctr-- ) {
  76. /* Due to quantization, we will usually find that many of the input
  77. * coefficients are zero, especially the AC terms. We can exploit this
  78. * by short-circuiting the IDCT calculation for any column in which all
  79. * the AC terms are zero. In that case each output is equal to the
  80. * DC coefficient (with scale factor as needed).
  81. * With typical images and quantization tables, half or more of the
  82. * column DCT calculations can be simplified this way.
  83. */
  84. if ( ( inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] |
  85. inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] |
  86. inptr[DCTSIZE * 7] ) == 0 ) {
  87. /* AC terms all zero */
  88. FAST_FLOAT dcval = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] );
  89. wsptr[DCTSIZE * 0] = dcval;
  90. wsptr[DCTSIZE * 1] = dcval;
  91. wsptr[DCTSIZE * 2] = dcval;
  92. wsptr[DCTSIZE * 3] = dcval;
  93. wsptr[DCTSIZE * 4] = dcval;
  94. wsptr[DCTSIZE * 5] = dcval;
  95. wsptr[DCTSIZE * 6] = dcval;
  96. wsptr[DCTSIZE * 7] = dcval;
  97. inptr++; /* advance pointers to next column */
  98. quantptr++;
  99. wsptr++;
  100. continue;
  101. }
  102. /* Even part */
  103. tmp0 = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] );
  104. tmp1 = DEQUANTIZE( inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] );
  105. tmp2 = DEQUANTIZE( inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] );
  106. tmp3 = DEQUANTIZE( inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] );
  107. tmp10 = tmp0 + tmp2;/* phase 3 */
  108. tmp11 = tmp0 - tmp2;
  109. tmp13 = tmp1 + tmp3;/* phases 5-3 */
  110. tmp12 = ( tmp1 - tmp3 ) * ( (FAST_FLOAT) 1.414213562 ) - tmp13;/* 2*c4 */
  111. tmp0 = tmp10 + tmp13;/* phase 2 */
  112. tmp3 = tmp10 - tmp13;
  113. tmp1 = tmp11 + tmp12;
  114. tmp2 = tmp11 - tmp12;
  115. /* Odd part */
  116. tmp4 = DEQUANTIZE( inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] );
  117. tmp5 = DEQUANTIZE( inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] );
  118. tmp6 = DEQUANTIZE( inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] );
  119. tmp7 = DEQUANTIZE( inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] );
  120. z13 = tmp6 + tmp5; /* phase 6 */
  121. z10 = tmp6 - tmp5;
  122. z11 = tmp4 + tmp7;
  123. z12 = tmp4 - tmp7;
  124. tmp7 = z11 + z13; /* phase 5 */
  125. tmp11 = ( z11 - z13 ) * ( (FAST_FLOAT) 1.414213562 );/* 2*c4 */
  126. z5 = ( z10 + z12 ) * ( (FAST_FLOAT) 1.847759065 );/* 2*c2 */
  127. tmp10 = ( (FAST_FLOAT) 1.082392200 ) * z12 - z5;/* 2*(c2-c6) */
  128. tmp12 = ( (FAST_FLOAT) -2.613125930 ) * z10 + z5;/* -2*(c2+c6) */
  129. tmp6 = tmp12 - tmp7;/* phase 2 */
  130. tmp5 = tmp11 - tmp6;
  131. tmp4 = tmp10 + tmp5;
  132. wsptr[DCTSIZE * 0] = tmp0 + tmp7;
  133. wsptr[DCTSIZE * 7] = tmp0 - tmp7;
  134. wsptr[DCTSIZE * 1] = tmp1 + tmp6;
  135. wsptr[DCTSIZE * 6] = tmp1 - tmp6;
  136. wsptr[DCTSIZE * 2] = tmp2 + tmp5;
  137. wsptr[DCTSIZE * 5] = tmp2 - tmp5;
  138. wsptr[DCTSIZE * 4] = tmp3 + tmp4;
  139. wsptr[DCTSIZE * 3] = tmp3 - tmp4;
  140. inptr++; /* advance pointers to next column */
  141. quantptr++;
  142. wsptr++;
  143. }
  144. /* Pass 2: process rows from work array, store into output array. */
  145. /* Note that we must descale the results by a factor of 8 == 2**3. */
  146. wsptr = workspace;
  147. for ( ctr = 0; ctr < DCTSIZE; ctr++ ) {
  148. outptr = output_buf[ctr] + output_col;
  149. /* Rows of zeroes can be exploited in the same way as we did with columns.
