jcparam.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /*
  2. * jcparam.c
  3. *
  4. * Copyright (C) 1991-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains optional default-setting code for the JPEG compressor.
  9. * Applications do not have to use this file, but those that don't use it
  10. * must know a lot more about the innards of the JPEG code.
  11. */
  12. #define JPEG_INTERNALS
  13. #include "jinclude.h"
  14. #include "jpeglib.h"
  15. /*
  16. * Quantization table setup routines
  17. */
  18. GLOBAL void
  19. jpeg_add_quant_table( j_compress_ptr cinfo, int which_tbl,
  20. const unsigned int * basic_table,
  21. int scale_factor, boolean force_baseline ) {
  22. /* Define a quantization table equal to the basic_table times
  23. * a scale factor (given as a percentage).
  24. * If force_baseline is TRUE, the computed quantization table entries
  25. * are limited to 1..255 for JPEG baseline compatibility.
  26. */
  27. JQUANT_TBL ** qtblptr = &cinfo->quant_tbl_ptrs[which_tbl];
  28. int i;
  29. long temp;
  30. /* Safety check to ensure start_compress not called yet. */
  31. if ( cinfo->global_state != CSTATE_START ) {
  32. ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
  33. }
  34. if ( *qtblptr == NULL ) {
  35. *qtblptr = jpeg_alloc_quant_table( (j_common_ptr) cinfo );
  36. }
  37. for ( i = 0; i < DCTSIZE2; i++ ) {
  38. temp = ( (long) basic_table[i] * scale_factor + 50L ) / 100L;
  39. /* limit the values to the valid range */
  40. if ( temp <= 0L ) {
  41. temp = 1L;
  42. }
  43. if ( temp > 32767L ) {
  44. temp = 32767L;
  45. } /* max quantizer needed for 12 bits */
  46. if ( ( force_baseline ) && ( temp > 255L ) ) {
  47. temp = 255L;
  48. } /* limit to baseline range if requested */
  49. ( *qtblptr )->quantval[i] = (UINT16) temp;
  50. }
  51. /* Initialize sent_table FALSE so table will be written to JPEG file. */
  52. ( *qtblptr )->sent_table = FALSE;
  53. }
  54. GLOBAL void
  55. jpeg_set_linear_quality( j_compress_ptr cinfo, int scale_factor,
  56. boolean force_baseline ) {
  57. /* Set or change the 'quality' (quantization) setting, using default tables
  58. * and a straight percentage-scaling quality scale. In most cases it's better
  59. * to use jpeg_set_quality (below); this entry point is provided for
  60. * applications that insist on a linear percentage scaling.
  61. */
  62. /* This is the sample quantization table given in the JPEG spec section K.1,
  63. * but expressed in zigzag order (as are all of our quant. tables).
  64. * The spec says that the values given produce "good" quality, and
  65. * when divided by 2, "very good" quality.
  66. */
  67. static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
  68. 16, 11, 12, 14, 12, 10, 16, 14,
  69. 13, 14, 18, 17, 16, 19, 24, 40,
  70. 26, 24, 22, 22, 24, 49, 35, 37,
  71. 29, 40, 58, 51, 61, 60, 57, 51,
  72. 56, 55, 64, 72, 92, 78, 64, 68,
  73. 87, 69, 55, 56, 80, 109, 81, 87,
  74. 95, 98, 103, 104, 103, 62, 77, 113,
  75. 121, 112, 100, 120, 92, 101, 103, 99
  76. };
  77. static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
  78. 17, 18, 18, 24, 21, 24, 47, 26,
  79. 26, 47, 99, 66, 56, 66, 99, 99,
  80. 99, 99, 99, 99, 99, 99, 99, 99,
  81. 99, 99, 99, 99, 99, 99, 99, 99,
  82. 99, 99, 99, 99, 99, 99, 99, 99,
  83. 99, 99, 99, 99, 99, 99, 99, 99,
  84. 99, 99, 99, 99, 99, 99, 99, 99,
  85. 99, 99, 99, 99, 99, 99, 99, 99
  86. };
  87. /* Set up two quantization tables using the specified scaling */
  88. jpeg_add_quant_table( cinfo, 0, std_luminance_quant_tbl,
  89. scale_factor, force_baseline );
  90. jpeg_add_quant_table( cinfo, 1, std_chrominance_quant_tbl,
  91. scale_factor, force_baseline );
  92. }
  93. GLOBAL int
  94. jpeg_quality_scaling( int quality ) {
  95. /* Convert a user-specified quality rating to a percentage scaling factor
  96. * for an underlying quantization table, using our recommended scaling curve.
