123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- /*
- * jfdctflt.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * This implementation should be more accurate than either of the integer
- * DCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_FLOAT_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
- #endif
- /*
- * Perform the forward DCT on one block of samples.
- */
- GLOBAL void
- jpeg_fdct_float( FAST_FLOAT * data ) {
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
- FAST_FLOAT * dataptr;
- int ctr;
- /* Pass 1: process rows. */
- dataptr = data;
- for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
- /* Even part */
- tmp10 = tmp0 + tmp3;/* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[0] = tmp10 + tmp11;/* phase 3 */
- dataptr[4] = tmp10 - tmp11;
- z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
- dataptr[2] = tmp13 + z1;/* phase 5 */
- dataptr[6] = tmp13 - z1;
- /* Odd part */
- tmp10 = tmp4 + tmp5;/* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
- z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
- z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
- z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
- dataptr[5] = z13 + z2;/* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns. */
- dataptr = data;
- for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
- tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
- tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
- tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
- tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
- tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
- tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
- tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
- tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
- /* Even part */
- tmp10 = tmp0 + tmp3;/* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[DCTSIZE * 0] = tmp10 + tmp11;/* phase 3 */
- dataptr[DCTSIZE * 4] = tmp10 - tmp11;
- z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
- dataptr[DCTSIZE * 2] = tmp13 + z1;/* phase 5 */
- dataptr[DCTSIZE * 6] = tmp13 - z1;
- /* Odd part */
- tmp10 = tmp4 + tmp5;/* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
- z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
- z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
- z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
- dataptr[DCTSIZE * 5] = z13 + z2;/* phase 6 */
- dataptr[DCTSIZE * 3] = z13 - z2;
- dataptr[DCTSIZE * 1] = z11 + z4;
- dataptr[DCTSIZE * 7] = z11 - z4;
- dataptr++; /* advance pointer to next column */
- }
- }
- #endif /* DCT_FLOAT_SUPPORTED */
|