  150. * However, the column calculation has created many nonzero AC terms, so
  151. * the simplification applies less often (typically 5% to 10% of the time).
  152. * And testing floats for zero is relatively expensive, so we don't bother.
  153. */
  154. /* Even part */
  155. tmp10 = wsptr[0] + wsptr[4];
  156. tmp11 = wsptr[0] - wsptr[4];
  157. tmp13 = wsptr[2] + wsptr[6];
  158. tmp12 = ( wsptr[2] - wsptr[6] ) * ( (FAST_FLOAT) 1.414213562 ) - tmp13;
  159. tmp0 = tmp10 + tmp13;
  160. tmp3 = tmp10 - tmp13;
  161. tmp1 = tmp11 + tmp12;
  162. tmp2 = tmp11 - tmp12;
  163. /* Odd part */
  164. z13 = wsptr[5] + wsptr[3];
  165. z10 = wsptr[5] - wsptr[3];
  166. z11 = wsptr[1] + wsptr[7];
  167. z12 = wsptr[1] - wsptr[7];
  168. tmp7 = z11 + z13;
  169. tmp11 = ( z11 - z13 ) * ( (FAST_FLOAT) 1.414213562 );
  170. z5 = ( z10 + z12 ) * ( (FAST_FLOAT) 1.847759065 );/* 2*c2 */
  171. tmp10 = ( (FAST_FLOAT) 1.082392200 ) * z12 - z5;/* 2*(c2-c6) */
  172. tmp12 = ( (FAST_FLOAT) -2.613125930 ) * z10 + z5;/* -2*(c2+c6) */
  173. tmp6 = tmp12 - tmp7;
  174. tmp5 = tmp11 - tmp6;
  175. tmp4 = tmp10 + tmp5;
  176. /* Final output stage: scale down by a factor of 8 and range-limit */
  177. outptr[0] = range_limit[(int) DESCALE( (INT32) ( tmp0 + tmp7 ), 3 )
  178. & RANGE_MASK];
  179. outptr[7] = range_limit[(int) DESCALE( (INT32) ( tmp0 - tmp7 ), 3 )
  180. & RANGE_MASK];
  181. outptr[1] = range_limit[(int) DESCALE( (INT32) ( tmp1 + tmp6 ), 3 )
  182. & RANGE_MASK];
  183. outptr[6] = range_limit[(int) DESCALE( (INT32) ( tmp1 - tmp6 ), 3 )
  184. & RANGE_MASK];
  185. outptr[2] = range_limit[(int) DESCALE( (INT32) ( tmp2 + tmp5 ), 3 )
  186. & RANGE_MASK];
  187. outptr[5] = range_limit[(int) DESCALE( (INT32) ( tmp2 - tmp5 ), 3 )
  188. & RANGE_MASK];
  189. outptr[4] = range_limit[(int) DESCALE( (INT32) ( tmp3 + tmp4 ), 3 )
  190. & RANGE_MASK];
  191. outptr[3] = range_limit[(int) DESCALE( (INT32) ( tmp3 - tmp4 ), 3 )
  192. & RANGE_MASK];
  193. wsptr += DCTSIZE; /* advance pointer to next row */
  194. }
  195. }
  196. #endif /* DCT_FLOAT_SUPPORTED */