  97. * The input 'quality' factor should be 0 (terrible) to 100 (very good).
  98. */
  99. /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
  100. if ( quality <= 0 ) {
  101. quality = 1;
  102. }
  103. if ( quality > 100 ) {
  104. quality = 100;
  105. }
  106. /* The basic table is used as-is (scaling 100) for a quality of 50.
  107. * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
  108. * note that at Q=100 the scaling is 0, which will cause j_add_quant_table
  109. * to make all the table entries 1 (hence, no quantization loss).
  110. * Qualities 1..50 are converted to scaling percentage 5000/Q.
  111. */
  112. if ( quality < 50 ) {
  113. quality = 5000 / quality;
  114. } else {
  115. quality = 200 - quality * 2;
  116. }
  117. return quality;
  118. }
  119. GLOBAL void
  120. jpeg_set_quality( j_compress_ptr cinfo, int quality, boolean force_baseline ) {
  121. /* Set or change the 'quality' (quantization) setting, using default tables.
  122. * This is the standard quality-adjusting entry point for typical user
  123. * interfaces; only those who want detailed control over quantization tables
  124. * would use the preceding three routines directly.
  125. */
  126. /* Convert user 0-100 rating to percentage scaling */
  127. quality = jpeg_quality_scaling( quality );
  128. /* Set up standard quality tables */
  129. jpeg_set_linear_quality( cinfo, quality, force_baseline );
  130. }
  131. /*
  132. * Huffman table setup routines
  133. */
  134. LOCAL void
  135. add_huff_table( j_compress_ptr cinfo,
  136. JHUFF_TBL ** htblptr, const UINT8 * bits, const UINT8 * val ) {
  137. /* Define a Huffman table */
  138. if ( *htblptr == NULL ) {
  139. *htblptr = jpeg_alloc_huff_table( (j_common_ptr) cinfo );
  140. }
  141. MEMCOPY( ( *htblptr )->bits, bits, SIZEOF( ( *htblptr )->bits ) );
  142. MEMCOPY( ( *htblptr )->huffval, val, SIZEOF( ( *htblptr )->huffval ) );
  143. /* Initialize sent_table FALSE so table will be written to JPEG file. */
  144. ( *htblptr )->sent_table = FALSE;
  145. }
  146. LOCAL void
  147. std_huff_tables( j_compress_ptr cinfo ) {
  148. /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
  149. /* IMPORTANT: these are only valid for 8-bit data precision! */
  150. static const UINT8 bits_dc_luminance[17] =
  151. { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
  152. static const UINT8 val_dc_luminance[] =
  153. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  154. static const UINT8 bits_dc_chrominance[17] =
  155. { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  156. static const UINT8 val_dc_chrominance[] =
  157. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  158. static const UINT8 bits_ac_luminance[17] =
  159. { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
  160. static const UINT8 val_ac_luminance[] =
  161. { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
  162. 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
  163. 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
  164. 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
  165. 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
  166. 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
  167. 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
  168. 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
  169. 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
  170. 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
  171. 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
  172. 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
  173. 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
  174. 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
  175. 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
  176. 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
  177. 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
  178. 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
  179. 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
  180. 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  181. 0xf9, 0xfa };
  182. static const UINT8 bits_ac_chrominance[17] =
  183. { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
  184. static const UINT8 val_ac_chrominance[] =
  185. { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
  186. 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
  187. 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
  188. 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
  189. 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
  190. 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
  191. 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
  192. 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
  193. 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
  194. 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
  195. 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
  196. 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
  197. 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
  198. 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
  199. 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
  200. 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
  201. 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
  202. 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
  203. 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
  204. 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  205. 0xf9, 0xfa };
  206. add_huff_table( cinfo, &cinfo->dc_huff_tbl_ptrs[0],
  207. bits_dc_luminance, val_dc_luminance );
  208. add_huff_table( cinfo, &cinfo->ac_huff_tbl_ptrs[0],
  209. bits_ac_luminance, val_ac_luminance );
  210. add_huff_table( cinfo, &cinfo->dc_huff_tbl_ptrs[1],
  211. bits_dc_chrominance, val_dc_chrominance );
  212. add_huff_table( cinfo, &cinfo->ac_huff_tbl_ptrs[1],
  213. bits_ac_chrominance, val_ac_chrominance );
  214. }
  215. /*
  216. * Default parameter setup for compression.
