jfdctflt.cpp 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. /*
  2. * jfdctflt.c
  3. *
  4. * Copyright (C) 1994, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a floating-point implementation of the
  9. * forward DCT (Discrete Cosine Transform).
  10. *
  11. * This implementation should be more accurate than either of the integer
  12. * DCT implementations. However, it may not give the same results on all
  13. * machines because of differences in roundoff behavior. Speed will depend
  14. * on the hardware's floating point capacity.
  15. *
  16. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  17. * on each column. Direct algorithms are also available, but they are
  18. * much more complex and seem not to be any faster when reduced to code.
  19. *
  20. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  21. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  22. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  23. * JPEG textbook (see REFERENCES section in file README). The following code
  24. * is based directly on figure 4-8 in P&M.
  25. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  26. * possible to arrange the computation so that many of the multiplies are
  27. * simple scalings of the final outputs. These multiplies can then be
  28. * folded into the multiplications or divisions by the JPEG quantization
  29. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  30. * to be done in the DCT itself.
  31. * The primary disadvantage of this method is that with a fixed-point
  32. * implementation, accuracy is lost due to imprecise representation of the
  33. * scaled quantization values. However, that problem does not arise if
  34. * we use floating point arithmetic.
  35. */
  36. #define JPEG_INTERNALS
  37. #include "jinclude.h"
  38. #include "jpeglib.h"
  39. #include "jdct.h" /* Private declarations for DCT subsystem */
  40. #ifdef DCT_FLOAT_SUPPORTED
  41. /*
  42. * This module is specialized to the case DCTSIZE = 8.
  43. */
  44. #if DCTSIZE != 8
  45. Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
  46. #endif
  47. /*
  48. * Perform the forward DCT on one block of samples.
  49. */
  50. GLOBAL void
  51. jpeg_fdct_float( FAST_FLOAT * data ) {
  52. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  53. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  54. FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  55. FAST_FLOAT * dataptr;
  56. int ctr;
  57. /* Pass 1: process rows. */
  58. dataptr = data;
  59. for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
  60. tmp0 = dataptr[0] + dataptr[7];
  61. tmp7 = dataptr[0] - dataptr[7];
  62. tmp1 = dataptr[1] + dataptr[6];
  63. tmp6 = dataptr[1] - dataptr[6];
  64. tmp2 = dataptr[2] + dataptr[5];
  65. tmp5 = dataptr[2] - dataptr[5];
  66. tmp3 = dataptr[3] + dataptr[4];
  67. tmp4 = dataptr[3] - dataptr[4];
  68. /* Even part */
  69. tmp10 = tmp0 + tmp3;/* phase 2 */
  70. tmp13 = tmp0 - tmp3;
  71. tmp11 = tmp1 + tmp2;
  72. tmp12 = tmp1 - tmp2;
  73. dataptr[0] = tmp10 + tmp11;/* phase 3 */
  74. dataptr[4] = tmp10 - tmp11;
  75. z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
  76. dataptr[2] = tmp13 + z1;/* phase 5 */
  77. dataptr[6] = tmp13 - z1;
  78. /* Odd part */
  79. tmp10 = tmp4 + tmp5;/* phase 2 */
  80. tmp11 = tmp5 + tmp6;
  81. tmp12 = tmp6 + tmp7;
  82. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  83. z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
  84. z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
  85. z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
  86. z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
  87. z11 = tmp7 + z3; /* phase 5 */
  88. z13 = tmp7 - z3;
  89. dataptr[5] = z13 + z2;/* phase 6 */
  90. dataptr[3] = z13 - z2;
  91. dataptr[1] = z11 + z4;
  92. dataptr[7] = z11 - z4;
  93. dataptr += DCTSIZE; /* advance pointer to next row */
  94. }
  95. /* Pass 2: process columns. */
  96. dataptr = data;
  97. for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
  98. tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
  99. tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
  100. tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
  101. tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
  102. tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
  103. tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
  104. tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
  105. tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
  106. /* Even part */
  107. tmp10 = tmp0 + tmp3;/* phase 2 */
  108. tmp13 = tmp0 - tmp3;
  109. tmp11 = tmp1 + tmp2;
  110. tmp12 = tmp1 - tmp2;
  111. dataptr[DCTSIZE * 0] = tmp10 + tmp11;/* phase 3 */
  112. dataptr[DCTSIZE * 4] = tmp10 - tmp11;
  113. z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
  114. dataptr[DCTSIZE * 2] = tmp13 + z1;/* phase 5 */
  115. dataptr[DCTSIZE * 6] = tmp13 - z1;
  116. /* Odd part */
  117. tmp10 = tmp4 + tmp5;/* phase 2 */
  118. tmp11 = tmp5 + tmp6;
  119. tmp12 = tmp6 + tmp7;
  120. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  121. z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
  122. z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
  123. z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
  124. z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
  125. z11 = tmp7 + z3; /* phase 5 */
  126. z13 = tmp7 - z3;
  127. dataptr[DCTSIZE * 5] = z13 + z2;/* phase 6 */
  128. dataptr[DCTSIZE * 3] = z13 - z2;
  129. dataptr[DCTSIZE * 1] = z11 + z4;
  130. dataptr[DCTSIZE * 7] = z11 - z4;
  131. dataptr++; /* advance pointer to next column */
  132. }
  133. }
  134. #endif /* DCT_FLOAT_SUPPORTED */