  217. *
  218. * Applications that don't choose to use this routine must do their
  219. * own setup of all these parameters. Alternately, you can call this
  220. * to establish defaults and then alter parameters selectively. This
  221. * is the recommended approach since, if we add any new parameters,
  222. * your code will still work (they'll be set to reasonable defaults).
  223. */
  224. GLOBAL void
  225. jpeg_set_defaults( j_compress_ptr cinfo ) {
  226. int i;
  227. /* Safety check to ensure start_compress not called yet. */
  228. if ( cinfo->global_state != CSTATE_START ) {
  229. ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
  230. }
  231. /* Allocate comp_info array large enough for maximum component count.
  232. * Array is made permanent in case application wants to compress
  233. * multiple images at same param settings.
  234. */
  235. if ( cinfo->comp_info == NULL ) {
  236. cinfo->comp_info = (jpeg_component_info *)
  237. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_PERMANENT,
  238. MAX_COMPONENTS * SIZEOF( jpeg_component_info ) );
  239. }
  240. /* Initialize everything not dependent on the color space */
  241. cinfo->data_precision = BITS_IN_JSAMPLE;
  242. /* Set up two quantization tables using default quality of 75 */
  243. jpeg_set_quality( cinfo, 75, TRUE );
  244. /* Set up two Huffman tables */
  245. std_huff_tables( cinfo );
  246. /* Initialize default arithmetic coding conditioning */
  247. for ( i = 0; i < NUM_ARITH_TBLS; i++ ) {
  248. cinfo->arith_dc_L[i] = 0;
  249. cinfo->arith_dc_U[i] = 1;
  250. cinfo->arith_ac_K[i] = 5;
  251. }
  252. /* Default is no multiple-scan output */
  253. cinfo->scan_info = NULL;
  254. cinfo->num_scans = 0;
  255. /* Expect normal source image, not raw downsampled data */
  256. cinfo->raw_data_in = FALSE;
  257. /* Use Huffman coding, not arithmetic coding, by default */
  258. cinfo->arith_code = FALSE;
  259. /* By default, don't do extra passes to optimize entropy coding */
  260. cinfo->optimize_coding = FALSE;
  261. /* The standard Huffman tables are only valid for 8-bit data precision.
  262. * If the precision is higher, force optimization on so that usable
  263. * tables will be computed. This test can be removed if default tables
  264. * are supplied that are valid for the desired precision.
  265. */
  266. if ( cinfo->data_precision > 8 ) {
  267. cinfo->optimize_coding = TRUE;
  268. }
  269. /* By default, use the simpler non-cosited sampling alignment */
  270. cinfo->CCIR601_sampling = FALSE;
  271. /* No input smoothing */
  272. cinfo->smoothing_factor = 0;
  273. /* DCT algorithm preference */
  274. cinfo->dct_method = JDCT_DEFAULT;
  275. /* No restart markers */
  276. cinfo->restart_interval = 0;
  277. cinfo->restart_in_rows = 0;
  278. /* Fill in default JFIF marker parameters. Note that whether the marker
  279. * will actually be written is determined by jpeg_set_colorspace.
  280. */
  281. cinfo->density_unit = 0;/* Pixel size is unknown by default */
  282. cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
  283. cinfo->Y_density = 1;
  284. /* Choose JPEG colorspace based on input space, set defaults accordingly */
  285. jpeg_default_colorspace( cinfo );
  286. }
  287. /*
  288. * Select an appropriate JPEG colorspace for in_color_space.
  289. */
  290. GLOBAL void
  291. jpeg_default_colorspace( j_compress_ptr cinfo ) {
  292. switch ( cinfo->in_color_space ) {
  293. case JCS_GRAYSCALE:
  294. jpeg_set_colorspace( cinfo, JCS_GRAYSCALE );
  295. break;
  296. case JCS_RGB:
  297. jpeg_set_colorspace( cinfo, JCS_YCbCr );
  298. break;
  299. case JCS_YCbCr:
  300. jpeg_set_colorspace( cinfo, JCS_YCbCr );
  301. break;
  302. case JCS_CMYK:
  303. jpeg_set_colorspace( cinfo, JCS_CMYK );/* By default, no translation */
  304. break;
  305. case JCS_YCCK:
  306. jpeg_set_colorspace( cinfo, JCS_YCCK );
  307. break;
  308. case JCS_UNKNOWN:
  309. jpeg_set_colorspace( cinfo, JCS_UNKNOWN );
  310. break;
  311. default:
  312. ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE );
  313. }
  314. }
  315. /*
  316. * Set the JPEG colorspace, and choose colorspace-dependent default values.
  317. */
  318. GLOBAL void
  319. jpeg_set_colorspace( j_compress_ptr cinfo, J_COLOR_SPACE colorspace ) {
  320. jpeg_component_info * compptr;
  321. int ci;
  322. #define SET_COMP( index, id, hsamp, vsamp, quant, dctbl, actbl ) \
  323. ( compptr = &cinfo->comp_info[index], \
  324. compptr->component_id = ( id ), \
  325. compptr->h_samp_factor = ( hsamp ), \
  326. compptr->v_samp_factor = ( vsamp ), \
  327. compptr->quant_tbl_no = ( quant ), \
  328. compptr->dc_tbl_no = ( dctbl ), \
  329. compptr->ac_tbl_no = ( actbl ) )
  330. /* Safety check to ensure start_compress not called yet. */
  331. if ( cinfo->global_state != CSTATE_START ) {
  332. ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
  333. }
  334. /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
  335. * tables 1 for chrominance components.
  336. */
  337. cinfo->jpeg_color_space = colorspace;
  338. cinfo->write_JFIF_header = FALSE;/* No marker for non-JFIF colorspaces */
  339. cinfo->write_Adobe_marker = FALSE;/* write no Adobe marker by default */
  340. switch ( colorspace ) {
  341. case JCS_GRAYSCALE:
  342. cinfo->write_JFIF_header = TRUE;/* Write a JFIF marker */
  343. cinfo->num_components = 1;
  344. /* JFIF specifies component ID 1 */
  345. SET_COMP( 0, 1, 1, 1, 0, 0, 0 );
  346. break;
  347. case JCS_RGB:
  348. cinfo->write_Adobe_marker = TRUE;/* write Adobe marker to flag RGB */
  349. cinfo->num_components = 3;
  350. SET_COMP( 0, 0x52 /* 'R' */, 1, 1, 0, 0, 0 );
  351. SET_COMP( 1, 0x47 /* 'G' */, 1, 1, 0, 0, 0 );
  352. SET_COMP( 2, 0x42 /* 'B' */, 1, 1, 0, 0, 0 );
  353. break;
  354. case JCS_YCbCr:
  355. cinfo->write_JFIF_header = TRUE;/* Write a JFIF marker */
  356. cinfo->num_components = 3;
  357. /* JFIF specifies component IDs 1,2,3 */
  358. /* We default to 2x2 subsamples of chrominance */
  359. SET_COMP( 0, 1, 2, 2, 0, 0, 0 );
  360. SET_COMP( 1, 2, 1, 1, 1, 1, 1 );
  361. SET_COMP( 2, 3, 1, 1, 1, 1, 1 );
  362. break;
  363. case JCS_CMYK:
  364. cinfo->write_Adobe_marker = TRUE;/* write Adobe marker to flag CMYK */
  365. cinfo->num_components = 4;
  366. SET_COMP( 0, 0x43 /* 'C' */, 1, 1, 0, 0, 0 );
  367. SET_COMP( 1, 0x4D /* 'M' */, 1, 1, 0, 0, 0 );
  368. SET_COMP( 2, 0x59 /* 'Y' */, 1, 1, 0, 0, 0 );
  369. SET_COMP( 3, 0x4B /* 'K' */, 1, 1, 0, 0, 0 );
  370. break;
  371. case JCS_YCCK:
  372. cinfo->write_Adobe_marker = TRUE;/* write Adobe marker to flag YCCK */
  373. cinfo->num_components = 4;
  374. SET_COMP( 0, 1, 2, 2, 0, 0, 0 );
  375. SET_COMP( 1, 2, 1, 1, 1, 1, 1 );
  376. SET_COMP( 2, 3, 1, 1, 1, 1, 1 );
  377. SET_COMP( 3, 4, 2, 2, 0, 0, 0 );
  378. break;
  379. case JCS_UNKNOWN:
  380. cinfo->num_components = cinfo->input_components;
  381. if ( ( cinfo->num_components < 1 ) || ( cinfo->num_components > MAX_COMPONENTS ) ) {
  382. ERREXIT2( cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
  383. MAX_COMPONENTS );
  384. }
  385. for ( ci = 0; ci < cinfo->num_components; ci++ ) {
  386. SET_COMP( ci, ci, 1, 1, 0, 0, 0 );
  387. }
  388. break;
  389. default:
  390. ERREXIT( cinfo, JERR_BAD_J_COLORSPACE );
  391. }
  392. }
  393. #ifdef C_PROGRESSIVE_SUPPORTED
  394. LOCAL jpeg_scan_info *
  395. fill_a_scan( jpeg_scan_info * scanptr, int ci,
  396. int Ss, int Se, int Ah, int Al ) {
  397. /* Support routine: generate one scan for specified component */
  398. scanptr->comps_in_scan = 1;
  399. scanptr->component_index[0] = ci;
  400. scanptr->Ss = Ss;
  401. scanptr->Se = Se;
  402. scanptr->Ah = Ah;
  403. scanptr->Al = Al;
  404. scanptr++;
  405. return scanptr;
  406. }
  407. LOCAL jpeg_scan_info *
  408. fill_scans( jpeg_scan_info * scanptr, int ncomps,
  409. int Ss, int Se, int Ah, int Al ) {
  410. /* Support routine: generate one scan for each component */
  411. int ci;
  412. for ( ci = 0; ci < ncomps; ci++ ) {
  413. scanptr->comps_in_scan = 1;
  414. scanptr->component_index[0] = ci;
  415. scanptr->Ss = Ss;
  416. scanptr->Se = Se;
  417. scanptr->Ah = Ah;
  418. scanptr->Al = Al;
  419. scanptr++;
  420. }
  421. return scanptr;
  422. }
  423. LOCAL jpeg_scan_info *
  424. fill_dc_scans( jpeg_scan_info * scanptr, int ncomps, int Ah, int Al ) {
  425. /* Support routine: generate interleaved DC scan if possible, else N scans */
  426. int ci;
  427. if ( ncomps <= MAX_COMPS_IN_SCAN ) {
  428. /* Single interleaved DC scan */
  429. scanptr->comps_in_scan = ncomps;
  430. for ( ci = 0; ci < ncomps; ci++ ) {
  431. scanptr->component_index[ci] = ci;
  432. }
  433. scanptr->Ss = scanptr->Se = 0;
  434. scanptr->Ah = Ah;
  435. scanptr->Al = Al;
  436. scanptr++;
  437. } else {
  438. /* Noninterleaved DC scan for each component */
  439. scanptr = fill_scans( scanptr, ncomps, 0, 0, Ah, Al );
  440. }
  441. return scanptr;
  442. }
  443. /*
  444. * Create a recommended progressive-JPEG script.
  445. * cinfo->num_components and cinfo->jpeg_color_space must be correct.
  446. */
  447. GLOBAL void
  448. jpeg_simple_progression( j_compress_ptr cinfo ) {
  449. int ncomps = cinfo->num_components;
  450. int nscans;
  451. jpeg_scan_info * scanptr;
  452. /* Safety check to ensure start_compress not called yet. */
  453. if ( cinfo->global_state != CSTATE_START ) {
  454. ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
  455. }
  456. /* Figure space needed for script. Calculation must match code below! */
  457. if ( ( ncomps == 3 ) && ( cinfo->jpeg_color_space == JCS_YCbCr ) ) {
  458. /* Custom script for YCbCr color images. */
  459. nscans = 10;
  460. } else {
  461. /* All-purpose script for other color spaces. */
  462. if ( ncomps > MAX_COMPS_IN_SCAN ) {
  463. nscans = 6 * ncomps;
  464. } /* 2 DC + 4 AC scans per component */
  465. else {
  466. nscans = 2 + 4 * ncomps;
  467. } /* 2 DC scans; 4 AC scans per component */
  468. }
  469. /* Allocate space for script. */
  470. /* We use permanent pool just in case application re-uses script. */
  471. scanptr = (jpeg_scan_info *)
  472. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_PERMANENT,
  473. nscans * SIZEOF( jpeg_scan_info ) );
  474. cinfo->scan_info = scanptr;
  475. cinfo->num_scans = nscans;
  476. if ( ( ncomps == 3 ) && ( cinfo->jpeg_color_space == JCS_YCbCr ) ) {
  477. /* Custom script for YCbCr color images. */
  478. /* Initial DC scan */
  479. scanptr = fill_dc_scans( scanptr, ncomps, 0, 1 );
  480. /* Initial AC scan: get some luma data out in a hurry */
  481. scanptr = fill_a_scan( scanptr, 0, 1, 5, 0, 2 );
  482. /* Chroma data is too small to be worth expending many scans on */
  483. scanptr = fill_a_scan( scanptr, 2, 1, 63, 0, 1 );
  484. scanptr = fill_a_scan( scanptr, 1, 1, 63, 0, 1 );
  485. /* Complete spectral selection for luma AC */
  486. scanptr = fill_a_scan( scanptr, 0, 6, 63, 0, 2 );
  487. /* Refine next bit of luma AC */
  488. scanptr = fill_a_scan( scanptr, 0, 1, 63, 2, 1 );
  489. /* Finish DC successive approximation */
  490. scanptr = fill_dc_scans( scanptr, ncomps, 1, 0 );
  491. /* Finish AC successive approximation */
  492. scanptr = fill_a_scan( scanptr, 2, 1, 63, 1, 0 );
  493. scanptr = fill_a_scan( scanptr, 1, 1, 63, 1, 0 );
  494. /* Luma bottom bit comes last since it's usually largest scan */
  495. scanptr = fill_a_scan( scanptr, 0, 1, 63, 1, 0 );
  496. } else {
  497. /* All-purpose script for other color spaces. */
  498. /* Successive approximation first pass */
  499. scanptr = fill_dc_scans( scanptr, ncomps, 0, 1 );
  500. scanptr = fill_scans( scanptr, ncomps, 1, 5, 0, 2 );
  501. scanptr = fill_scans( scanptr, ncomps, 6, 63, 0, 2 );
  502. /* Successive approximation second pass */
  503. scanptr = fill_scans( scanptr, ncomps, 1, 63, 2, 1 );
  504. /* Successive approximation final pass */
  505. scanptr = fill_dc_scans( scanptr, ncomps, 1, 0 );
  506. scanptr = fill_scans( scanptr, ncomps, 1, 63, 1, 0 );
  507. }
  508. }
  509. #endif /* C_PROGRESSIVE_SUPPORTED */